Dr. Max Winkler
Max Winkler
Telefon:
0371-531-+49 371 531 33097
Fax:
+49 371 531 22509
Raum:
Reichenhainer Str. 41, Zimmer 616
Short CV
- born in 1987 in Freital
- 2006-2011: Diploma in Mathematics at Technische Universität Dresden
- 2011-2015: PhD student at UniBw München within the international research training group IGDK Munich-Graz
- 2015-2017: PostDoc at UniBw München
- 2017-now: Academic assistent at TU Chemnitz
- Summer term 2020: Substitute professor at Leibniz University Hannover
Teaching
Current semester: Winter term 2025
I am on parental leave.Former semesters
Summer term 2025
-
Exercise
Mathematisches Programmieren
-
Exercise
Mathematik IV (für IF/ET/Ph)
Winter term 2024
Temoprary professorship at TU Bergakademie Freiberg
- Optimierung für Mathematiker
- Grundlagen der Optimierung
Summer term 2024
-
Lecture
Mathematisches Programmieren
-
Exercise
Mathematik IV (für IF/ET/Ph)
-
Exercise
Höhere Mathematik II (für IW/Ch/SK/CC)
Winter term 2023
-
Exercise
Mathematik III (für IF/ET/Ph)
-
Exercise
Höhere Mathematik I (für IW/Ch/SK/CC)
Summer term 2023
-
Exercise
Numerical methods for partial differential equations
-
Exercise
Mathematisches Programmieren
-
Exercise
Mathematik IV (für IF/ET/Ph)
Winter term 2022/23
-
Exercise
Statistik (für Wirtschaftswissenschaftler)
-
Exercise
Höhere Mathematik III (für Maschinenbauer)
Summer term 2022
-
Lecture
Mathematisches Programmieren
-
Exercise
Mathematics IV
Winter term 2021/2022
-
Lecture
Optimization with partial differential equations
-
Exercise
Mathematics III
Summer term 2021
Winter term 2020/2021
-
Exercise for the lecture Introduction to Optimization
Summer term 2020
Temporary professorship at Leibniz-Universität Hannover
- Mathematics II für life sciences and geology
- Computeralgebra
- Discontinuous Galerkin methods
Winter term 2019/2020
-
Exercise for the lecture Introduction to Optimization
-
Exercise for the lecture Statistics for economists
Summer term 2019
-
Lecture Numerical Methods for Partial Differential Equations (in english)
Winter term 2018/2019
-
Lecture Numerical Methods for Ordinary Differential Equations
Summer term 2018
-
Übung zur Vorlesung Numerik partieller Differentialgleichungen
-
Übung zur Vorlesung Mathematik II (für IF, ET, Ph)
Winter term 2017/18
-
Übung zur Vorlesung Grundlagen der Optimierung
-
Übung zur Vorlesung Mathematik I (für IF, ET, Ph)
Publications
Submitted articles
-
Winkler, M., Yücel, H.: A stochastic Galerkin method for optimal Dirichlet boundary
control problems with uncertain data
Preprint arXiv:2506.11479, 2025
-
Blechschmidt, J, Pietschmann, J.-F., Riemer, T.-C., Stoll, M., Winkler, M.: Physics-Informed DeepONets for drift-diffusion on metric graphs: simulation and parameter identification
Preprint arxiv 2505.04263, 2025
-
Blechschmidt, J, Pietschmann, J.-F., Riemer, T.-C., Stoll, M., Winkler, M.: A comparison of PINN approaches for drift-diffusion equations on metric graphs
Preprint arXiv:2205.07195, 2022
Journal articles
- Blechschmidt, J., Riemer, T.-C., Winkler, M., Stoll, M., Pietschmann, J.:
Physics-Informed DeepONets for drift-diffusion on metric graphs: simulation and parameter identification
International Conference on Machine Learning (ICML), 2025.
[Article ]
- Marino, G., Pietschmann, J., Winkler, M.:
A free boundary model for transport induced neurite growth
European Journal of Applied Mathematics, accepted for publication, 2024
[Article | Preprint arXiv:2302.00527
]
- Pietschmann, J., Stötzner, A., Winkler, M.:
Numerical investigation of agent controlled pedestrian dynamics using a structure preserving finite volume scheme
Advances in Computational Mathematics 50(4), 2024.
[Article | Preprint arXiv:2301.02516 ]
Program code available in GitHub
- Herzog, R., Pietschmann, J., Winkler, M.:
Optimal Control of Hughes' Model for Pedestrian Flow via Local Attraction
Applied Mathematics & Optimization 88(87), 2023.
[Article | Preprint arXiv:2011.03580]
- Pfefferer, J., Winkler, M.:
Finite element approximations for PDEs with irregular Dirichlet boundary data on boundary concentrated meshes
Computational Methods in Applied Mathematics 23(4), 2022.
[Article ]
- Stoll, M., Winkler, M.:
Optimization of a partial differential equation on a complex network
Electronic Transactions on Numerical Analysis 54:392-419, 2021
[ Article |
Preprint arXiv:1907.07806]
- Blechschmidt J, Herzog, R., Winkler, M.:
Error estimation for second-order PDEs in non-variational form
Numerical Methods for Partial Differential Equations 37(3):2190-2221, 2021.
[Article | Preprint arXiv:1909.12676]
- Winkler, M.:
Error estimates for the finite element approximation of bilinear boundary control problems
Computational Optimization and Applications 76(1):155-199, 2020.
[ Preprint arXiv:1901.03612 ]
- Winkler, M.:
Error estimates for variational normal derivatives and Dirichlet control problems with energy regularization
Numerische Mathematik 144:413–445, 2020.
[ Preprint arXiv:1808.01171 ]
- Apel, T., Pfefferer, J., Rogovs, S., Winkler, M.:
Maximum norm error estimates for Neumann boundary value problems on graded meshes
IMA J. Numer. Anal. 40(1):474–497, 2020.
[ Preprint arXiv:1804.10904 ]
- Pfefferer, J., Winkler, M.:
Finite element error estimates for normal derivatives on boundary concentrated meshes
SIAM J. Numer. Anal. 57(5):2043-2073, 2019.
[ Preprint arXiv:1804.05723 ]
- Apel, T., Pfefferer, J., Winkler, M.:
Error Estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains,
IMA J. Numer. Anal.,38(4): 1984–2025, 2018.
[ Preprint ]
- Apel, T., Steinbach, O., Winkler, M.:
Error Estimates for Neumann Boundary Control Problems with Energy Regularization,
J. Numer. Math. 24(4):207-233, 2016.
[ Preprint ]
- Apel, T., Pfefferer, J., Winkler, M.:
Local Mesh Refinement for the Discretization of Neumann Boundary Control Problems on Polyhedra,
Math. Methods Appl. Sci. 39(5):1206-1232, 2015.
[ Preprint ]
- Apel, T., Lombardi, A. L., Winkler, M.:
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω),
ESAIM. Math. Model. Numer. Anal. 48(4): 1117-1145, 2014.
[ Preprint ]
- Grossmann, C., Winkler, M.:
Mesh-Independent Convergence of Penalty Methods Applied to Optimal Control with Partial Differential Equations,
Optimization 62(5): 629-647, 2013.
[ Preprint ]
- Grossmann, C., Winkler, M.:
A Mesh-Independence Principle for Quadratic Penalties Applied to Semilinear Elliptic Boundary Control,
Schedae Informaticae 21: 9-26, 2012.
[ Preprint ]
Theses
- Diploma thesis: Strafmethoden für steuerbeschränkte Kontrollprobleme, TU Dresden, 2011.
- PhD thesis: Finite element error analysis for Neumann boundary control problems on polyhedral domains, UniBw München, 2015.
Preprint arXiv:2506.11479, 2025
Preprint arxiv 2505.04263, 2025
Preprint arXiv:2205.07195, 2022
Physics-Informed DeepONets for drift-diffusion on metric graphs: simulation and parameter identification
International Conference on Machine Learning (ICML), 2025.
[Article ]
A free boundary model for transport induced neurite growth
European Journal of Applied Mathematics, accepted for publication, 2024
[Article | Preprint arXiv:2302.00527 ]
Numerical investigation of agent controlled pedestrian dynamics using a structure preserving finite volume scheme
Advances in Computational Mathematics 50(4), 2024.
[Article | Preprint arXiv:2301.02516 ]
Program code available in GitHub
Optimal Control of Hughes' Model for Pedestrian Flow via Local Attraction
Applied Mathematics & Optimization 88(87), 2023.
[Article | Preprint arXiv:2011.03580]
Finite element approximations for PDEs with irregular Dirichlet boundary data on boundary concentrated meshes
Computational Methods in Applied Mathematics 23(4), 2022.
[Article ]
Optimization of a partial differential equation on a complex network
Electronic Transactions on Numerical Analysis 54:392-419, 2021
[ Article | Preprint arXiv:1907.07806]
Error estimation for second-order PDEs in non-variational form
Numerical Methods for Partial Differential Equations 37(3):2190-2221, 2021.
[Article | Preprint arXiv:1909.12676]
Error estimates for the finite element approximation of bilinear boundary control problems
Computational Optimization and Applications 76(1):155-199, 2020.
[ Preprint arXiv:1901.03612 ]
Error estimates for variational normal derivatives and Dirichlet control problems with energy regularization
Numerische Mathematik 144:413–445, 2020.
[ Preprint arXiv:1808.01171 ]
Maximum norm error estimates for Neumann boundary value problems on graded meshes
IMA J. Numer. Anal. 40(1):474–497, 2020.
[ Preprint arXiv:1804.10904 ]
Finite element error estimates for normal derivatives on boundary concentrated meshes
SIAM J. Numer. Anal. 57(5):2043-2073, 2019.
[ Preprint arXiv:1804.05723 ]
Error Estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains,
IMA J. Numer. Anal.,38(4): 1984–2025, 2018. [ Preprint ]
Error Estimates for Neumann Boundary Control Problems with Energy Regularization,
J. Numer. Math. 24(4):207-233, 2016. [ Preprint ]
Local Mesh Refinement for the Discretization of Neumann Boundary Control Problems on Polyhedra,
Math. Methods Appl. Sci. 39(5):1206-1232, 2015. [ Preprint ]
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω),
ESAIM. Math. Model. Numer. Anal. 48(4): 1117-1145, 2014. [ Preprint ]
Mesh-Independent Convergence of Penalty Methods Applied to Optimal Control with Partial Differential Equations,
Optimization 62(5): 629-647, 2013. [ Preprint ]
A Mesh-Independence Principle for Quadratic Penalties Applied to Semilinear Elliptic Boundary Control,
Schedae Informaticae 21: 9-26, 2012. [ Preprint ]