Navigation

Inhalt Hotkeys
Fakultät für Mathematik
Fakultät für Mathematik
D. Borisov, I. Nakić, C. Rose, M. Tautenhahn, Ivan Veselić: Multiscale unique continuation properties of eigenfunctions

D. Borisov, I. Nakić, C. Rose, M. Tautenhahn, Ivan Veselić: Multiscale unique continuation properties of eigenfunctions


Author(s):
D. Borisov
I. Nakić
C. Rose
M. Tautenhahn
Ivan Veselić
Title:
D. Borisov, I. Nakić, C. Rose, M. Tautenhahn, Ivan Veselić: Multiscale unique continuation properties of eigenfunctions
Electronic source:
application/pdf
Preprint series:
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 14, 2014
Mathematics Subject Classification:
    35R45 []
    35-06 []
    35A23 []
Abstract:
Quantitative unique continuation principles for multiscale structures are an important ingredient in a number applications, e.g.\ random Schr\"odinger operators and control theory. We review recent results and announce new ones regarding quantitative unique continuation principles for partial differential equations with an underlying multiscale structure. They concern Schr\"odinger and second order elliptic operators. An important feature is that the estimates are scale free and with quantitative dependence on parameters. These unique continuation principles apply to functions satisfying certain "rigidity" conditions, namely that they are solutions of the corresponding elliptic equations, or projections on spectral subspaces. Carleman estimates play an important role in the proofs of these results.
Keywords:

Language:
English
Publication time:
09/2014

Presseartikel

  • MINT gewinnt

    Drei sächsische Hochschulen verfolgen unterschiedliche Konzepte, um Studieninteressenten Mathematik, Informatik, Naturwissenschaften und Technik schmackhaft zu machen …

  • Mathematik ganz alltagsnah

    „Videowoche der Mathematik“ zeigt das Fach von seiner spannenden, menschlichen und alltagstauglichen Seite …

  • Wahlzeit an der Universität

    Wahlvorschläge für Organe und Ämter an der TU Chemnitz können bis zum 23. Oktober 2017 eingereicht werden – Briefwahlanträge sind bis 27. Oktober 2017 zu stellen …