NFFT meets Krylov methods:

Fast matrix-vector products for the graph Laplacian of fully connected networks

Dominik Alfke, Daniel Potts, Martin Stoll, Toni Volkmer

TECHNISCHE UNIVERSITÄT
CHEMNITZ

Outline

- (Fully-Connected) Graphs and Graph Laplacian Matrix
- NFFT-based fast summation
- Application to Learning (Classification)
- Semi-Supervised
- Unsupervised

Graph terminology: Undirected graph

A set of nodes that may be connected by (undirected) edges

- Nodes refer to data points that may contain information
- Edges show that two data points are related
- Nodes are numbered, e.g., from 1 to n
- Edges encoded in the symmetric adjacency matrix $\mathbf{W} \in \mathbb{R}^{n \times n}$

Unweighted graph

Graph sketch

Adjacency matrix \mathbf{W}

	1	2	3	4
1	0	1	1	0
2	1	0	1	0
3	1	1	0	1
4	0	0	1	0

- If i and j are connected: $w_{i j}=1$
- If i and j are not connected: $w_{i j}=0$
- On the diagonal: $w_{i i}=0$

Weighted graph

Graph sketch

Adjacency matrix \mathbf{W}

	1	2	3	4
1		3	6	
2	3		2	
3	6	2		5
4			5	

- If i and j are connected: $w_{i j}=$ edge weight
- If i and j are not connected: $w_{i j}=0$
- On the diagonal: $w_{i i}=0$

Graph types: Fully connected graph with node features

Graph sketch

Adjacency matrix W

1	1	2	3	4
		0.89	0.62	0.7
		0.89		0.5
	0.87			
3	0.62	0.5		0.57
	0.7	0.87	0.57	

- Each node i is associated with a feature vector $\mathbf{x}_{i} \in \mathbb{R}^{d}$
- For all $i \neq j: \quad w_{i j}=\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{\sigma^{2}}\right)$
- Large (close to one) entries for similar features
- Small (close to zero) entries for dissimilar features
- If i and j are not connected: $w_{i j} \equiv 0$
- On the diagonal: $w_{i i}=0$

Graphs

Node degrees

Graph sketch

Adjacency matrix \mathbf{W} Degree matrix \mathbf{D}

	1	2	3	4		1	2	3	4
1	-	0.89	$\theta .62$	$\theta .7$	- 1 >	2.22			
2	0.89	- - -	0.5	0.87	-2	- ->	2.26		
3	0.62	-0.5-		0.57	-3	- -	\rightarrow	1.70	
4	0.7	0.87	0.57	- -	-4	- -	- -	\rightarrow	2.14

- Node degree $d_{i}=\sum_{j=1}^{n} w_{i j}$: Sum of all weights of edges connected to node i
- Degree matrix $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=\operatorname{diag}(\mathbf{W} \cdot \mathbf{1})$

Graph Laplacian matrix

- Most important tool in graph-based data science
- Symmetrically normalized version:

$$
\mathbf{L}=\mathbf{D}^{-1 / 2}(\mathbf{D}-\mathbf{W}) \mathbf{D}^{-1 / 2}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{W} \mathbf{D}^{-1 / 2}
$$

- Entries:

$$
L_{i j}=\left\{\begin{array}{cl}
1 & \text { if } i=j \\
-\frac{w_{i j}}{\sqrt{d_{i} d_{j}}} & \text { if } i \neq j
\end{array}\right.
$$

Adjacency matrix \mathbf{W} Degree matrix D

Laplacian matrix \mathbf{L}

	1	2	3	4
1		0.89	0.62	0.7
2	0.89		0.5	0.87
3	0.62	0.5		0.57
4	0.7	0.87	0.57	

	1	2	3	4
	2.22			
	2		2.26	
				1.70

	1	2	3	4
1	1	-0.40	-0.322	-0.320
2	-0.40	1	-0.255	-0.395
	-0.322	-0.255	1	-0.301
	-0.320	-0.395	-0.301	1

Eigenvalues of the graph Laplacian $\mathbf{L}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{W} \mathbf{D}^{-1 / 2}$

Eigenvalue λ and eigenvector $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{L v}=\lambda \mathbf{v}$

- All eigenvalues are in $[0,2)$
- Smallest eigenvalue 0 is always present
(multiple times if the graph is not connected)
- Small eigenvalues $\lambda>0$: \mathbf{v} contains clustering information
- Large eigenvalues $\lambda<2$: \mathbf{v} contains noise

Computation (of $k \ll n$ eigenpairs) using Lanczos algorithm (MATLAB eigs), requires only matrix-vector multiplications with matrix \mathbf{L}, in particular with matrix \mathbf{W}

Matrix-vector multiplication with W • $\boldsymbol{\alpha}$

$$
\mathbf{W} \cdot \boldsymbol{\alpha}=\left(g\left(\mathbf{x}_{i}\right)\right)_{i=1}^{n}, \quad g\left(\mathbf{x}_{i}\right)=\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \sigma^{2}}
$$

requires $\mathcal{O}\left(n^{2}\right)$ arithmetic operations
Many different learning tasks benefit from fast methods for computing $\mathbf{W} \cdot \boldsymbol{\alpha}$:

type	supervised	semi-supervised	unsupervised				
method	kernel ridge regression	kernel method	spectral clustering				
approach	$\begin{aligned} & \min _{\boldsymbol{\alpha} \in \mathbb{R}^{n}}\\|\mathbf{f}-\mathbf{W} \boldsymbol{\alpha}\\|_{2}^{2} \\ & +\beta \boldsymbol{\alpha}^{\top} \mathbf{W} \boldsymbol{\alpha} \end{aligned}$	$\begin{aligned} & \min _{\mathbf{u} \in \mathbb{R}^{n}}\\|\mathbf{u}-\mathbf{f}\\|_{2}^{2} \\ & +\beta \mathbf{u}^{\top} \mathbf{L} \mathbf{u} \end{aligned}$	compute eigenvectors of \mathbf{L}, apply kmeans				
example							

Outline

- (Fully-Connected) Graphs and Graph Laplacian
- NFFT-based fast summation
- Application to Learning (Classification)
- Semi-Supervised
- Unsupervised

Fourier method

$\mathbf{W} \cdot \boldsymbol{\alpha}=\left(g\left(\mathbf{x}_{i}\right)\right)_{i=1}^{n}, \quad g\left(\mathbf{x}_{i}\right)=\sum_{j=1}^{n} \alpha_{j} \mathcal{K}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)=\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \sigma^{2}}$
Ansatz: Approximate kernel $\mathcal{K}(\mathbf{x})$, e.g. $\mathcal{K}(\mathbf{x})=\mathrm{e}^{-\|\mathbf{x}\|^{2} / \sigma^{2}}$, by truncated Fourier series $\mathcal{K}_{R F}(\mathbf{x})=\sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\ell} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}}$

$$
\begin{aligned}
& \operatorname{Re}\left(\mathrm{e}^{2 \pi \mathrm{i} \cdot \mathbf{x}}\right) \\
& =\cos (2 \pi \boldsymbol{\ell} \cdot \mathbf{x})
\end{aligned}
$$

Fourier method

$\mathbf{W} \cdot \boldsymbol{\alpha}=\left(g\left(\mathbf{x}_{i}\right)\right)_{i=1}^{n}, \quad g\left(\mathbf{x}_{i}\right)=\sum_{j=1}^{n} \alpha_{j} \mathcal{K}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)=\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \sigma^{2}}$
Ansatz: Approximate kernel $\mathcal{K}(\mathbf{x})$, e.g. $\mathcal{K}(\mathbf{x})=\mathrm{e}^{-\|\mathbf{x}\|^{2} / \sigma^{2}}$, by truncated Fourier series $\mathcal{K}_{R F}(\mathbf{x})=\sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\ell} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}}$

$$
(\mathbf{W} \cdot \boldsymbol{\alpha})_{i} \approx \sum_{j=1}^{n} \alpha_{j} \mathcal{K}_{\mathrm{RF}}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)=\sum_{j=1}^{n} \alpha_{j} \sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\ell} \mathrm{e}^{2 \pi \mathrm{i} \ell \cdot\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)}
$$

Fourier method

$\mathbf{W} \cdot \boldsymbol{\alpha}=\left(g\left(\mathbf{x}_{i}\right)\right)_{i=1}^{n}, \quad g\left(\mathbf{x}_{i}\right)=\sum_{j=1}^{n} \alpha_{j} \mathcal{K}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)=\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \sigma^{2}}$
Ansatz: Approximate kernel $\mathcal{K}(\mathbf{x})$, e.g. $\mathcal{K}(\mathbf{x})=\mathrm{e}^{-\|\mathbf{x}\|^{2} / \sigma^{2}}$, by truncated Fourier series $\mathcal{K}_{R F}(\mathbf{x})=\sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\ell} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}}$

$$
\begin{aligned}
(\mathbf{W} \cdot \boldsymbol{\alpha})_{i} \approx \sum_{j=1}^{n} \alpha_{j} \mathcal{K}_{\mathrm{RF}}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) & =\sum_{j=1}^{n} \alpha_{j} \sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\ell} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{\ell} \cdot\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)} \\
& =\sum_{j=1}^{n} \alpha_{j} \sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\ell} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}_{i}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}_{j}}
\end{aligned}
$$

Fourier method

$\mathbf{W} \cdot \boldsymbol{\alpha}=\left(g\left(\mathbf{x}_{i}\right)\right)_{i=1}^{n}, \quad g\left(\mathbf{x}_{i}\right)=\sum_{j=1}^{n} \alpha_{j} \mathcal{K}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)=\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \sigma^{2}}$
Ansatz: Approximate kernel $\mathcal{K}(\mathbf{x})$, e.g. $\mathcal{K}(\mathbf{x})=\mathrm{e}^{-\|\mathbf{x}\|^{2} / \sigma^{2}}$, by truncated Fourier series $\mathcal{K}_{R F}(\mathbf{x})=\sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\ell} \mathrm{e}^{2 \pi \mathrm{i} \ell \cdot \mathbf{x}}$

$$
\begin{aligned}
(\mathbf{W} \cdot \boldsymbol{\alpha})_{i} \approx \sum_{j=1}^{n} \alpha_{j} \mathcal{K}_{\mathrm{RF}}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) & =\sum_{j=1}^{n} \alpha_{j} \sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\boldsymbol{\ell}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{\ell} \cdot\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)} \\
& =\sum_{j=1}^{n} \alpha_{j} \sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\boldsymbol{\ell}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}_{i}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}_{j}} \\
& =\sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\ell}\left(\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}_{j}}\right) \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}_{i}}
\end{aligned}
$$

NFFT-based fast summation ([Potts, Steidl 2004])

Fast computation of $\mathbf{W} \cdot \boldsymbol{\alpha}$:
0. $\hat{b}_{\ell}:=\sum_{\mathbf{j} \in\{-M, \ldots, M\}^{d}} \mathcal{K}\left(\frac{\mathbf{j}}{M}\right) \mathrm{e}^{-2 \pi \mathrm{i} \ell \cdot \mathbf{j} / M}, \ell \in\{-M, \ldots, M\}^{d}$, by d-dim. FFT

NFFT-based fast summation ([Potts, Steidl 2004])

Fast computation of $\mathbf{W} \cdot \boldsymbol{\alpha}$:
0. $\hat{b}_{\ell}:=\sum_{\mathbf{j} \in\{-M, \ldots, M\}^{d}} \mathcal{K}\left(\frac{\mathbf{j}}{M}\right) \mathrm{e}^{-2 \pi \mathrm{i} \ell \cdot \mathbf{j} / M}, \ell \in\{-M, \ldots, M\}^{d}$, by d-dim. FFT

1. Compute (nonequispaced adjoint) DFT:

$$
\hat{c}_{\ell}:=\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-2 \pi \mathrm{i} \ell \cdot \mathrm{x}_{j}} \text { for all } \ell \in\{-M, \ldots, M\}^{d}
$$

2. Multiply Fourier coefficients: \hat{f}_{ℓ}
3. Compute (nonequispaced) DFT:

$$
(\mathbf{W} \cdot \boldsymbol{\alpha})_{i} \approx \sum_{\boldsymbol{\ell} \in\{-M, \ldots, M\}^{d}} \hat{b}_{\ell}\left(\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}_{j}}\right) \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \mathbf{x}_{i}}
$$

NFFT-based fast summation ([Potts, Steidl 2004])

Fast computation of $\mathbf{W} \cdot \boldsymbol{\alpha}$:
0. $\hat{b}_{\ell}:=\sum_{\mathbf{j} \in\{-M, \ldots, M\}^{d}} \mathcal{K}\left(\frac{\mathbf{j}}{M}\right) \mathrm{e}^{-2 \pi \mathrm{i} \ell \cdot \mathbf{j} / M}, \ell \in\{-M, \ldots, M\}^{d}$, by d-dim. FFT

1. Compute (nonequispaced adjoint) DFT:

$$
\hat{c}_{\ell}:=\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-2 \pi i \ell \cdot x_{j}} \text { for all } \boldsymbol{\ell} \in\{-M, \ldots, M\}^{d}
$$

2. Multiply Fourier coefficients: $\hat{f}_{\ell}:=\hat{b}_{\ell} \hat{c}_{\ell}$ for all $\ell \in\{-M, \ldots, M\}^{d}$

NFFT-based fast summation ([Potts, Steidl 2004])

Fast computation of $\mathbf{W} \cdot \boldsymbol{\alpha}$:
0. $\hat{b}_{\ell}:=\sum_{\mathbf{j} \in\{-M, \ldots, M\}^{d}} \mathcal{K}\left(\frac{\mathbf{j}}{M}\right) \mathrm{e}^{-2 \pi \mathrm{i} \ell \cdot \mathbf{j} / M}, \ell \in\{-M, \ldots, M\}^{d}$, by d-dim. FFT

1. Compute (nonequispaced adjoint) DFT:

$$
\hat{c}_{\ell}:=\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-2 \pi i \ell \cdot x_{j}} \text { for all } \ell \in\{-M, \ldots, M\}^{d}
$$

2. Multiply Fourier coefficients: $\hat{f}_{\ell}:=\hat{b}_{\ell} \hat{c}_{\ell}$ for all $\ell \in\{-M, \ldots, M\}^{d}$
3. Compute (nonequispaced) DFT:

$$
\begin{aligned}
(\mathbf{W} \cdot \boldsymbol{\alpha})_{i} & \approx \sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{f}_{\ell} \mathrm{e}^{2 \pi \mathrm{i} \ell \cdot \mathbf{x}_{i}} \text { for all } i=1, \ldots, n \\
& (\mathbf{W} \cdot \boldsymbol{\alpha})_{i} \approx \sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{b}_{\ell}\left(\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-2 \pi \mathrm{i} \ell \cdot \mathbf{x}_{j}}\right) \mathrm{e}^{2 \pi \mathrm{i} \ell \cdot \mathbf{x}_{i}}
\end{aligned}
$$

NFFT-based fast summation ([Potts, Steidl 2004])

Fast computation of $\mathbf{W} \cdot \boldsymbol{\alpha}$:
0. $\hat{b}_{\ell}:=\sum_{\mathbf{j} \in\{-M, \ldots, M\}^{d}} \mathcal{K}\left(\frac{\mathbf{j}}{M}\right) \mathrm{e}^{-2 \pi \mathrm{i} \ell \cdot \mathbf{j} / M}, \ell \in\{-M, \ldots, M\}^{d}$, by d-dim. FFT

1. Compute (nonequispaced adjoint) DFT:

$$
\hat{c}_{\ell}:=\sum_{j=1}^{n} \alpha_{j} \mathrm{e}^{-2 \pi \mathrm{i} \ell \cdot \mathrm{x}_{j}} \text { for all } \ell \in\{-M, \ldots, M\}^{d}
$$

2. Multiply Fourier coefficients: $\hat{f}_{\ell}:=\hat{b}_{\ell} \hat{c}_{\ell}$ for all $\ell \in\{-M, \ldots, M\}^{d}$
3. Compute (nonequispaced) DFT:

$$
(\mathbf{W} \cdot \boldsymbol{\alpha})_{i} \approx \sum_{\ell \in\{-M, \ldots, M\}^{d}} \hat{f}_{\ell} \mathrm{e}^{2 \pi \mathrm{i} \ell \cdot \mathbf{x}_{i}} \text { for all } i=1, \ldots, n
$$

Nonequispaced Fast Fourier Transform (NFFT):
NFFT3 software library (github.com/NFFT/nfft) by Keiner, Kunis, Potts

- Fast computation of 1. and 3. using approximative algorithm NFFT
\Rightarrow Computation of $\mathbf{W} \cdot \boldsymbol{\alpha}$ requires only $\mathcal{O}(n)$ runtime (for fixed accuracy)

Fast computation of eigenpairs of graph Laplacian

Compute k eigenvectors belonging to k-smallest eigenvalues of L using NFFT-based fast summation (Lanczos algorithm, MATLAB eigs)

Computation of 10 largest eigenvalues of $\mathbf{I}-\mathbf{L}$ and corresponding eigenvectors:

Spiral data set example

Comparison of runtimes

n

Comparison of eigenvector accuracies

D. Alfke, D. Potts, M. Stoll, T. Volkmer
$14 / 20$
https://www.tu-chemnitz.de/~tovo/

Outline

- (Fully-Connected) Graphs and Graph Laplacian
- NFFT-based fast summation
- Application to Learning (Classification)
- Semi-Supervised
- Unsupervised

Semi-Supervised learning - Kernel method

- Learn model based on labeled training data and remaining unlabelled data
- Benefits from cluster recognition and given training labels

Training data encoded in vector $\mathbf{f} \in \mathbb{R}^{n}$:
$f_{i}= \begin{cases}1 & \text { if node } i \text { has label of class } 1, \\ -1 & \text { if node } i \text { has label of class } 2, \\ 0 & \text { if label of node } i \text { is unknown. }\end{cases}$

- Ansatz: $\min _{\mathbf{u} \in \mathbb{R}^{n}}\left(\|\mathbf{u}-\mathbf{f}\|^{2}+\beta \mathbf{u}^{T} \mathbf{L} \mathbf{u}\right), \quad \beta \geq 0$ regularization parameter
- Compute \mathbf{u} by solving $(\mathbf{I}+\beta \mathbf{L}) \cdot \mathbf{u}=\mathbf{f}$ via conjugate gradient method
\Rightarrow Assign class labels based on the sign of entries of \mathbf{u}

Semi-Supervised learning - Kernel method

- Learn model based on labeled training data and remaining unlabelled data
- Benefits from cluster recognition and given training labels

Misclassification rate (avg. \& max.)
Training data encoded in vector $\mathbf{f} \in \mathbb{R}^{n}$:
Example crescent-fullmoon, $n=100000$
$f_{i}= \begin{cases}1 & \text { if node } i \text { has label of class } 1, \\ -1 & \text { if node } i \text { has label of class } 2, \\ 0 & \text { if label of node } i \text { is unknown } .\end{cases}$

- Ansatz: $\min _{\mathbf{u} \in \mathbb{R}^{n}}\left(\|\mathbf{u}-\mathbf{f}\|^{2}+\beta \mathbf{u}^{T} \mathbf{L} \mathbf{u}\right), \quad \beta \geq 0$ regularization parameter
- Compute \mathbf{u} by solving $(\mathbf{I}+\beta \mathbf{L}) \cdot \mathbf{u}=\mathbf{f}$ via conjugate gradient method
\Rightarrow Assign class labels based on the sign of entries of \mathbf{u}

Unsupervised learning - Clustering: Find clusters among unlabelled data points Spectral clustering (k classes):

1. Compute k eigenvectors \mathbf{v}_{ℓ} belonging to the k-smallest eigenvalues of \mathbf{L} (Lanczos algorithm, MATLAB eigs) and put them in the columns of matrix

$$
\mathbf{V}=\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{k}
\end{array}\right] \in \mathbb{R}^{n \times k}
$$

2. Compute spectral points as normalized rows of \mathbf{V} :

$$
\tilde{\mathbf{v}}_{i}=\frac{\left(\begin{array}{lll}
V_{i 1} & \cdots & V_{i k}
\end{array}\right)^{T}}{\left\|\left(\begin{array}{lll}
V_{i 1} & \cdots & V_{i k}
\end{array}\right)\right\|} \in \mathbb{R}^{k}, \quad i=1, \ldots, n
$$

3. Use standard clustering tool kmeans on $\tilde{\mathbf{v}}_{1}, \ldots, \tilde{\mathbf{v}}_{n}$

Unsupervised learning - Clustering: Find clusters among unlabelled data points Spectral clustering (k classes):

1. Compute k eigenvectors \mathbf{v}_{ℓ} belonging to the k-smallest eigenvalues of \mathbf{L} (Lanczos algorithm, MATLAB eigs) and put them in the columns of matrix

$$
\mathbf{V}=\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{k}
\end{array}\right] \in \mathbb{R}^{n \times k}
$$

2. Compute spectral points as normalized rows of \mathbf{V} :

$$
\tilde{\mathbf{v}}_{i}=\frac{\left(\begin{array}{lll}
V_{i 1} & \cdots & V_{i k}
\end{array}\right)^{T}}{\|\left(\begin{array}{lll}
V_{i 1} & \cdots & \left.V_{i k}\right) \|
\end{array} \in \mathbb{R}^{k}, \quad i=1, \ldots, n, ~=1, \ldots\right.}
$$

3. Use standard clustering tool kmeans on $\tilde{\mathbf{v}}_{1}, \ldots, \tilde{\mathbf{v}}_{n}$

Unsupervised learning - Spectral clustering: Results

NFFT-based Lanczos method:

Image source: TU Chemnitz/Wolfgang Thieme 800×533 pixels RGB

$$
n=426400, d=3, \sigma=90
$$

25 sec. eigenvector computation, ($+18 \mathrm{sec} . \underline{\text { kmeans })}$ Intel Core i7 CPU 970 (3.20 GHz) @ 1 thread
without fast method: 31 hours on Intel Xeon E7-4880 CPUs (2.50 GHz) @ 32 threads
D. Alfke, D. Potts, M. Stoll, T. Volkmer
$18 / 20$
https://www.tu-chemnitz.de/~tovo/

Conclusion

- Fully connected graph with node features
- NFFT-based fast summation
\Rightarrow fast matrix-vector products with graph Laplacian matrix $\mathbf{L}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{W} \mathbf{D}^{-1 / 2}$
\Rightarrow Enormous speed-up
- Various applications in learning
- Semi-supervised: Kernel method
- Unsupervised: Spectral clustering
D. Alfke, D. Potts, M. Stoll, T. V.

NFFT Meets Krylov Methods: Fast Matrix-Vector Products for the Graph Laplacian of Fully Connected Networks.
Front. Appl. Math. Stat. 4:61, 2018. DOI: 10.3389/fams.2018.00061
(3) Example Code:
https://www.tu-chemnitz.de/mathematik/wire/codes.php

NFFT - Nonequispaced FFT: https://github.com/NFFT/nfft https://www.tu-chemnitz.de/~potts/nfft/

Types of learning (for classification): Supervised

Supervised learning

- Learn model (parameters) based on a training dataset with known class labels
- Apply (learned) model to data points (with unknown class labels)
- Data points (to be classified) not required for training
- Sufficient training data covering all relevant cases required

Example methods: Trees, Linear Regression, SVM, Kernel Ridge Regression, NNs

Supervised learning - Kernel Ridge Regression

- Training data: n data points with feature vectors $\mathbf{x}_{i} \in \mathbb{R}^{d}$ with desired output $f_{i} \in \mathbb{R}(i=1, \ldots, n)$
- Goal: find (parameters of) prediction function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$, $F(\mathbf{x})=\sum_{j=1}^{n} \alpha_{j} \mathcal{K}\left(\mathbf{x}-\mathbf{x}_{j}\right)$ with $f_{i} \approx F\left(\mathbf{x}_{i}\right)$
Build fully connected adjacency matrix W , e.g. use $\mathcal{K}(\mathrm{x})=\mathrm{e}^{-\|\mathrm{x}\|^{2} / \sigma^{2}}$:
$w_{i j}=\mathrm{e}^{-\left\|\mathrm{x}_{i}-\mathrm{x}_{j}\right\|^{2} / \sigma^{2}}$
Ansatz: $\min _{\alpha \in \mathbb{R}^{n}}\left(\|\mathrm{f}-\mathrm{W} \alpha\|_{2}^{2}+\beta \alpha^{\top} \mathrm{W} \alpha\right), \beta \geq 0$ regularization parameter
- Compute coefficients α by solving $(\mathbf{W}+\beta \mathbf{I}) \cdot \alpha=\mathrm{f}$ via Conjugate Gradient
- Prediction function for new data points $\mathrm{x} \in \mathbb{R}^{d}: F(\mathrm{x})$

Supervised learning - Kernel Ridge Regression

- Training data: n data points with feature vectors $\mathbf{x}_{i} \in \mathbb{R}^{d}$ with desired output $f_{i} \in \mathbb{R}(i=1, \ldots, n)$
- Goal: find (parameters of) prediction function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$, $F(\mathbf{x})=\sum_{j=1}^{n} \alpha_{j} \mathcal{K}\left(\mathbf{x}-\mathbf{x}_{j}\right)$ with $f_{i} \approx F\left(\mathbf{x}_{i}\right)$
- Build fully connected adjacency matrix \mathbf{W}, e.g. use $\mathcal{K}(\mathbf{x})=\mathrm{e}^{-\|\mathbf{x}\|^{2} / \sigma^{2}}$: $w_{i j}=\mathrm{e}^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \sigma^{2}}$
- Ansatz: $\min _{\boldsymbol{\alpha} \in \mathbb{R}^{n}}\left(\|\mathbf{f}-\mathbf{W} \boldsymbol{\alpha}\|_{2}^{2}+\beta \boldsymbol{\alpha}^{\top} \mathbf{W} \boldsymbol{\alpha}\right), \beta \geq 0$ regularization parameter Compute coefficients α by solving $(\mathbf{W}+\beta \mathbf{I}) \cdot \alpha=\mathbf{f}$ via Conjugate Gradient - Prediction function for new data points $\mathrm{x} \in \mathbb{R}^{d}: F(\mathbf{x})$

Supervised learning - Kernel Ridge Regression

- Training data: n data points with feature vectors $\mathbf{x}_{i} \in \mathbb{R}^{d}$ with desired output $f_{i} \in \mathbb{R}(i=1, \ldots, n)$
- Goal: find (parameters of) prediction function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$, $F(\mathbf{x})=\sum_{j=1}^{n} \alpha_{j} \mathcal{K}\left(\mathbf{x}-\mathbf{x}_{j}\right)$ with $f_{i} \approx F\left(\mathbf{x}_{i}\right)$
- Build fully connected adjacency matrix \mathbf{W}, e.g. use $\mathcal{K}(\mathbf{x})=\mathrm{e}^{-\|\mathbf{x}\|^{2} / \sigma^{2}}$: $w_{i j}=\mathrm{e}^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \sigma^{2}}$
- Ansatz: $\min _{\boldsymbol{\alpha} \in \mathbb{R}^{n}}\left(\|\mathbf{f}-\mathbf{W} \boldsymbol{\alpha}\|_{2}^{2}+\beta \boldsymbol{\alpha}^{\top} \mathbf{W} \boldsymbol{\alpha}\right), \beta \geq 0$ regularization parameter
- Compute coefficients $\boldsymbol{\alpha}$ by solving $(\mathbf{W}+\beta \mathbf{I}) \cdot \boldsymbol{\alpha}=\mathbf{f}$ via Conjugate Gradient
- Prediction function for new data points $\mathrm{x} \in \mathbb{R}^{d}: F(\mathrm{x})$

Supervised learning - Kernel Ridge Regression

- Training data: n data points with feature vectors $\mathbf{x}_{i} \in \mathbb{R}^{d}$ with desired output $f_{i} \in \mathbb{R}(i=1, \ldots, n)$
- Goal: find (parameters of) prediction function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$, $F(\mathbf{x})=\sum_{j=1}^{n} \alpha_{j} \mathcal{K}\left(\mathbf{x}-\mathbf{x}_{j}\right)$ with $f_{i} \approx F\left(\mathbf{x}_{i}\right)$
- Build fully connected adjacency matrix \mathbf{W}, e.g. use $\mathcal{K}(\mathbf{x})=\mathrm{e}^{-\|\mathbf{x}\|^{2} / \sigma^{2}}$: $w_{i j}=\mathrm{e}^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \sigma^{2}}$
- Ansatz: $\min _{\boldsymbol{\alpha} \in \mathbb{R}^{n}}\left(\|\mathbf{f}-\mathbf{W} \boldsymbol{\alpha}\|_{2}^{2}+\beta \boldsymbol{\alpha}^{\top} \mathbf{W} \boldsymbol{\alpha}\right), \beta \geq 0$ regularization parameter
- Compute coefficients $\boldsymbol{\alpha}$ by solving $(\mathbf{W}+\beta \mathbf{I}) \cdot \boldsymbol{\alpha}=\mathbf{f}$ via Conjugate Gradient
- Prediction function for new data points $\mathbf{x} \in \mathbb{R}^{d}: F(\mathbf{x})$

Supervised learning - Kernel Ridge Regression: Results

Example: Classification of 2D feature vectors into two classes

- Desired output for training nodes:

$$
f_{i}= \begin{cases}1 & \text { if training node } i \text { is labelled for class } 1 \\ -1 & \text { if training node } i \text { is labelled for class } 2\end{cases}
$$

- Classify a new data point \mathbf{x} based on the sign of $F(\mathbf{x})=\sum_{j=1}^{n} \alpha_{j} \mathcal{K}\left(\mathbf{x}-\mathbf{x}_{j}\right)$

Unsupervised learning without graph tools - kmeans

Step 1: Assign random labels

Step 2: Compute cluster centers
Step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center

Unsupervised learning without graph tools - kmeans

Step 1: Assign random labels
Step 2: Compute cluster centers
Step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center

Unsupervised learning without graph tools - kmeans

Step 1: Assign random labels
Step 2: Compute cluster centers
Step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center

Unsupervised learning without graph tools - kmeans

Step 1: Assign random labels

Step 2: Compute cluster centers
Step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center

Unsupervised learning without graph tools - kmeans

Step 1: Assign random labels
Step 2: Compute cluster centers
Step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center

Unsupervised learning without graph tools - kmeans

Step 1: Assign random labels
Step 2: Compute cluster centers
Step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center

Unsupervised learning without graph tools - kmeans

Step 1: Assign random labels
Step 2: Compute cluster centers
Step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center

Unsupervised learning without graph tools - kmeans

Step 1: Assign random labels
Step 2: Compute cluster centers
Step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center
no label changes \rightarrow finished
D. Alfke, D. Potts, M. Stoll, T. Volkmer

24 / 20

Unsupervised learning without graph tools - kmeans

Step 1: Assign random labels
Step 2: Compute cluster centers
Step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center
Repeat step 2: Compute cluster centers
Repeat step 3: Assign labels of closest center \rightarrow no label changes \rightarrow finished

Unsupervised learning without graph tools - kmeans

Unsupervised learning - Fiedler vector clustering

Fiedler vector \mathbf{v} : Eigenvector of \mathbf{L} to the smallest non-zero eigenvalue

Example: fully connected graph for simple data set with 2-dim. feature vectors

Unsupervised learning - Fiedler vector clustering

Fiedler vector v: Eigenvector of \mathbf{L} to the smallest non-zero eigenvalue Example: fully connected graph for simple data set with 2-dim. feature vectors

Simple algorithm: Classify nodes according to sign of Fiedler vector entries

Unsupervised learning - Fiedler vector clustering

Fiedler vector \mathbf{v} : Eigenvector of \mathbf{L} to the smallest non-zero eigenvalue Example: fully connected graph for simple data set with 2-dim. feature vectors

Simple algorithm: Classify nodes according to sign of Fiedler vector entries

