Springe zum Hauptinhalt
Fakultät für Mathematik
Fakultät für Mathematik
Fakultät für Mathematik 
B. Hofmann; G. Fleischer : Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators

B. Hofmann; G. Fleischer : Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators


Author(s) :
B. Hofmann; G. Fleischer
Title :
Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators
Electronic source :
[gzipped dvi-file] 34 kB
[gzipped ps-file] 73 kB
Preprint series
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 98-7, 1998
Mathematics Subject Classification :
65J20 [ Improperly posed problems (numerical methods in abstract spaces) ]
47B38 [ Operators on function spaces ]
65R30 [ Improperly posed problems (integral equations, numerical methods) ]
Abstract :
In this paper we deal with the `strength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according_to_M. Z. Nashed [15] the ill-posedness of type I if A is not compact, but we have R(A) 6= R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with noncompact operators A are not in general `less' ill-posed than the problems with compact operators. We motivate this statement by comparing the approximation and stability behaviour of discrete least-squares solutions and the growth rate of Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed in [10] are derived from the decay rate of the nonincreasing sequence of singular values of A. Since singular values do not exist for noncompact operators A; we introduce stability rates in order to have a common measure for the compact and noncompact cases. Properties of these rates are illustrated by means of convolution equations in the compact case and by means of equations with multiplication operators in the noncompact case. Moreover using increasing rearrangements of the multiplier functions specific measures of ill-posedness called ill-posedness rates are considered for the multiplication operators. In this context, the character of sufficient conditions providing convergence rates of Tikhonov regularization are compared for compact operators and multiplication operators.
Keywords :
Linear ill-posed problems, compact and noncompact linear operators in Hilbert spaces, discrete least-squares method, stability rates, singular values, convolution and multiplication operators, Galerkin matrices, condition numbers, increasing rearrangements
Language :
english
Publication time :
5/1998
Notes :
partial support through DFG under Ho 1454/3-2
  • Eine junge Frau sitzt am Computer.

    Rund um die Uhr die Hausarbeit abschließen

    Einfach dranbleiben: Universitätsbibliothek der TU Chemnitz hat unmittelbar im Anschluss an die „Lange Nacht der aufgeschobenen Hausarbeiten“ am 5. Februar 2026 erstmals noch bis 14. Februar gegen Mitternacht 24/7 geöffnet …

  • Junge Menschen tanzen auf einer Tanzfläche

    Stimmungsvolle Ballnacht im Kulturbahnhof

    Gelungene Premiere: Fachschaftsräte der TU Chemnitz richteten erstmals einen „Winterball“ für Angehörige der Universität und weitere Tanzbegeisterte aus …

  • Ein junger Mann experiementiert an einem Glasgefäß mit einer Flüssigkeit.

    Riesiges Interesse zum Tag der offenen Tür der TU Chemnitz

    Zahlreiche Studieninteressierte strömten auf den Campus – Viele Studierende waren als Botschafterinnen und Botschafter ihrer Studiengänge im Einsatz und ermöglichten so eine Studienberatung auf Augenhöhe …

  • Grafik zum Erasmus+ Programm

    Auf ins Ausland mit Erasmus+!

    Noch bis zum 31. März 2026 läuft die Bewerbungsphase für ein Auslandssemester im Wintersemester 2026/27 oder im Sommersemester 2027 …