Navigation

Inhalt Hotkeys
Fakultät für Mathematik
Fakultät für Mathematik
S.Mehlhose; J. vom Scheidt; R. Wunderlich : Random eigenvalue problems for bending vibrations of beams

S.Mehlhose; J. vom Scheidt; R. Wunderlich : Random eigenvalue problems for bending vibrations of beams


Author(s) :
S.Mehlhose; J. vom Scheidt; R. Wunderlich
Title :
Random eigenvalue problems for bending vibrations of beams
Electronic source:
application/pdf
Preprint series
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 98-24, 1998
Mathematics Subject Classification :
73V30 [ Stochastic analysis ]
73B35 [ Random materials (mechanics of solids) ]
73K35 [ Random excitation of structures ]
Abstract :
The paper deals with the determination of statistical characteristics of eigenvalues for a class of ordinary differential operators with random coefficients. This problem arises from the computation of eigenfrequencies for the bending vibrations of beams possessing random geometry and material properties. Representations of eigenvalues are found by applying the Ritz method and perturbation results for matrix eigenvalue problems. Approximations of the probability density function and the moments of the random eigenvalues are given by means of expansions in powers of the correlation length of weakly correlated random functions which are used for modelling the random terms. The eigenvalue statistics determined analytically are compared favourably with Monte-Carlo simulations.
Keywords :
random eigenvalue problem, Monta-Carlo, Ritz method
Language :
english
Publication time :
5/1998

Presseartikel

  • MINT gewinnt

    Drei sächsische Hochschulen verfolgen unterschiedliche Konzepte, um Studieninteressenten Mathematik, Informatik, Naturwissenschaften und Technik schmackhaft zu machen …

  • Mathematik ganz alltagsnah

    „Videowoche der Mathematik“ zeigt das Fach von seiner spannenden, menschlichen und alltagstauglichen Seite …

  • Wahlzeit an der Universität

    Wahlvorschläge für Organe und Ämter an der TU Chemnitz können bis zum 23. Oktober 2017 eingereicht werden – Briefwahlanträge sind bis 27. Oktober 2017 zu stellen …