Navigation

Inhalt Hotkeys
Fakultät für Mathematik
Fakultät für Mathematik
Luther, Uwe : A Note on Simultaneous Approximation

Luther, Uwe : A Note on Simultaneous Approximation


Author(s):
Luther, Uwe
Title:
A Note on Simultaneous Approximation
Electronic source:
application/pdf
application/postscript
Preprint series:
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 10, 2002
Mathematics Subject Classification:
41A65 [ Abstract approximation theory ]
Abstract:
The following result is well-known: If $f\in X$ ($X$: some normed function space) can be approximated of order $\|f-f_n\|_X\le c\inf_{g_n\in X_n}\|f-g_n\|_X=O(n^{-s-r})$ ($r,s>0$ fixed) by elements $f_1,f_2,\dotsc$ of certain subspaces $X_1\subseteq X_2\subseteq\dotsc$ for which the Bernstein inequalities $\|g_n\|_Y\le c\,n^r\|g_n\|_X,$ $g_n\in X_n$, hold true with some Banach space $Y\hookrightarrow X$ of smooth functions, then $\|f-f_n\|_Y= O(n^{-s})$. (Usually, $\|f\|_Y$ contains the norm of $f$ and some norm of $f^{(r)}$, so that $\|f-f_n\|_Y=O(n^{-s})$ means simultaneous approximation of $f$ and $f^{(r)}$ by $f_n$ and $f_n^{(r)}$, respectively.) We show that this result remains true if the order $O(a_n^{-1}n^{-r})$ is considered instead of $O(n^{-s-r})$, where $a_n$ is strictly increasing and converges to infinity faster than $n^\varepsilon$ (in a certain sense). We also present similar results in case $\sum (n^r\|f-f_n\|_X)^q(a_{n+1}^q-a_n^q)<\infty$ and in case of non-classical Bernstein inequalities, where $\{n^r\}$ is replaced by some other increasing sequence.
Keywords:
Simultaneous approximation, Best approximation errors
Language:
English
Publication time:
8 / 2002

Presseartikel

  • Mehr Mathe dank Diplom

    TU Chemnitz bietet ab dem kommendem Wintersemester den modularisierten Diplomstudiengang Mathematik an …

  • „In Chemnitz ist sehr viel passiert“

    Im Podcast erzählt Prof. Martin Stoll, welche Serien er auf Netflix schaut, was ihn an Oxford fasziniert und wie es sich anfühlt, nach zwölf Jahren als Professor nach Chemnitz zurückzukehren …

  • MINT gewinnt

    Drei sächsische Hochschulen verfolgen unterschiedliche Konzepte, um Studieninteressenten Mathematik, Informatik, Naturwissenschaften und Technik schmackhaft zu machen …

  • Mathematik ganz alltagsnah

    „Videowoche der Mathematik“ zeigt das Fach von seiner spannenden, menschlichen und alltagstauglichen Seite …