Navigation

Inhalt Hotkeys
Fakultät für Mathematik
Fakultät für Mathematik
Lutz Kämmerer, Stefan Kunis, Daniel Potts: Interpolation lattices for hyperbolic cross trigonometric polynomials

Lutz Kämmerer, Stefan Kunis, Daniel Potts: Interpolation lattices for hyperbolic cross trigonometric polynomials


Author(s):
Lutz Kämmerer
Stefan Kunis
Daniel Potts
Title:
Interpolation lattices for hyperbolic cross trigonometric polynomials
Electronic source:
application/pdf
Preprint series:
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 13, 2010
Mathematics Subject Classification:
65T40 [ ]
42B05 []
65D30 []
Abstract:
Sparse grid discretisations allow for a severe decrease in the number of degrees of freedom for high dimensional problems. Recently, the corresponding hyperbolic cross fast Fourier transform has been shown to exhibit numerical instabilities already for moderate problem sizes. In contrast to standard sparse grids as spatial discretisation, we propose the use of oversampled lattice rules known from multivariate numerical integration. This allows for the highly efficient and perfectly stable evaluation and reconstruction of trigonometric polynomials using only one ordinary FFT. Moreover, we give numerical evidence that reasonable small lattices exist such that our new method outperforms the sparse grid based hyperbolic cross FFT for realistic problem sizes.
Keywords:
trigonometric approximation, hyperbolic cross, sparse grid, lattice rule, fast Fourier transform
Language:
English
Publication time:
07/2010

Presseartikel

  • MINT gewinnt

    Drei sächsische Hochschulen verfolgen unterschiedliche Konzepte, um Studieninteressenten Mathematik, Informatik, Naturwissenschaften und Technik schmackhaft zu machen …

  • Mathematik ganz alltagsnah

    „Videowoche der Mathematik“ zeigt das Fach von seiner spannenden, menschlichen und alltagstauglichen Seite …

  • Wahlzeit an der Universität

    Wahlvorschläge für Organe und Ämter an der TU Chemnitz können bis zum 23. Oktober 2017 eingereicht werden – Briefwahlanträge sind bis 27. Oktober 2017 zu stellen …