Navigation

Inhalt Hotkeys
Fakultät für Mathematik
Fakultät für Mathematik
Brian Lins, Patrick Meade, Christian Mehl, Leiba Rodman : Polar decompositions of indecomposable normal matrices in indefinite inner products: Explicit formulas and open problems

Brian Lins, Patrick Meade, Christian Mehl, Leiba Rodman : Polar decompositions of indecomposable normal matrices in indefinite inner products: Explicit formulas and open problems


Author(s) :
Brian Lins, Patrick Meade, Christian Mehl, Leiba Rodman
Title :
Polar decompositions of indecomposable normal matrices in indefinite inner products: Explicit formulas and open problems
Preprint series
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 2000-9, 2000
Mathematics Subject Classification :
15A63 [ Bilinear forms, etc. ]
15A23 [ Factorization of matrices ]
Abstract :
Polar decompositions of normal matrices with respect to indefinite inner products are discussed. For the case of indecomposable normals with respect to an indefinite inner product defined by an invertible Hermitian matrix having at most two negative eigenvalues, explicit formulas for a polar decomposition with respect to this indefinite product are provided. Several open problems are formulated.
Keywords :
Indefinite inner product, normal matrix, polar decomposition
Language :
english
Publication time :
8/2000

Presseartikel