Navigation

Jump to main content
Chair of Management Accounting and Control
Completed Research Projects

Completed Research Projects

Logo BMBF Logo CRUP

The project "Life Cycle Engineering und Management Framework" was supported by the DAAD with funds of the German Federal Ministry of Education and Research (BMBF) as well as the Rectors Council of Portuguese Universities (CRUP) and performed within the DAAD program "Projektbezogener Personenaustausch mit Portugal (PPP Portugal)".

In cooperation with the Instituto Superior Técnico (IST), Universidade de Lisboa (Portugal) it was aimed to develop a Life Cycle Engineering and Management (LCEM) framework for a life cycle-related analysis, evaluation, and design of products, processes, and resources from a technical, ecological, and economic point of view. Thus, the primarily engineering-dominated approach of Life Cycle Engineering was extended by a profound consideration of economic principles and methodological elements, among others for a situation-specific preparation of decisions.

Logo NeMoS Logo Schaufenster Elektromobilität Logo Schaufenster Bayern-Sachsen

NeMoS was one of about 40 projects within the Schaufenster Bayern-Sachsen "ELEKTROMOBILITÄT VERBINDET" and it was funded by the Free State of Saxony in the context of the federal government's "Schaufenster-Initiative". Beside the professorship of Management Accounting and Control also the professorships of Communications Engineering, Circuit and System Design, Media Informatics, Cognitive and Engineering Psychology of the Technische Universit√§t Chemnitz, and professorships of further Saxony education institutions (University of Applied Sciences Mittweida, Technische Universit√§t Dresden, University of Applied Sciences Zwickau and University of Cooperative Education Glauchau) were involved in the project. Coordinated by the MUGLER AG and supported by the Verkehrssicherheitszentrum am Sachsenring GmbH & Co. KG and the Vodafone GmbH the project partner from different disciplines were doing research on various issues in the field of new mobility. This concerned the safety and energy efficiency of electric vehicles, the reliability of energy and communication infrastructure, the users and their behavior as well as the cost effectiveness of electromobility-related supply chains.

The last-mentioned area of research was processed by the professorship of Management Accounting and Control. Innovative products and services are an important brick for the long-term success of electromobility resp. new mobility. For the development as well as the commercialization of these products and services, especially the creation of competitive supply chains is necessary. Therefore, the cost effectiveness and profitability from the perspective of all actors in the supply chain should be ensured. For this purpose, a system of models for forecasting and analysing future developments of integrated electric energy, communication and traffic networks was drafted. In addition, a methodology was developed which is suited for long-term economic analysis and creation of novel products and services in the field of electromobility and new mobility. Beyond that, the profitability of an involvement in electromobile supply chains was evaluated. The models and methods were exemplarily applied to selected issues arising from other areas of research in NeMoS. Based on this, starting points for specific improvements for the life cycle-related cost effectiveness and profitability were derived.

For more information: http://www.elektromobilitaet-verbindet.de/projekte/freiluftlabor-sachsenring.html (German)

The French Environment and Energy Management Agency (ADEME) is a public agency under the joint authority of several French ministries. Among others, ADEME aims for a better understanding of the linkages between business' economics and its environmental and energy performance in order to develop and provide tools and best practices contributing to the transition towards a cleaner and more sustainable production.

Concerning environmental criteria, ADEME has a long track record of assessing and mitigating environmental impacts and now conducts studies on multi-criteria assessments of the life cycle of products in many areas. Focusing on production and taking into account the economic dimension, ADEME initialized some large-scale studies aiming at the evaluation of waste reduction and energy minimization measures.

In its search for more advanced tools and efficient assessment methodologies, ADEME is now interested in testing the combination of tools from different 'worlds' such as environmental management accounting (EMA) and LEAN. The goal of the present project was finding synergies and benefits of combining the EMA tools material flow cost accounting (MFCA) and its extension to energy – material and energy flow cost accounting (MEFCA) –, and the value stream mapping (VSM), which is a LEAN tool.

The central hypotheses were that (1) combining the differing perspectives on processes and the differing definitions of waste could result in a more comprehensive analysis and contribute to identifying the main causes of waste generation. (2) The efforts of modeling and data acquisition can be pooled between the tools, which could enhance the efficiency of their parallel application.

The project includes two case studies from the food-processing sector. Both in-depth analyses were conducted by Ernst & Young, Climate Change and Sustainability Services, which has, among others, a widespread experience in applying EMA and LEAN tools. The task of the professorship of Management Accounting and Control (Technische Universität Chemnitz) was to provide scientific supervision and support.

The parallel application of M(E)FCA and VSM showed similar results for both case studies:

  • M(E)FCA and VSM identified the same (sub-)processes as major weak points, but in some cases for different reasons.
  • Applying the two methods in parallel results, to a certain degree, in differing basic models of the system under consideration, which causes some double work and limits the comparability of results. Thus, using a more integrative approach of M(E)FCA and VSM is highly recommended. However, the development of such integrative approach was not part of the project.
  • The analysis of material and in particular that of energy (loss) flows is time-consuming since much of the data needed is not available or at least not at the desired level of detail – and, for the present project, an analysis on the process level was stipulated. For future M(E)FCA applications the use of a more rough pre-study identifying the most critical areas is recommended.
  • In both case studies, the stipulated analysis of energy flows was quite laborious, but the respective economic saving potentials were low from the outset because the share of total energy cost was negligible. Nonetheless, the quantitative share of energy losses in particular of supporting processes (air conditioning, heating, cooling etc.) was found to be very high. Thus, at least one of the companies will consider energy efficiency to a greater extent in future investment decisions.

Since there were only two case studies from a single industrial branch, the project's results can of course not be generalized. Moreover, both companies were involved in former waste reduction projects and, thus most of the (remaining) weak points regarding material waste were known already.

A critical point is that – in these specific case studies – the application of a second approach did not reveal more areas for improvement. However, the understanding of the root causes of material and energy losses was enhanced by contrasting the M(E)FCA results by those of the VSM analysis, which uses a different definition of 'waste' (so called 'muda'). Thus, further research in this area is expected to be fruitful, in particular when addressing an integration of M(E)FCA and VSM that avoids double work regarding modeling and data acquisition. Additionally, such integrated approach should not be limited to the identification of problems but also support the development, selection and implementation of improvement measures.

Logo ADEME Logo EY Logo URC

The project "eBEn – eBusiness Engineering" was a joint research project of the Technische Universität Chemnitz, the RKW Sachsen e. V. and the Terrot GmbH. This project was aimed at the development, validation and application of methods and instruments for a systematic master data and business process management as a basis for improved value creation in small and medium sized companies.
On the part of the Technische Universität Chemnitz an interdisciplinary research team from the chair of design and the chair of management accounting and control developed science-based and -proven basics for a largely company- and industry-independent technology transfer.

For the development of well-founded solution methods and tools (building blocks), a three-phase approach has been chosen. First, with questionnaire-based interviews in 134 small and medium-sized enterprises drivers and barriers for systematic master data management as well as relevant business objectives and constraints regarding the use of eBusiness Engineering and eBusiness Standards, respectively, were identified (phase I). On the basis of the interview results, requirements were collected for the development of building blocks for the general analysis of the master data situation and the related process situation (phase II). Further, derived from the phase I and II results, additional building blocks for detailed analyses and improvement measures (synthesis measures) were developed (phase III). Both, the building blocks of phase II and III were validated in different companies.
Accompanying the master data and process analyses and syntheses, the chair of management accounting and control developed in particular building blocks for cost-benefit analyses in the phases II and III regarding the economic appraisal of the implementation and continuous monitoring of synthesis measures.

Link to the web page of the project: www.eben-tuc.de (German)

The relevance of resource and energy efficiency is increasing in all conceivable application areas and forces therefore the utilization of high strength materials and lightweight concepts. The use of carbon fiber reinforced plastics (CFRP) benefits from this development. But there are also several problems with CFRP's regarding the joinability to other materials as well as the wear properties in comparison to metallic materials. Further potential results from the possibility to insert additional functions in the CFRP, such as electrical or thermal conducivity.

The object of the junior research group TranS-Ver was it therefore to find appropriate solutions for the problem areas mentioned above. By the use of suitable fiber coatings as well as a clever positioning in the matrix it was the aim to generate new materials which provide high strength joints, wear resistant coatings and functional polymer matrix composites. Especially the couting of fibers with copper or nickel-titanium produced interesting results.

For improving the innovation success of these new materials the subproject "Economical transfer" at the Professorship of Management Accounting and Control - that lasted from 1st July 2012 to 30rd June 2014 - designed several methods to identify potential application areas and furthermore to evaluate the commercial potential of the material innovations already in the early material design phases. Of particular importance in this context was the allocation of suitable methods to evaluate the necessary production and manufacturing processes in the future to enable an efficient design of the whole supply chain. Due to this objectives the researcher in the area of business administration and materials science and engineering could - in collaboration - identify promising application areas such as shielded CFRP's in aeroplanes and rotor blades in wind turbines. Furthermore relevant processes concerning the manufacturing of these components have been monetary evaluated.

The project was realized in cooperation with the Institute of Materials Science and Engineering and the Professorship of Assembly and Handling Technology.

For more information: http://www.tu-chemnitz.de/TranS-Ver/index.php.en

The objective of this project that was funded by the European Social Fund (ESF) and the the Free State of Saxony was the development of a scientifically sound economical approach for explanation and composition regarding the linkage of different forms of networks. An analysis of the currently existing real infrastructure networks and the applied modelling approaches shall provide the basis for this. The approach shall enable the evaluation and control of the economic profitability of products, business models and value chains resulting from the network linkage.

The result of the research project ist an strategic management approach for changing value structures. Its essential core element is a developed analysis and forecasting tool for fundamentally changing value structures. Therewith effects on single enterprises, value networks oder whole industry sectors can be defined and recommended actions can be derived in a strategic management process.

The project was supported by MUGLER AG, a medium-sized telecom company from the Chemnitz-Zwickau region. The objective was also to strengthen the competitive capability of Saxon economy in trend-setting future markets by a knowledge transfer with cooperation partners and young academics. The subject is currently proceeded in a PhD project an the Professorship of Management Accounting and Control.

The essential objective of this interdisciplinary research project that was funded by the European Social Fund (ESF) was the development of an innovative process for serial production of 3D-contoured thermoplastic sandwich structures (fibre-reinforced plastics).

A fundamental subgoal of this research project that was elaborated within the subpoject 4 at the Professorship of Management Accounting and Control was the designing of a system to assess and enhance the life cycle profit of lightweight components. As a result, a model was developed that can be used both to estimate technology-specific life cycle costs and profits of F.R.P.-structures in early design stages and to identify and quantify non-monetary criteria relevant for success. Therefore the model shall be applied to support F.R.P.-technology decisions.

The cooperation of academics from a technical and an economical field enabled the application of parts of the designed calculating system to the t3S-structures during the development - especially within the scope of case studies with respect to demonstrator components. Thereby, economical aspects like life cycle costs and resulting life cycle profits alongside the whole development and process chain could be considered during the technological process development. This also helps towards the commercial and technological success of the research project itself. Furthermore, the application of life cycle costing to prepare technology decisions regarding innovative F.R.P.-structures and there production processes for industrial users was permitted.

This project was elaborated together with the Department of Lightweight Structures and Polymer Technology and in collaboration with industrial partners like Ghost Bikes GmbH.

For more information: http://www.leichtbau.tu-chemnitz.de/t3s/ (German)

The target of this project was the design and implementation of a holistic, proactive approach to support product costing of sheet metal forming tools over the entire product development process. The main objective was to improve the forecast, the analysis, and the control of tool-costs with regard to accuracy and speed of operation. Furthermore, a knowledge base has been developed to collect the gathered knowledge from customer projects regarding costs, processes, and disturbances in a central data base and make it available for decision making processes in product development and distribution.

As a result, a concept for a product cost management system for tool and mold making was developed including target course, objects, surrounding conditions, tasks, cost drivers, activities, organisation, and instruments as relevant facets. Based on this, a IT-based cost information system - as the instrumental core of the product cost management system - and its components were designed. This IT-tool should provide the calculations and other cost management activities with cost information. Furthermore, necessary steps for its implementation as well as variants for designing business processes and information flow to apply the cost information system in an efficient and effective way have been demonstrated.

This project was elaborated in collaboration with the Siebenwurst Werkzeugbau GmbH and the Professorship of Engineering Design.

The objective of the project was to develop methods, concepts, and best practices for the reduction of variety and complexity within the focus of master data management and product cost management.

For this, the following sub-goals were achieved, referring to product creation and product use within the integrated product development:

  • configuration of a (company-neutral) IT-infrastructure for the laboratory for integrated product development to facilitate the development and transfer of methods, concepts, and best practices for the analysis, cleansing, and consolidation of master data as well as for the product cost management,
  • development and testing of methods, concepts, and best practices (demonstrators) for the analysis, cleansing, and consolidation of master data as well as for the product cost management to enable the configuration of specific solutions for a wide range of SME with differences in tasks and boundary conditions (toolboxes),
  • development of an approach (consisting of three steps, target group related) for transferring the results in SME,
  • development of training modules (regarding, among other things, economical product design, methodical engineering, target costing, and knowledge management within target costing) comprising the ongoing requirements of industry.

This project was processed in cooperation with the professorship of design theory of Technische Universität Chemnitz. It was funded by the European Union (European Regional Development Fund) and the Free State of Saxony.

For more information: www.ipe-lab.de (German)

The objective of the project was to develop a concept of modelling, recording and analysing the total costs of radio network and radio station infrastructure. Based on this concept, measures improving the cost efficiency shall be developed in order to enable an optimal design of existing and future radio network and radio station infrastructure.

The achievement of this objective required the specification of general theoretical findings, methods and models with regard to the characteristics of radio stations and radio networks. Furthermore it involved developing a generic model of the life cycles of radio sites and radio networks with a high level of detail to the point of individual processes. On this basis, life cycle costs and their influencing variables shall be identified and systematized. Differentiated (partial) models had to be formulated in order to analyse specific issues and address problems in decision-making. These models were adopted and tested by using specific calculation methods and statistical techniques.

Furthermore the research projects aimed to identify various parameters of stations and networks as well as their relationship. This information is required within the framework of systematic design of life cycle costs of radio network infrastructures.

This third-party funded project was processed in cooperation with the MUGLER AG and funded by the European Regional Development Fund (and the state of Saxony). Within a dissertation project the topic is called up through further processing.