Springe zum Hauptinhalt
Homepage Dr. Martin Schäfer
Publications

Publications

Journal Publications

  • Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M. Cartoon Approximation with α-Curvelets.
    J. Fourier Anal. Appl., 22(6):1235-1293, 2016. | Link

  • Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M. α-Molecules.
    Appl. Comput. Harmon. Anal., 41(1):297-336, 2016. | Link

  • Flinth, A., Schäfer, M. Multivariate α-Molecules.
    J. Approx. Theory, 202:64-108, 2016. | Link

  • Kempka, H., Schäfer, M., Ullrich, T. General Coorbit Space Theory for Quasi-Banach Spaces and Inhomogeneous Function Spaces with Variable Smoothness and Integrability.
    J. Fourier Anal. Appl., 23(6):1348-1407, 2017. | Link

  • Lessig, C., Petersen, P., Schäfer, M. Bendlets: A Second-order Shearlet Transform with Bent Elements.
    Appl. Comput. Harmon. Anal., 46(2):384-399, 2019. | Link

  • Schäfer, M., Ullrich, T., Vedel, B. Hyperbolic wavelet analysis of classical isotropic and anisotropic Besov-Sobolev spaces. J. Fourier Anal. Appl., 27:51, 2021. | Link

  • Nagel, N., Schäfer, M., Ullrich, T. A new upper bound for sampling numbers.
    Found. Comput. Math., to appear. | Link

Preprints

  • Schäfer, M. The Role of α-Scaling for Cartoon Approximation.
    arXiv:1612.01036 [math.FA], 2016. | Link

Refereed Conference Proceedings

  • Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M. α-Molecules: Curvelets, Shearlets, Ridgelets, and Beyond.
    Wavelets and Sparsity XV (San Diego, CA, 2013), SPIE Proc. 8858, 885804-1-885804-12, SPIE, Bellingham, WA, 2013. | Link

  • Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M. Parabolic Molecules: Curvelets, Shearlets, and Beyond.
    Approximation Theory XIV (San Antonio, TX, 2013), Springer Proc. Math. Stat., 83:141-172, Springer, Cham, Switzerland, 2014. | Link

Monographs

  • Schäfer, M. The Framework of α-Molecules: Theory and Applications.
    Dissertation, Technische Universität Berlin, 2018.

  • Schäfer, M. Generalized Coorbit Space Theory for Quasi-Banach Spaces.
    Diploma Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2012.


Dr. Martin Schäfer 2022-01-06 14:50:08   https://www.tu-chemnitz.de/mathematik/ang_analysis/schaefm  
E-mail an