Navigation

Inhalt Hotkeys
Fakultät für Mathematik
Fakultät für Mathematik
Tröltzsch, Fredi : On the Lagrange-Newton-SQP Method for the Optimal Control of Semilinear Parabolic Equations

Tröltzsch, Fredi : On the Lagrange-Newton-SQP Method for the Optimal Control of Semilinear Parabolic Equations


Author(s) :
Tröltzsch, Fredi
Title :
On the Lagrange-Newton-SQP Method for the Optimal Control of Semilinear Parabolic Equations
Electronic source :
[gzipped ps-file] 84 kB
Preprint series
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 98-13, 1998
Mathematics Subject Classification :
49J20 [ Optimal control problems with PDE (existence) ]
49M15 [ Methods of Newton-Raphson, Galerkin and Ritz types ]
65K10 [ Optimization techniques (numerical methods) ]
49K20 [ Optimal control problems with PDE (nec./ suff.) ]
Abstract :
A class of Lagrange-Newton-SQP methods is investigated for optimal control problems governed by semilinear parabolic initial- boundary value problems. Distributed and boundary controls are given, restricted by pointwise upper and lower bounds. The convergence of the method is discussed in appropriate Banach spaces. Based on a weak second order sufficient optimality condition for the reference solution, local quadratic convergence is proved. The proof is based on the theory of Newton methods for generalized equations in Banach spaces.
Keywords :
optimal control, parabolic equation, semilinear equation, sequential quadratic programming, Lagrange-Newton method, convergence analysis
Language :
english
Publication time :
7/1998

Presseartikel

  • MINT gewinnt

    Drei sächsische Hochschulen verfolgen unterschiedliche Konzepte, um Studieninteressenten Mathematik, Informatik, Naturwissenschaften und Technik schmackhaft zu machen …

  • Mathematik ganz alltagsnah

    „Videowoche der Mathematik“ zeigt das Fach von seiner spannenden, menschlichen und alltagstauglichen Seite …

  • Wahlzeit an der Universität

    Wahlvorschläge für Organe und Ämter an der TU Chemnitz können bis zum 23. Oktober 2017 eingereicht werden – Briefwahlanträge sind bis 27. Oktober 2017 zu stellen …