Navigation

Inhalt Hotkeys
Fakultät für Mathematik
Fakultät für Mathematik
Böttcher, Albrecht ; Hofmann, Bernd ; Tautenhahn, Ulrich ; Yamamoto, Masahiro : Convergence rates for Tikhonov regularization from different kinds of smoothness conditions

Böttcher, Albrecht ; Hofmann, Bernd ; Tautenhahn, Ulrich ; Yamamoto, Masahiro : Convergence rates for Tikhonov regularization from different kinds of smoothness conditions


Author(s):
Böttcher, Albrecht
Hofmann, Bernd
Tautenhahn, Ulrich
Yamamoto, Masahiro
Title:
Convergence rates for Tikhonov regularization from different kinds of smoothness conditions
Electronic source:
application/pdf
application/postscript
Preprint series:
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 9, 2005
Mathematics Subject Classification:
47A52 [ Ill-posed problems, regularization ]
65J20 [ Improperly posed problems; regularization ]
65R30 [ Improperly posed problems ]
Abstract:
The paper is concerned with ill-posed operator equations $Ax=y$ where $A:X \to Y$ is an injective bounded linear operator with non-closed range $R(A)$ and $X$ and $Y$ are Hilbert spaces. The solution $x=x^\dagger$ is assumed to be in the range $R(G)$ of some selfadjoint strictly positive bounded linear operator $G:X \to X$. Under several assumptions on $G$, such as $G=\varphi(A^*A)$ or more generally $R(G) \subset R(\varphi(A^*A))$, inequalities of the form $\rho^2(G) \le A^*A$, or range inclusions $R(\rho(G)) \subset R(|A|)$, convergence rates for the regularization error $\|x_{\alpha} - x^\dagger\|$ of Tikhonov regularization are established. We also show that part of our assumptions automatically imply so-called source conditions. The paper contains a series of new results but also intends to uncover cross-connections between the different kinds of smoothness conditions that have been discussed in the literature on convergence rates for Tikhonov regularization.
Keywords:
linear ill-posed problems, Tikhonov regularization, convergence rates, smoothness conditions, index functions, operator monotone functions, range inclusions
Language:
English
Publication time:
6 / 2005

Presseartikel

  • Mehr Mathe dank Diplom

    TU Chemnitz bietet ab dem kommendem Wintersemester den modularisierten Diplomstudiengang Mathematik an …

  • „In Chemnitz ist sehr viel passiert“

    Im Podcast erzählt Prof. Martin Stoll, welche Serien er auf Netflix schaut, was ihn an Oxford fasziniert und wie es sich anfühlt, nach zwölf Jahren als Professor nach Chemnitz zurückzukehren …

  • MINT gewinnt

    Drei sächsische Hochschulen verfolgen unterschiedliche Konzepte, um Studieninteressenten Mathematik, Informatik, Naturwissenschaften und Technik schmackhaft zu machen …

  • Mathematik ganz alltagsnah

    „Videowoche der Mathematik“ zeigt das Fach von seiner spannenden, menschlichen und alltagstauglichen Seite …