Springe zum Hauptinhalt
Professur Regelungstechnik und Systemdynamik
Publikationen
Professur Regelungstechnik und Systemdynamik 

Publications

Journal Articles, Books and Book Chapters (Peer Reviewed)

  1. Rosario, R. C. d.; Staudinger, W. F.; Streif, S.; Pfeiffer, F.; Mendoza, E.; Oesterhelt, D.: Modeling the CheY(D10K,Y100W) Halobacterium salinarum mutant: sensitivity analysis allows choice of parameter to be modified in the phototaxis model. IET Systems Biology, Vol. 1(4), pp. 207-221. 2007. [DOI] [BIB]
  2. Streif, S.; Staudinger, W. F.; Marwan, W.; Oesterhelt, D.: Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. Journal of Molecular Biology, Vol. 384, pp. 1-8. 2008. [DOI] [BIB]
  3. Streif, S.; Staudinger, W. F.; Oesterhelt, D.; Marwan, W.: Quantitative analysis of signal transduction in motile and phototactic cells by computerized light stimulation and model based tracking. Review of Scientific Instruments, Vol. 80(2), pp. 023709. 2009. [URL] [DOI] [BIB]
  4. Schlesner, M.; Miller, A.; Streif, S.; Staudinger, W. F.; Müller, J.; Scheffer, B.; Siedler, F.; Oesterhelt, D.: Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus. BMC Microbiology, Vol. 9(56). 2009. [URL] [DOI] [BIB]
  5. Ohtsuka, T.; Streif, S.: Commutativity of immersion and linearization. IEEE Transactions on Automatic Control, Vol. 54(4), pp. 826-829. 2009. [DOI] [BIB]
  6. Streif, S.; Findeisen, R.; Waldherr, S.; Allgöwer, F.: Steady state sensitivity analysis of biochemical reaction networks: a brief review and new methods. Systems Analysis of Biological Networks, pp. 129-148. Boston/London. 2009. [URL] [BIB]
  7. Hempel, A.; Bocklisch, S. F.: Fuzzy Pattern Modelling of Data Inherent Structures Based on Aggregation of Data with Heterogeneous Fuzziness. Modelling Simulation and Optimization, pp. 637-655. 2010. [URL] [BIB]
  8. Streif, S.; Oesterhelt, D.; Marwan, W.: A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis. BMC Systems Biology, Vol. 4(27). 2010. [URL] [DOI] [BIB]
  9. Hempel, A.: Netzorientierte Fuzzy-Pattern-Klassifikation nichtkonvexer Objektmengenmorphologien. Vol. 9. 2011. [URL] [BIB]
  10. Streif, S.: Understanding Phototaxis of Halobacterium salinarum: A Systems Biology Approach. Vol. 1. 2011. [DOI] [BIB]
  11. Streif, S.; Savchenko, A.; Rumschinski, P.; Borchers, S.; Findeisen, R.: ADMIT: a toolbox for guaranteed model invalidation, estimation and qualitative-quantitative modeling. Bioinformatics, Vol. 28(9), pp. 1290-1291. 2012. [URL] [DOI] [BIB]
  12. Rumschinski, P.; Streif, S.; Findeisen, R.: Combining qualitative information and semi-quantitative data for guaranteed invalidation of biochemical network models. International Journal of Robust and Nonlinear Control, Vol. 22(10), pp. 1157-1173. 2012. [URL] [DOI] [BIB]
  13. Kreysing, M.; Pusch, R.; Haverkate, D.; Landsberger, M.; Engelmann, J.; Ruiter, J.; Mora-Ferrer, C.; Ulbricht, E.; Grosche, J.; Franze, K.; Streif, S.; Schumacher, S.; Makarov, F.; Kacza, J.; Guck, J.; Wolburg, H.; Bowmaker, J. K.; von der Emde, G.; Schuster, S.; Wagner, H.; Reichenbach, A.; Francke, M.: Photonic Crystal Light Collectors in Fish Retina Improve Vision in Turbid Water. Science, Vol. 336(6089), pp. 1700-1703. 2012. [URL] [DOI] [BIB]
  14. Waldherr, S.; Streif, S.; Allgöwer, F.: Design of biomolecular network modifications to achieve adaptation. IET Systems Biology, Vol. 6, pp. 223-231. 2012. [DOI] [BIB]
  15. Rudolph, M.; Hempel, A.: Unscharfe Klassifikation von Messdaten zur Maschinenüberwachung. wt Werkstattstechnik (online), Vol. 103(1112), pp. 915-920. 2013. [URL] [BIB]
  16. Borchers, S.; Freund, S.; Rath, A.; Streif, S.; Reichl, U.; Findeisen, R.: Identification of Growth Phases and Influencing Factors in Cultivations with AGE1.HN Cells Using Set-Based Methods. PLoS ONE, Vol. 8(8), pp. e68124. 2013. [URL] [DOI] [BIB]
  17. Rausch, M.; Klein, R.; Streif, S.; Pankiewitz, C.; Findeisen, R.: Modellbasierte Zustandsschätzung für Lithium-Ionen-Batterien (engl. Model-based State Estimation for Lithium-ion Batteries). at -- Automatisierungstechnik, Vol. 62(4), pp. 296-311. 2014. Special issue: Elektromobilität. [DOI] [BIB]
  18. Bocklisch, S. F.; Bocklisch, F.: Fuzzy-Pattern-Klassifikatoren als Modelle. Informatik-Spektrum, Vol. 38(6), pp. 510-522. 2015. [URL] [DOI] [BIB]
  19. Hast, D.; Findeisen, R.; Streif, S.: Detection and isolation of parametric faults in hydraulic pumps using a set-based approach and quantitative-qualitative fault specifications. Control Engineering Practice, Vol. 40, pp. 61-70. 2015. [URL] [DOI] [BIB]
  20. Streif, S.; Kim, K. K.; Rumschinski, P.; Kishida, M.; Shen, D. E.; Findeisen, R.; Braatz, R. D.: Robustness analysis, prediction, and estimation for uncertain biochemical networks: An overview. Journal of Process Control, Vol. 42, pp. 14-34. 2016. [URL] [DOI] [BIB]
  21. Bocklisch, F.; Beggiato, M.; Krems, J.; Bocklisch, S. F.: Adaptive fuzzy pattern classification for the online detection of driver lane change intention. Neurocomputing, Vol. 262, pp. 148-158. 2017. [URL] [DOI] [BIB]
  22. Osinenko, P.; Streif, S.: Optimal traction control for heavy-duty vehicles. Control Engineering Practice, Vol. 69, pp. 99-111. 2017. [URL] [DOI] [BIB]
  23. Beckenbach, L.; Osinenko, P.; Streif, S.: Addressing infinite-horizon optimality in MPC via Q-learning. IFAC-PapersOnLine, Vol. 51(20), pp. 60-65. 2018. Presented at the 6th IFAC Conference on Nonlinear Model Predictive Control. [DOI] [BIB]
  24. Osinenko, P.; Devadze, G.; Streif, S.: Constructive analysis of Caratheodory's existence and uniqueness theorem. IEEE/CAA Journal of Automatica Sinica, Vol. 5(4), pp. 787-793. 2018. [URL] [DOI] [BIB]
  25. Osinenko, P.; Beckenbach, L.; Streif, S.: Practical sample-and-hold stabilization of nonlinear systems under approximate optimizers. IEEE Control Systems Letters, Vol. 2(4), pp. 569-574. 2018. [URL] [DOI] [BIB]
  26. Paulson, J. A.; Streif, S.; Findeisen, R.; Braatz, R. D.; Mesbah, A.: Fast Stochastic Model Predictive Control of End-to-end Continuous Pharmaceutical Manufacturing. Process Systems Engineering for Pharmaceutical Manufacturing, Vol. 41, pp. 353-378. 2018. [DOI] [BIB]
  27. Osinenko, P.; Streif, S.: A constructive version of the extremum value theorem for spaces of vector-valued functions. Journal of Logic and Analysis, Vol. 10(4), pp. 1-13. 2018. [URL] [DOI] [BIB]
  28. Osinenko, P.; Devadze, G.; Streif, S.: Practical stability analysis of sliding-mode control with explicit computation of sampling time. Asian Journal of Control. 2019. [DOI] [BIB]
  29. Göhrt, T.; Osinenko, P.; Streif, S.: Adaptive dynamic programming using Lyapunov function constraints. IEEE Control Systems Letters, Vol. 3(4), pp. 901-906. 2019. [URL] [DOI] [BIB]
  30. Reeh, H.; Rudolph, N.; Billing, U.; Christen, H.; Streif, S.; Bullinger, E.; Schliemann-Bullinger, M.; Findeisen, R.; Schaper, F.; Huber, H. J.; Dittrich, A.: Response to IL-6 trans- and IL-6 classic signalling is determined by the ratio of the IL-6 receptor α to gp130 expression: fusing experimental insights and dynamic modelling. Cell Communication and Signaling, Vol. 17(1), pp. 46. 2019. [URL] [DOI] [BIB]
  31. Osinenko, P.; Streif, S.: Analysis of extremum value theorems for function spaces in optimal control under numerical uncertainty. IMA Journal of Mathematical Control and Information, Vol. 36(3), pp. 1015-1032. 2019. [URL] [DOI] [BIB]
  32. Padmanabha, M.; Streif, S.: Design and Validation of a Low Cost Programmable Controlled Environment for Study and Production of Plants, Mushroom, and Insect Larvae. Applied Sciences, Vol. 9(23). 2019. [URL] [DOI] [BIB]
  33. Kobelski, A.; Osinenko, P.; Streif, S.: A method of online traction parameter identification and mapping. IFAC-PapersOnLine, Vol. 53(2), pp. 13933-13938. 2020. Presented at the 21st IFAC World Congress. [URL] [DOI] [BIB]
  34. Esterhuizen, W.; Wang, Q.: Control design with guaranteed transient performance: an approach with polyhedral target tubes. Automatica, Vol. 119, pp. 109097. 2020. [URL] [DOI] [BIB]
  35. Osinenko, P.; Schmidt, P.; Streif, S.: Nonsmooth stabilization and its computational aspects. IFAC-PapersOnLine, Vol. 53(2), pp. 6370-6377. 2020. Presented at the 21st IFAC World Congress. [URL] [DOI] [BIB]
  36. Osinenko, P.; Beckenbach, L.; Göhrt, T.; Streif, S.: A reinforcement learning method with closed-loop stability guarantee. IFAC-PapersOnLine, Vol. 53(2), pp. 8043-8048. 2020. Presented at the 21st IFAC World Congress. [URL] [DOI] [BIB]
  37. Padmanabha, M.; Beckenbach, L.; Streif, S.: Model predictive control of a food production unit: a case study for lettuce production. IFAC-PapersOnLine, Vol. 53(2), pp. 15771-15776. 2020. Presented at the 21st IFAC World Congress. [DOI] [BIB]
  38. Beckenbach, L.; Osinenko, P.; Streif, S.: A Q-learning predictive control scheme with guaranteed stability. European Journal of Control, Vol. 56, pp. 167-178. 2020. [DOI] [BIB]
  39. Esterhuizen, W.; Aschenbruck, T.; Streif, S.: On maximal robust positively invariant sets in constrained nonlinear systems. Automatica, Vol. 119, pp. 109044. 2020. [URL] [DOI] [BIB]
  40. Osinenko, P.; Devadze, G.; Streif, S.: Constructive analysis of eigenvalue problems in control under numerical uncertainty. International Journal of Control, Automation and Systems, Vol. 18(9), pp. 2177-2185. 2020. [DOI] [BIB]
  41. Aschenbruck, T.; Esterhuizen, W.; Streif, S.: Transient stability analysis of power grids with admissible and maximal robust positively invariant sets. Automatisierungstechnik (at), Vol. 68(12), pp. 1011-1021. 2020. [URL] [DOI] [BIB]
  42. Göhrt, T.; Osinenko, P.; Streif, S.: Converse optimality for discrete-time systems. IEEE Transactions on Automatic Control, Vol. 65(5), pp. 2257-2264. 2020. [URL] [DOI] [BIB]
  43. Griesing-Scheiwe, F.; A.W.Shardt, Y.; Pérez-Zuñiga, G.; Yang, X.: Soft sensor design for variable time delay and variable sampling time. Journal of Process Control, Vol. 92, pp. 310-318. 2020. [URL] [DOI] [BIB]
  44. Padmanabha, M.; Kobelski, A.; Hempel, A.; Streif, S.: A Comprehensive Dynamic Growth and Development Model of Hermetia illucens Larvae. PLOS ONE, Vol. 15(9), pp. 1-25. 2020. [URL] [DOI] [BIB]
  45. Esterhuizen, W.; Worthmann, K.; Streif, S.: Recursive feasibility of continuous-time model predictive control without stabilising constraints. IEEE Control Systems Letters, Vol. 5(1), pp. 265-270. 2021. [URL] [DOI] [BIB]
  46. Aschenbruck, T.; Baumann, M.; Esterhuizen, W.; Filipecki, B.; Grundel, S.; Helmberg, C.; Ritschel, T. K. S.; Sauerteig, P.; Streif, S.; Worthmann, K.: Optimization and stabilization of hierarchical electrical networks. Mathematical Modeling, Simulation and Optimization for Power Engineering and Management, Vol. 34, pp. 171-198. 2021. [URL] [DOI] [BIB]
  47. Osinenko, P.; Biegert, K.; McCormick, R. J.; Göhrt, T.; Devadze, G.; Streif, J.; Streif, S.: Application of non-destructive sensors and big data analysis to predict physiological storage disorders and fruit firmness in ‘Braeburn’ apples. Computers and Electronics in Agriculture, Vol. 183. 2021. [URL] [DOI] [BIB]
  48. Kobelski, A.; Osinenko, P.; Streif, S.: Experimental verification of an online traction parameter identification method. Control Engineering Practice, Vol. 113, pp. 104837. 2021. [URL] [DOI] [BIB]
  49. Osinenko, P.; Streif, S.: On constructive extractability of measurable selectors of set-valued maps. IEEE Transactions on Automatic Control, Vol. 66(8), pp. 3757-3764. 2021. [URL] [DOI] [BIB]
  50. Esterhuizen, W.; Lévine, J.; Streif, S.: Epidemic management with admissible and robust invariant sets. PLOS ONE, Vol. 16, pp. 1-28. 2021. [URL] [DOI] [BIB]
  51. Schmidt, P.; Osinenko, P.; Streif, S.: On inf-convolution-based robust practical stabilization under computational uncertainty. IEEE Transactions on Automatic Control, Vol. 66(11), pp. 5530-5537. 2021. [URL] [DOI] [BIB]
  52. Moreno-Mora, F.; Beckenbach, L.; Streif, S.: Performance bounds of adaptive MPC with bounded parameter uncertainties. European Journal of Control, Vol. 68, pp. 100688. 2022. [DOI] [BIB]
  53. Yakti, W.; Schulz, S.; Marten, V.; Mewis, I.; Padmanabha, M.; Hempel, A.; Kobelski, A.; Streif, S.; Ulrichs, C.: The Effect of Rearing Scale and Density on the Growth and Nutrient Composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) Larvae. Sustainability, Vol. 14(3), pp. 1772. 2022. [URL] [DOI] [BIB]
  54. Baumgart, U.; Moreno-Mora, F.; Beckenbach, L.; Burger, M.; Streif, S.: Nonlinear Optimal Control of Traffic Flow with Stability Guarantees. IFAC-PapersOnLine, Vol. 56(2), pp. 4965-4970. 2023. Presented at the 22nd IFAC World Congress. [DOI] [BIB]
  55. Moreno-Mora, F.; Beckenbach, L.; Streif, S.: Predictive Control with Learning-Based Terminal Costs Using Approximate Value Iteration. IFAC-PapersOnLine, Vol. 56(2), pp. 3874-3879. 2023. Presented at the 22nd IFAC World Congress. [DOI] [BIB]
  56. Aschenbruck, T.; Petzke, F.; Rumschinski, P.; Streif, S.: On consistency, viability, and admissibility in constrained ensemble and hierarchical control systems. IEEE Transactions on Automatic Control. 2023. [DOI] [BIB]
  57. Padmanabha, M.; Kobelski, A.; Hempel, A.; Streif, S.: Modeling and optimal control of growth, energy and resource dynamics of Hermetia illucens in mass production environment. Computers and Electronics in Agriculture, Vol. 206, pp. 107649. 2023. [URL] [DOI] [BIB]
  58. Aschenbruck, T.; Dickert, J.; Esterhuizen, W.; Filipecki, B.; Grundel, S.; Helmberg, C.; Ritschel, T. K. S.; Sauerteig, P.; Streif, S.; Wasserrab, A.; Worthmann, K.: Hierarchical Power Systems: Optimal Operation using Grid Flexibilities. 2023. [URL] [DOI] [BIB]
  59. Esterhuizen, W.; Sauerteig, P.; Streif, S.; Worthmann, K.: MPC without Terminal Ingredients Tailored to the SEIR Compartmental Epidemic Model. Systems and Control Letters, Vol. 193, pp. 105908. 2024. [URL] [DOI] [BIB]
  60. Kobelski, A.; Hempel, A.; Padmanabha, M.; Klüber, P.; Wille, L. C. P.; Streif, S.: Model-based process optimization of black soldier fly egg production. Frontiers in Bioengineering and Biotechnology, Vol. 12. 2024. [URL] [DOI] [BIB]
  61. Kobelski, A.; Nestler, P.; Maurer, M.; Rocksch, T.; Schmidt, U.; Streif, S.: An Algorithm for Nutrient Mixing Optimization in Aquaponics. Applied Science, Vol. 14(18). 2024. [URL] [DOI] [BIB]
  62. Beckenbach, L.; Osinenko, P.; Streif, S.: A stabilizing reinforcement learning approach for sampled systems with partially unknown models. International Journal of Robust and Nonlinear Control. 2025. [DOI] [BIB]

Conference Proceedings (Peer Reviewed)

  1. Hagenmeyer, V.; Streif, S.; Zeitz, M.: Flatness-based feedforward and feedback linearisation of the ball & plate lab experiment. In Proc. 6th IFAC International Symposium on Nonlinear Control Systems (NOLCOS), pp. 233-238. Stuttgart/Germany. 2004. [URL] [DOI] [BIB]
  2. Streif, S.; Findeisen, R.; Bullinger, E.: Relating cross gramians and sensitivity analysis in systems biology. In Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2006), pp. 437-442. Kyoto, Japan. 2006. [BIB]
  3. Streif, S.: Sensitivity analysis of biochemical reaction networks by bilinear approximation. In Proc. 2nd International Conference on Foundations of Systems Biology in Engineering (FOSBE), pp. 521-526. Stuttgart, Germany. 2007. [BIB]
  4. Ohtsuka, T.; Streif, S.: On linearization before and after immersion. In Proc. 36th SICE Symposium on Control Theory, pp. 73-76. Sapporo, Japan. 2007. [BIB]
  5. Ohtsuka, T.; Streif, S.: Commutativity of immersion and linearization. In Proc. 46th IEEE Conference on Decision and Control, pp. 826-829. New Orleans, LA. 2007. [URL] [DOI] [BIB]
  6. Heiner, M.; Rohr, C.; Schwarick, M.; Streif, S.: A Comparative Study of Stochastic Analysis Techniques. In Proc. 8th International Conference on Computational Methods in Systems Biology, pp. 96-106. 2010. [DOI] [BIB]
  7. Waldherr, S.; Allgöwer, F.; Jacobsen, E. W.; Streif, S.: Robustness and adaptation of biological networks under kinetic perturbations. In Control Theory: Mathematical Perspectives on Complex Networked Systems, pp. 663-664. 2012. Report No. 12/2012. [BIB]
  8. Savchenko, A.; Rumschinski, P.; Streif, S.; Findeisen, R.: Complete Diagnosability of Abrupt Faults Using Set-based Sensitivities. In Proc. 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SafeProcess), pp. 860-865. 2012. [DOI] [BIB]
  9. Hempel, A.; Hähnel, H.; Mönks, U.; Lohweg, V.: SVM-integrated Fuzzy Pattern Classification for Nonconvex Data-Inherent Structures Applied to Banknote Authentication. In Bildverarbeitung in der Automation. 3. Jahreskolloquium, pp. 62-69. Lemgo. 2012. [URL] [BIB]
  10. Streif, S.; Rumschinski, P.; Henrion, D.; Findeisen, R.: Estimation of consistent parameter sets of nonlinear continuous-time systems using occupation measures and LMI relaxations. In Proc. 52nd IEEE Conference on Decision and Control (CDC), pp. 6379-6384. 2013. [DOI] [BIB]
  11. Streif, S.; Karl, M.; Findeisen, R.: Outlier Analysis in Set-based Estimation for Nonlinear Systems Using Convex Relaxations. In Proc. European Control Conference (ECC), pp. 2921-2926. Zurich, Switzerland. 2013. [DOI] [BIB]
  12. Hempel, A.; Hähnel, H.; Herbst, G.: Learning non-convex fuzzy classifiers using single-class SVMs. In Fuzzy Systems (FUZZ), 2013 IEEE International Conference on, pp. 1-8. 2013. [URL] [DOI] [BIB]
  13. Rausch, M.; Streif, S.; Pankiewitz, C.; Findeisen, R.: Nonlinear Observability and Identifiability of Single Cells in Battery Packs. In Proc. IEEE Multi-Conference on Systems and Control (MSC), pp. 401-406. Hyderabad, India. 2013. [DOI] [BIB]
  14. Streif, S.; Strobel, N.; Findeisen, R.: Inner approximations of consistent parameter sets via constraint inversion and mixed-integer linear programming. In IFAC International Symposium on Computer Applications in Biotechnology (CAB), pp. 326-331. Mumbai, India. 2013. [DOI] [BIB]
  15. Streif, S.; Kim, K. K.; Rumschinski, P.; Kishida, M.; Shen, D. E.; Findeisen, R.; Braatz, R. D.: Robustness analysis, prediction and estimation for uncertain biochemical networks. In Proc. 10th IFAC International Symposium on Dynamics and Control of Process Systems (DyCoPS), pp. 1-20. 2013. Invited plenary paper. [DOI] [BIB]
  16. Streif, S.; Hast, D.; Braatz, R. D.; Findeisen, R.: Certifying robustness of separating inputs and outputs in active fault diagnosis for uncertain nonlinear systems. In Proc. 10th IFAC International Symposium on Dynamics and Control of Process Systems (DyCoPS), pp. 837-842. 2013. [DOI] [BIB]
  17. Savchenko, A.; Rumschinski, P.; Streif, S.; Findeisen, R.: Structural problem reduction for set-based fault diagnosis. In Proc. 10th IFAC International Symposium on Dynamics and Control of Process Systems (DyCoPS), pp. 595-600. 2013. [DOI] [BIB]
  18. Hast, D.; Streif, S.; Findeisen, R.: Guaranteed Diagnosability of Parametric Faults in Nonlinear Systems. In Proc. 52nd IEEE Conference on Decision and Control (CDC), pp. 5662-5667. Florence, Italy. 2013. [DOI] [BIB]
  19. Hempel, A.; Hähnel, H.; Herbst, G.: Building Hybrid Fuzzy Classifier Trees by Additive/Subtractive Composition of Sets. In Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 516-525. 2014. [URL] [DOI] [BIB]
  20. Rausch, M.; Klein, R.; Streif, S.; Pankiewitz, C.; Findeisen, R.: Set-based state of charge estimation for lithium-ion batteries. In Proc. American Control Conference (ACC), pp. 1566-1571. 2014. [DOI] [BIB]
  21. Paulson, J. A.; Raimondo, D. M.; Findeisen, R.; Braatz, R. D.; Streif, S.: Guaranteed Active Fault Diagnosis for Uncertain Nonlinear Systems. In Proc. European Control Conference (ECC), pp. 926-931. 2014. [DOI] [BIB]
  22. Mesbah, A.; Streif, S.; Findeisen, R.; Braatz, R. D.: Stochastic Nonlinear Model Predictive Control with Probabilistic Constraints. In 2014 American Control Conference - ACC 2014, pp. 2413-2419. Portland, Oregon. 2014. [DOI] [BIB]
  23. Trenner, T.; Neidig, J.; Findeisen, R.; Streif, S.: Einsatz cyber-physischer Systeme im Echtzeitkontext: Erhöhung der System-Autonomie durch Auswertung von Anlagenmodellen auf Zellebene. In Automation. 2014. [BIB]
  24. Streif, S.; Petzke, F.; Mesbah, A.; Findeisen, R.; Braatz, R. D.: Optimal Experimental Design for Probabilistic Model Discrimination Using Polynomial Chaos. In Proc. 19th IFAC World Congress, pp. 4103-4109. Cape Town, South Africa. 2014. [DOI] [BIB]
  25. Streif, S.; Kögel, M.; Bäthge, T.; Findeisen, R.: Robust Nonlinear Model Predictive Control with Constraint Satisfaction: A relaxation-based Approach. In Proc. 19th IFAC World Congress, pp. 11073-11079. Cape Town, South Africa. 2014. [DOI] [BIB]
  26. Streif, S.; Henrion, D.; Findeisen, R.: Probabilistic and Set-based Model Invalidation and Estimation Using LMIs. In Proc. 19th IFAC World Congress, pp. 4110-4115. Cape Town, South Africa. 2014. [DOI] [BIB]
  27. Savchenko, A.; Andonov, P.; Streif, S.; Findeisen, R.: Guaranteed Set-based Controller Parameter Estimation for Nonlinear Systems - Magnetic Levitation Platform as a Case Study. In Proc. 19th IFAC World Congress, pp. 4650-4655. Cape Town, South Africa. 2014. [DOI] [BIB]
  28. Rumschinski, P.; Findeisen, R.; Streif, S.: Finite-Time Output Energy Measure for Polynomial Systems With Applications in Observability Analysis. In Proc. 19th IFAC World Congress, pp. 2800-2805. Cape Town, South Africa. 2014. [DOI] [BIB]
  29. Mesbah, A.; Streif, S.; Findeisen, R.; Braatz, R. D.: Active Fault Diagnosis for Nonlinear Systems with Probabilistic Uncertainties. In Proc. 19th IFAC World Congress, pp. 7079-7084. Cape Town, South Africa. 2014. [DOI] [BIB]
  30. Paulson, J. A.; Mesbah, A.; Streif, S.; Findeisen, R.; Braatz, R. D.: Fast Stochastic Model Predictive Control of High-dimensional Systems. In 53rd IEEE Conference on Decision and Control, pp. 2802-2809. Los Angeles, CA. 2014. [DOI] [BIB]
  31. Rudolph, N.; Meyer, T.; Franzen, K.; Garbers, C.; Schaper, F.; Streif, S.; Dittrich, A.; Findeisen, R.: A Two-level Approach for Fusing Early Signaling Events and Long Term Cellular Responses. In Proc. of the 9th IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM), pp. 1228-1233. Whistler, Canada. 2015. [URL] [DOI] [BIB]
  32. Mesbah, A.; Streif, S.: A probabilistic approach to robust optimal experiment design with chance constraints. In Proc. of the 9th IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM), pp. 100-105. Whistler, Canada. 2015. [URL] [DOI] [BIB]
  33. Hähnel, H.; Hempel, A.; Herbst, G.: Towards Evolving Parametric Fuzzy Classifiers Using a Virtual Sample Generation Approach. In Proc. 16th World Congress of the International Fuzzy Systems Association (IFSA) and the 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), pp. 1111-1118. 2015. [URL] [DOI] [BIB]
  34. Andonov, P.; Savchenko, A.; Rumschinski, P.; Streif, S.; Findeisen, R.: Controller Verification and Parametrization Subject to Quantitative and Qualitative Requirements. In 9th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM, pp. 1174-1179. 2015. [URL] [DOI] [BIB]
  35. Paulson, J. A.; Streif, S.; Mesbah, A.: Stability for Receding-horizon Stochastic Model Predictive Control. In Proc. American Control Conference (ACC), pp. 937-943. Chicago, IL. 2015. [DOI] [BIB]
  36. Osinenko, P.; Geißler, M.; Herlitzius, T.; Streif, S.: Experimental results of slip control with a fuzzy-logic-assisted unscented Kalman filter for state estimation. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 501-507. 2016. [BIB]
  37. Rudolph, N.; Streif, S.; Findeisen, R.: Set-based experiment design for model discrimination using bilevel optimization. In Proc. of Foundations of Systems Biology in Engineering (FOSBE), pp. 295-299. 2016. Foundations of Systems Biology in Engineering - FOSBE 2016. [URL] [DOI] [BIB]
  38. Osinenko, P.; Devadze, G.; Streif, S.: Constructive analysis of control systems stability. In Proc. of the 20th IFAC World Congress., pp. 7467-7474. 2017. [URL] [DOI] [BIB]
  39. Bocklisch, F.; Beggiato, M.; Krems, J.; Bocklisch, S. F.: Fuzzy Pattern Classification for the Online Detection of Driver Lane Change Intention. In TeaP 2017 : abstracts of the 59th Conference of Experimental Psychologists, pp. 232. Dresden, Germany. 2017. [BIB]
  40. Osinenko, P.; Göhrt, T.; Devadze, G.; Streif, S.: Stacked adaptive dynamic programming with unknown system model. In IFAC-PapersOnLine, pp. 4150-4155. 2017. [URL] [DOI] [BIB]
  41. Sahib, M. A.; Streif, S.: Design of an active noise controller for reduction of tire/road interaction noise in environmentally friendly vehicles. In Proc. 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pp. 59-62. 2017. [DOI] [BIB]
  42. Schmidt, B.; Cardim, D.; Weinhold, M.; Streif, S.; McLeod, D. D.; Czosnyka, M.; Klingelhöfer, J.: Comparison of Different Calibration Methods in a Non-invasive ICP Assessment Model. In Intracranial Pressure & Neuromonitoring XVI, pp. 79-84. Cham. 2018. [DOI] [BIB]
  43. Beckenbach, L.; Osinenko, P.; Göhrt, T.; Streif, S.: Constrained and Stabilizing Stacked Adaptive Dynamic Programming and a Comparison with Model Predictive Control. In Proc. of the 16th European Control Conference. 2018. [DOI] [BIB]
  44. Petzke, F.; Streif, S.: Integer-free Optimal Scheduling of Smart Appliances. In Proc. European Control Conference (ECC). Limassol, Cyprus. 2018. [DOI] [BIB]
  45. Stoican, F.; Petzke, F.; Prodan, I.; Streif, S.: Hierarchical Control with Guaranteed Fault Diagnosability. In Proc. 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS). Warsaw, Poland. 2018. [DOI] [BIB]
  46. Petzke, F.; Farina, M.; Streif, S.: A Multirate Hierarchical MPC Scheme for Ensemble Systems. In Proc. Conference on Decision and Control (CDC). 2018. [URL] [DOI] [BIB]
  47. Beckenbach, L.; Osinenko, P.; Streif, S.: Model predictive control with stage cost shaping inspired by reinforcement learning. In Proc. of the 58th IEEE Conference on Decision and Control. 2019. [DOI] [BIB]
  48. Göhrt, T.; Osinenko, P.; Streif, S.: Adaptive actor-critic structure for parametrized controllers. In IFAC-PapersOnLine, pp. 652-657. 2019. [URL] [DOI] [BIB]
  49. Griesing-Scheiwe, F.; A.W.Shardt, Y.; Pérez-Zuñiga, G.; Yang, X.: Soft Sensor Design for Restricted Variable Sampling Time. In 21st IFAC World Congress, pp. 80-85. 2020. [URL] [DOI] [BIB]
  50. Kiebler, C.; Prodan, I.; Petzke, F.; Streif, S.: Reserve Balancing in a Microgrid System for Safety Analysis. In 21st IFAC World Congress. 2020. [DOI] [BIB]
  51. Spinelli, S.; Longoni, E.; Farina, M.; Petzke, F.; Streif, S.; Ballarino, A.: A Hierarchical Architecture for the Coordination of an Ensemble of Steam Generators. In 21st IFAC World Congress. 2020. [DOI] [BIB]
  52. Nguyen, N. T.; Prodan, I.; Petzke, F.; Streif, S.; Lefèvre, L.: Hierarchical Control of a Quadcopter under Stuck Actuator Fault. In 21st IFAC World Congress. 2020. [DOI] [BIB]
  53. Petzke, F.; Mesbah, A.; Streif, S.: PoCET: a Polynomial Chaos Expansion Toolbox for Matlab. In 21st IFAC World Congress. 2020. [DOI] [BIB]
  54. Petzke, F.; Farina, M.; Streif, S.: A Hierarchical MPC Scheme for Ensembles of Hammerstein Systems. In 21st IFAC World Congress. 2020. [DOI] [BIB]
  55. Beckenbach, L.; Osinenko, P.; Streif, S.: On closed-loop stability of model predictive controllers with learning costs. In Proc. of the 18th European Control Conference. 2020. [DOI] [BIB]
  56. Esterhuizen, W.; Aschenbruck, T.; Lévine, J.; Streif, S.: Maintaining hard infection caps in epidemics via the theory of barriers. In 21st IFAC World Congress, pp. 16100-16105. 2020. [URL] [DOI] [BIB]
  57. Rußwurm, F.; Osinenko, P.; Streif, S.: Optimal control of centrifugal spreader. In 21st IFAC World Congress, pp. 15841-15846. 2020. [URL] [DOI] [BIB]
  58. Göhrt, T.; Griesing-Scheiwe, F.; Osinenko, P.; Streif, S.: A reinforcement learning method with closed-loop stability guarantee for systems with unknown parameters. In IFAC-PapersOnLine, pp. 8157-8162. 2020. [URL] [DOI] [BIB]
  59. Herbst, G.; Hempel, A.; Göhrt, T.; Streif, S.: Half-Gain Tuning for Active Disturbance Rejection Control. In IFAC-PapersOnLine, pp. 1319-1324. 2020. [URL] [DOI] [BIB]
  60. Munser, L.; Hempel, A.; Devadze, G.; Streif, S.: Prototypical description and controller design for a set of systems using v-gap based clustering. In Proc. of the 21st IFAC World Congress, pp. 4623-4628. 2020. [DOI] [BIB]
  61. Hofbauer, J.; Rudolph, M.; Streif, S.: Stabilising the Light Spectrum of LED Solar Simulators using LQG Control. In 21st IFAC World Congress. 2020. [DOI] [BIB]
  62. Aschenbruck, T.; Esterhuizen, W.; Padmanabha, M.; Streif, S.: Sustainability analysis of interconnected food production systems via theory of barriers. In 21st IFAC World Congress, pp. 15765-15770. 2020. [URL] [DOI] [BIB]
  63. Rußwurm, F.; Esterhuizen, W.; Worthmann, K.; Streif, S.: On MPC without terminal conditions for dynamic non-holonomic robots. In Proc. of the 7th IFAC Conference on Nonlinear Model Predictive Control (NMPC), pp. 133-138. 2021. [URL] [DOI] [BIB]
  64. Devadze, G.; Flessing, L.; Streif, S.: Extraction of a computer-certified ODE solver. In European Control Conference (ECC). 2021. [DOI] [BIB]
  65. Al Khatib, M.; Streif, S.: Synthesis of interconnected control systems under reachability specifications. In 60th IEEE Conference on Decision and Control (CDC). Austin, Texas, USA. 2021. [DOI] [BIB]
  66. Schmidt, P.; Göhrt, T.; Streif, S.: Tracking of stabilizing, optimal control in fixed-time based on time-varying objective function. In Proc. of the 60th Conference on Decision and Control, pp. 6012-6017. 2021. [URL] [DOI] [BIB]
  67. Hauck, M.; Petzke, F.; Streif, S.: Model Predictive Purge Control for PEM Fuel Cell Systems with Anode Recirculation. In Proc. of the 60th IEEE Conference on Decision and Control, pp. 6359-6364. 2021. [URL] [DOI] [BIB]
  68. Beckenbach, L.; Streif, S.: Approximate infinite-horizon predictive control. In Proc. of the 61st IEEE Conference on Decision and Control. 2022. [DOI] [BIB]
  69. Sauerteig, P.; Esterhuizen, W.; Wilson, M.; Ritschel, T. K. S.; Worthmann, K.; Streif, S.: Model predictive control tailored to epidemic models. In European Control Conference. 2022. [URL] [DOI] [BIB]
  70. Tafat, R.; Göhrt, T.; Streif, S.: Generating a robustly stabilizable class of nonlinear systems for the converse optimality problem. In Proc. of the 20th European Control Conference. 2022. [DOI] [BIB]
  71. Al Khatib, M.; Padmanabha, M.; Hempel, A.; Streif, S.: Centralized optimization of resource routing in interconnected food production units with harvesting events. In 13th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2022: Busan, Republic of Korea, 14–17 June 2022, pp. 322-327. 2022. Presented at the 13th IFAC Symposium on Dynamics and Control of Process Systems. [URL] [DOI] [BIB]
  72. Safargholi, F.; Voigtmann, M.; Abedini, F.; Guo, Y.; Nouri, H.; Schaarschmidt, P.; Günther, M.; Ulber, M.: Technical and Economic Design of the Hydrogen-Based Energy Storage Systems for Power System Stability with 80% Renewable Energy-Research Project: HZwo StabiGrid. In 8th IEEE Workshop on the Electronic Grid(eGRID). 2023. [BIB]
  73. Hellmann, S.; Hempel, A.; Streif, S.; Weinrich, S.: Observability and Identifiability Analyses of Process Models for Agricultural Anaerobic Digestion Plants. In 24th International Conference on Process Control (PC). Strbske Pleso, Slovakia. 2023. [DOI] [BIB]
  74. Hauck, M.; Schmidt, P.; Kobelski, A.; Streif, S.: A map-based model predictive control approach for train operation. In Proc. of the 21st European Control Conference. 2023. [URL] [DOI] [BIB]
  75. Schmidt, P.; Hempel, A.; Streif, S.: High gain observer for the nitrification process including sensor dynamics. In Proc. of the 22nd IFAC World Congress, pp. 1633-1640. 2023. [URL] [DOI] [BIB]
  76. Guo, Y.; Petzke, F.; Rumschinski, P.; Streif, S.: Safety-Critical Control for Ensemble Systems. In Proc. of the 22nd IFAC World Congress, pp. 3152-3157. 2023. [DOI] [BIB]
  77. Hellmann, S.; Wilms, T.; Streif, S.; Weinrich, S.: Comparison of Unscented Kalman Filter Design for Agricultural Anaerobic Digestion Model. In 22nd European Control Conference (ECC). Stockholm, Schweden. 2023. [URL] [DOI] [BIB]
  78. Devadze, G.; Streif, S.: Formal proofs for Lyapunov stability theorems in exact real arithmetic. In Proc. of the 21st European Control Conference. 2023. [URL] [DOI] [BIB]
  79. Devadze, G.; Munser, L.; Streif, S.: Extraction of a computer-certified SMT solver for nonlinear theories. In Proc. of the 21st European Control Conference. 2023. [URL] [DOI] [BIB]
  80. Devadze, G.; Flessing, L.; Streif, S.: Formal verification of a controller implementation in fixed-point arithmetic. In Proc. of the 21st European Control Conference. 2023. [URL] [DOI] [BIB]
  81. Guo, Y.; Sauerteig, P.; Streif, S.: Tube-based MPC for Two-Timescale Discrete-Time Nonlinear Processes with Robust Control Contraction Metrics. In 63rd IEEE Conference on Decision and Control. 2024. [BIB]
  82. Moreno-Mora, F.; Streif, S.: Predictive Control with Terminal Costs Based on Online Learning Using Value Iteration. In Proc. of the 22nd European Control Conference, pp. 1837-1842. 2024. [DOI] [BIB]
  83. Sathyanarayanan, K. K.; Sauerteig, P.; Zometa, P.; Streif, S.: Quantized Deep Neural Network Based Optimal Control of Greenhouses on a Microcontroller. In Proc. of the 22nd European Control Conference (ECC), pp. 400-405. 2024. [DOI] [BIB]
  84. Sathyanarayanan, K. K.; Sauerteig, P.; Streif, S.: Deep Neural Network based Optimal Control of Greenhouses. In Proc. of the 22nd European Control Conference (ECC), pp. 394-399. 2024. [DOI] [BIB]
  85. Tafat, R.; Moreno, J. A.; Streif, S.: Global observability analysis of a growth model for insects farming. In Proc. of the 22nd European Control Conference. 2024. [DOI] [BIB]
  86. Naagarajan, R. A.; Sathyanarayanan, K. K.; Bauer, N.; Sauerteig, P.; Bab, S.; Streif, S.: AI-Enhanced Language Support for Advanced Operation in Controlled Environment Agriculture. In Agricultural Engineering challenges in existing and new agroecosystems - AgEng 2024. 2024. [BIB]
  87. Hauck, M.; Petzke, F.; Tafat, R.; Streif, S.: Observability Analysis of PEM Fuel Cell Systems with Anode Recirculation. In Proc. of the 22nd European Control Conference, pp. 2423-2428. 2024. [DOI] [BIB]

Conference Poster Presentations (Peer Reviewed)

  1. Hellmann, S.; Hempel, A.; Streif, S.; Weinrich, S.: Monitoring and control of agricultural biogas plants: Observability analyses of a simplified ADM1. In 17th IWA World Conference on Anaerobic Digestion. 2022. [DOI] [BIB]
  2. Hellmann, S.; Hempel, A.; Streif, S.; Weinrich, S.: Monitoring and control of agricultural biogas plants: Observability and identifiability analysis of simplified ADM1 models. In 5th Doctoral Colloqium BIOENERGY. 2022. [DOI] [BIB]
  3. Hellmann, S.; Wilms, T.; Streif, S.; Weinrich, S.: Extended and Unscented Kalman Filter Design for Mass-Based ADM1 Simplification. In 6th Doctoral Colloquium Bioenergy. Göttingen. 2023. [URL] [BIB]
  4. Frontzek, J.; Hellmann, S.; Wilms, T.; Knorn, S.; Streif, S.; Weinrich, S.: Model Predictive Control of Agricultural Biogas Plants with Uncertain Substrate Characterization. In 6th Doctoral Colloquium Bioenergy. Göttingen. 2023. [BIB]
  5. Mungunkhuyag, K.; Steingröwer, J.; Walther, T.; Krujatz, F.: Characterization of microalgal strains isolated from mining area and their tolerance to high concentrations of different heavy metals. In D-A-CH Algen Summit 2024. 2024. [BIB]
  6. Ihadjadene, Y.; Wulff, A.; Walther, T.; Krujatz, F.: Flow-Cytometry based methodology to assess population dynamics of Chlorella zofingiensis at different process conditions. In D-A-CH Algen Summit 2024. 2024. [BIB]
  7. Ihadjadene, Y.; Ascoli, L.; Syed, T.; Urbas, L.; Walther, T.; Mühlstädt, G.; Krujatz, F.: Monitoring and optimizaton of Chlorella zofingiensis key growth parameters: an experimental and model-based approach for process up scaling. In D-A-CH Algen Summit 2024. 2024. [BIB]
  8. Bleisch, R.; Hassert, R.; Walther, T.; Steingröwer, J.; Mühlstädt, G.; Krujatz, F.: Establishment of a rapid and reliable near-infrared spectroscopy methodology to analyze the nutritional composition of microalgae. In D-A-CH Algen Summit 2024. 2024. [BIB]

Selection of Submitted Manuscripts

  1. Devadze, G.; Magron, V.; Streif, S.: Computer-assisted proofs for Lyapunov stability via sums of squares certificates and constructive analysis.
  2. Munser, L.; Hempel, A.; Devadze, G.; Streif, S.: Class description and controller design for uncertain and nonlinear systems using nu-gap based clustering.
  3. Faulwasser, T.; Streif, S.; Hempel, A.: On the Turnpike to Design of Deep Neural Nets: Explicit Depth Bounds for the Discrete Case.
  4. Munser, L.; Devadze, G.; Streif, S.: Synthesis of Lyapunov functions using formal verification.
  5. Rußwurm, F.; Esterhuizen, W.; Streif, S.: The exact viability kernel of the 3D nonholonomic robot under polyhedral constraints.
  6. Göhrt, T.; Sauerteig, P.; Streif, S.: Characterization of control invariance of linear systems with affine constraints using control barrier functions.
  7. Guo, Y.; Schaller, M.; Worthmann, K.; Streif, S.: Modularized data-driven approximation of the Koopman operator and generator.
  8. Schmidt, P.; Osinenko, P.; Streif, S.: Some remarks on practical stabilization via CLF-based control under measurement noise.
  9. Hauck, M.; Bickmann, C.; Morgenstern, A.; Nagel, N.; Schade, A.; Tafat, R.; Viriato, L.; Kuhn, H.; Salvan, G.; Schondelmaier, D.; Ullrich, T.; von Unwerth, T.; Streif, S.: Perspective on Development and Integration of Hydrogen Sensors for Fuel Cell Control.
  10. Mansour, M.; Sathyanarayanan, K. K.; Sauerteig, P.; Streif, S.: Knowledge-Based Deep Reinforcement Learning for Adaptive Control of Greenhouses.
  11. Schmidt, P.; Osinenko, P.; Streif, S.: Some remarks on robustness of sample-and-hold stabilization.