Springe zum Hauptinhalt
Professur Wissenschaftliches Rechnen
Wissenschaftliches Rechnen

Lehre

Matrix Methods in Data Science: Decompositions, Tensors and Beyond (Forschungsmodul)

Lectures: Prof. Dr. Martin Stoll

Exercises: Prof. Dr. Martin Stoll

Aktuelles & allgemeine Hinweise

  • Prerequisites: Introduction to analysis, linear algebra, and numerical analysis.
  • Contents: Motivating examples, Matrix factorisations for Classification and Learning: QR, SVD, Randomization, Nonnegative Matrix Factorisation, Numerical Tensor Methods, ...
  • OPAL Einschreibung
  • Typische Pruefungsfragen!

Handouts und Misc

Vorlesungstermine

  • Di, 11-12.30 Uhr einmalig 2/B202
  • Di, 2. LE, 2/B202
  • Do, 3. LE, 2/B202

Übungstermine

  • Do, 3. LE, 39/138 (26.4.2018, 17.5.2018)

Übungsblätter

  • The exercises will be taken as labs, in the sense that I will beforehand state, which parts of the lectures will be needed, and students will be given a programming task at the beginning of the exercise.
  • Besprechung Bemerkungen
    26.4. Learn how to clone a directory from GitHub! Recall the discussin of the SVD from the lectures.
    17.5. Apply the CUR factorisation to an image problem and supreme court data.

Prüfung

Literatur

  • Eldén, Lars; Matrix methods in data mining and pattern recognition
  • Kolda, Tamara G; Bader, Brett W; Tensor decompositions and applications SIAM review
  • Von Luxburg, Ulrike; A tutorial on spectral clustering Statistics and computing
  • Sorensen, Danny C; Embree, Mark; A deim induced cur factorization SIAM Journal on Scientific Computing
  • Higham, Catherine F; Higham, Desmond J; Deep Learning: An Introduction for Applied Mathematicians arXiv preprint arXiv:1801.05894
  • Gillis, Nicolas; The why and how of nonnegative matrix factorization Regularization, Optimization, Kernels, and Support Vector Machines