Navigation

Inhalt Hotkeys
Fakultät für Mathematik
Fakultät für Mathematik
Constant Minkowskian width in terms of boundary cuts

G. Averkov, A. Heppes: Constant Minkowskian width in terms of boundary cuts


Author(s):
Gennadiy Averkov
Aladar Heppes
Title:
Constant Minkowskian width in terms of boundary cuts
Electronic source:
application/pdf
Preprint series:
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 6, 2004
Abstract:
Let $K$ be a body of constant width in a Minkowski space (i.e., a finite dimensional real Banach space) with unit ball $B$. Suppose that $B$ and $K$ are strictly convex and smooth. Then any manifold $M_0$, homeomorphic to $(d-2)$-simensional sphere and lying in the boundary bd $K$ of $K$ splits bd $K$ into two compact manifolds $M_1$ and $M_2$ such that $M_1$ or $M_2$ has the same Minkowskian diameter as $M_0$. Moreover, the above property of bodies having constant Minkowskian width is even characteristic in the class of strictly convex and smooth bodies with at least two Minkowskian diametral chords.
Keywords:
constant width, Minkowski space, Banach space
Language:
English
Publication time:
2004

Presseartikel

  • Mehr Mathe dank Diplom

    TU Chemnitz bietet ab dem kommendem Wintersemester den modularisierten Diplomstudiengang Mathematik an …

  • „In Chemnitz ist sehr viel passiert“

    Im Podcast erzählt Prof. Martin Stoll, welche Serien er auf Netflix schaut, was ihn an Oxford fasziniert und wie es sich anfühlt, nach zwölf Jahren als Professor nach Chemnitz zurückzukehren …

  • MINT gewinnt

    Drei sächsische Hochschulen verfolgen unterschiedliche Konzepte, um Studieninteressenten Mathematik, Informatik, Naturwissenschaften und Technik schmackhaft zu machen …

  • Mathematik ganz alltagsnah

    „Videowoche der Mathematik“ zeigt das Fach von seiner spannenden, menschlichen und alltagstauglichen Seite …