Springe zum Hauptinhalt
Professur Wissenschaftliches Rechnen
Wissenschaftliches Rechnen

Dr. Max Winkler

Max Winkler

0371-531-+49 371 531 33097
+49 371 531 22509
Reichenhainer Str. 41, Zimmer 616

Short CV

  • born in 1987 in Freital
  • 2006-2011: Diploma in Mathematics at Technische Universität Dresden
  • 2011-2015: PhD student at UniBw München within the international research training group IGDK Munich-Graz, advisor Thomas Apel
  • 2015-2017: PostDoc at UniBw München
  • 2017-now: Academic assistent at TU Chemnitz
  • Summer term 2020: Substitute professor at Leibniz University Hannover


Current semester: Winter term 2022/23

Former semesters

Summer term 2022

Winter term 2021/2022

Summer term 2021

Winter term 2020/2021

Summer term 2020

Temporary professorship at Leibniz-Universität Hannover
  • Mathematics II für life sciences and geology
  • Computeralgebra
  • Discontinuous Galerkin methods

Winter term 2019/2020

Summer term 2019

Winter term 2018/2019

Summer term 2018

Winter term 2017/18


Submitted articles

  1. Herzog, R., Pietschmann, J., Winkler, M.:
    Optimal Control of Hughes' Model for Pedestrian Flow via Local Attraction
    Preprint arXiv:2011.03580, 2020
  2. Blechschmidt, J, Pietschmann, J.-F., Riemer, T.-C., Stoll, M., Winkler, M.: A comparison of PINN approaches for drift-diffusion equations on metric graphs
    Preprint arXiv:2205.07195, 2022

Journal articles

  1. Pfefferer, J., Winkler, M.:
    Finite element approximations for PDEs with irregular Dirichlet boundary data on boundary concentrated meshes
    Computational Methods in Applied Mathematics, to appear, 2022.
  2. Stoll, M., Winkler, M.:
    Optimization of a partial differential equation on a complex network
    Electronic Transactions on Numerical Analysis 54:392-419, 2021
    [ Article | Preprint arXiv:1907.07806]
  3. Blechschmidt J, Herzog, R., Winkler, M.:
    Error estimation for second-order PDEs in non-variational form
    Numerical Methods for Partial Differential Equations 37(3):2190-2221, 2021
    [Article | Preprint arXiv:1909.12676]
  4. Winkler, M.:
    Error estimates for the finite element approximation of bilinear boundary control problems
    Computational Optimization and Applications 76(1):155-199, 2020
    [ Preprint arXiv:1901.03612 ]
  5. Winkler, M.:
    Error estimates for variational normal derivatives and Dirichlet control problems with energy regularization
    Numerische Mathematik 144:413–445, 2020
    [ Preprint arXiv:1808.01171 ]
  6. Pfefferer, J., Winkler, M.:
    Finite element error estimates for normal derivatives on boundary concentrated meshes
    SIAM J. Numer. Anal. 57(5):2043-2073, 2019
    [ Preprint arXiv:1804.05723 ]
  7. Apel, T., Pfefferer, J., Rogovs, S., Winkler, M.:
    Maximum norm error estimates for Neumann boundary value problems on graded meshes
    IMA J. Numer. Anal. 40(1):474–497, 2020
    [ Preprint arXiv:1804.10904 ]
  8. Apel, T., Pfefferer, J., Winkler, M.:
    Error Estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains,
    IMA J. Numer. Anal.,38(4): 1984–2025, 2018. [ Preprint ]
  9. Apel, T., Steinbach, O., Winkler, M.:
    Error Estimates for Neumann Boundary Control Problems with Energy Regularization,
    J. Numer. Math. 24(4):207-233, 2016. [ Preprint ]
  10. Apel, T., Pfefferer, J., Winkler, M.:
    Local Mesh Refinement for the Discretization of Neumann Boundary Control Problems on Polyhedra,
    Math. Methods Appl. Sci. 39(5):1206-1232, 2015. [ Preprint ]
  11. Apel, T., Lombardi, A. L., Winkler, M.:
    Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω),
    ESAIM. Math. Model. Numer. Anal. 48(4): 1117-1145, 2014. [ Preprint ]
  12. Grossmann, C., Winkler, M.:
    Mesh-Independent Convergence of Penalty Methods Applied to Optimal Control with Partial Differential Equations,
    Optimization 62(5): 629-647, 2013. [ Preprint ]
  13. Grossmann, C., Winkler, M.:
    A Mesh-Independence Principle for Quadratic Penalties Applied to Semilinear Elliptic Boundary Control,
    Schedae Informaticae 21: 9-26, 2012. [ Preprint ]


  1. Diploma thesis: Strafmethoden für steuerbeschränkte Kontrollprobleme, TU Dresden, 2011.
  2. PhD thesis: Finite element error analysis for Neumann boundary control problems on polyhedral domains, UniBw München, 2015.