Sparse high-dimensional FFT with applications to data mining

Toni Volkmer

Faculty of Mathematics Technische Universität Chemnitz

http://www.tu-chemnitz.de/~tovo

joint work with Lutz Kämmerer and Daniel Potts

supported by

Multivariate trigonometric polynomials

Sparse dimension-incremental FFT

Regression and Classification

Summary

• approximate high-dim. function $f: \mathbb{T}^d \simeq [0,1)^d \to \mathbb{C}$ by multivariate trigonometric polynomial $p: \mathbb{T}^d \to \mathbb{C}$ with frequencies supported on $I \subset \mathbb{Z}^d$, $|I| < \infty$,

$$p(\boldsymbol{x}) := \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}}, \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{C}$$

• approximate high-dim. function $f: \mathbb{T}^d \simeq [0,1)^d \to \mathbb{C}$ by multivariate trigonometric polynomial $p: \mathbb{T}^d \to \mathbb{C}$ with frequencies supported on $I \subset \mathbb{Z}^d$, $|I| < \infty$,

$$p(\boldsymbol{x}) := \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}}, \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{C}$$

- arbitrary known frequency index set $I \subset \mathbb{Z}^d$, $|I| < \infty$, rank-1 lattice nodes x_j , $j = 0, \ldots, M 1$
 - fast evaluation $p(x_j)$, (e.g. [Li, Hickernell 03])
 - fast and exact reconstruction of \hat{p}_{k} , $k \in I$, from samples $p(x_{j})$, ([Kämmerer, Kunis, Potts 12] [Kämmerer 13])
 - approximate reconstruction of f by p from samples $f(x_j)$

• approximate high-dim. function $f: \mathbb{T}^d \simeq [0,1)^d \to \mathbb{C}$ by multivariate trigonometric polynomial $p: \mathbb{T}^d \to \mathbb{C}$ with frequencies supported on $I \subset \mathbb{Z}^d$, $|I| < \infty$,

$$p(\boldsymbol{x}) := \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}}, \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{C}$$

- arbitrary known frequency index set $I \subset \mathbb{Z}^d$, $|I| < \infty$, rank-1 lattice nodes x_j , $j = 0, \ldots, M 1$
 - fast evaluation $p(x_j)$, (e.g. [Li, Hickernell 03])
 - fast and exact reconstruction of \hat{p}_{k} , $k \in I$, from samples $p(x_{j})$, ([Kämmerer, Kunis, Potts 12] [Kämmerer 13])
 - approximate reconstruction of f by p from samples $f(x_j)$

• unknown frequency index set *I*?

Trigonometric polynomials - fast evaluation

• rank-1 lattice $\operatorname{R1L}(\boldsymbol{z}, M)$: $\boldsymbol{z} \in \mathbb{N}_0^d, M \in \mathbb{N}$

$$oldsymbol{x}_j = rac{j}{M}oldsymbol{z} egin{array}{c} \mathsf{mod} \ \mathbf{1}; \ j = 0, \dots, M-1 \end{array}$$

Korobov 59 Maisonneuve 72 Sloan & Kachoyan 84,87,90 Temlyakov 86 Lyness 89 Sloan & Joe 94 Sloan & Reztsov 01 Li & Hickernell 03

Trigonometric polynomials - fast evaluation

• rank-1 lattice R1L(z, M):
$$z \in \mathbb{N}_{0}^{d}, M \in \mathbb{N}$$

 $x_{j} = \frac{j}{M} z \mod 1; \ j = 0, \dots, M-1$
• multivariate high-dim. trigonometric
polynomial $p(x) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i k \cdot x}$
• reformulation
 $p(x_{j}) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \left(\sum_{\substack{k \in I \ k \cdot z \equiv l \pmod{M}}} \hat{p}_{k} \right) e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \hat{g}_{l} e^{2\pi i \frac{jk}{M}}$
• \hat{g}_{l}
• $\hat{p}(x_{j}) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \left(\sum_{\substack{k \in I \ k \cdot z \equiv l \pmod{M}}} \hat{p}_{k} \right) e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \hat{g}_{l} e^{2\pi i \frac{jk}{M}}$

____ __ __

Trigonometric polynomials - fast evaluation

• rank-1 lattice R1L(z, M):
$$z \in \mathbb{N}_{0}^{d}, M \in \mathbb{N}$$

 $x_{j} = \frac{j}{M} z \mod 1; \ j = 0, \dots, M-1$
• multivariate high-dim. trigonometric polynomial $p(x) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i k \cdot x}$
• reformulation
 $p(x_{j}) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \left(\sum_{\substack{k \in I \ k \in I \ (mod M)}} \hat{p}_{k} \right) e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \hat{g}_{l} e^{2\pi i \frac{jl}{M}}$
• $p(x_{j}) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \left(\sum_{\substack{k \in I \ (mod M)}} \hat{p}_{k} \right) e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \hat{g}_{l} e^{2\pi i \frac{jl}{M}}$
• $p(x_{j}) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \left(\sum_{\substack{k \in I \ (mod M)}} \hat{p}_{k} \right) e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \hat{g}_{l} e^{2\pi i \frac{jl}{M}}$

1 r

Trigonometric polynomials - fast reconstruction

• rank-1 lattice R1L(
$$\boldsymbol{z}, M$$
): $\boldsymbol{z} \in \mathbb{N}_0^d, M \in \mathbb{N}$
 $\boldsymbol{x}_j := \frac{j}{M} \boldsymbol{z} \mod \boldsymbol{1}; \ j = 0, \dots, M-1$

• reconstruction of Fourier coefficients \hat{p}_k of multivariate trigonometric polynomial $p(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

Trigonometric polynomials - fast reconstruction

- rank-1 lattice R1L(\boldsymbol{z}, M): $\boldsymbol{z} \in \mathbb{N}_0^d, M \in \mathbb{N}$ $\boldsymbol{x}_j := \frac{j}{M} \boldsymbol{z} \mod \boldsymbol{1}; \ j = 0, \dots, M - 1$
- reconstruction of Fourier coefficients \hat{p}_k of multivariate trigonometric polynomial $p(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$

- $\Rightarrow \text{ Definition reconstructing R1L}(\boldsymbol{z}, M, \boldsymbol{I}) \text{ for } \boldsymbol{I}: \\ \boldsymbol{k} \cdot \boldsymbol{z} \neq \boldsymbol{k'} \cdot \boldsymbol{z} \pmod{M} \text{ for all } \boldsymbol{k}, \boldsymbol{k'} \in \boldsymbol{I}, \ \boldsymbol{k} \neq \boldsymbol{k'} \\ |\boldsymbol{I}| \leq |\boldsymbol{M}| \leq |\boldsymbol{I}|^2 \quad \text{CDC}$
 - $|I| \leq M \leq |I|^2$, CBC construction algorithm [Kämmerer 2012]

Trigonometric polynomials - fast approximation

• fast approximation of high-dimensional function $f: \mathbb{T}^d \to \mathbb{C}$ by multivariate trigonometric polynomial $p(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$

from samples at reconstructing rank-1 lattice $R1L(\boldsymbol{z}, M, \boldsymbol{I})$

- Kämmerer, L., Potts, D., Volkmer, T.
 Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling.
 - J. Complexity 31, 543 576, 2015.

Byrenheid, G., Kämmerer, L., Ullrich, T., Volkmer, T. **Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness**. arXiv:1510.08336, Preprint, 2016. (http://www.tu-chemnitz.de/~tovo)

- given frequency index set I
- ${\, \bullet \, }$ compute $\hat{p}_{{\bm k}}$ from samples along reconstructing rank-1 lattice

• given frequency index set *I*

 $\bullet\,$ compute $\hat{p}_{\boldsymbol{k}}$ from samples along reconstructing rank-1 lattice

- next: unknown I
 - search for location *I* of largest Fourier coefficients of *f* or non-zero Fourier coefficients of *p* (and compute Fourier coefficients *p̂_k*, *k* ∈ *I*)

• given frequency index set *I*

 \bullet compute $\hat{p}_{\pmb{k}}$ from samples along reconstructing rank-1 lattice

next: unknown I

- search for location *I* of largest Fourier coefficients of *f* or non-zero Fourier coefficients of *p* (and compute Fourier coefficients *p̂_k*, *k* ∈ *I*)
- search domain: (possibly) large index set $\Gamma \subset \mathbb{Z}^d$, e.g., full grid $\hat{G}_N^d := \{ \boldsymbol{k} \in \mathbb{Z}^d : \|\boldsymbol{k}\|_{\infty} \leq N \}$, $(|\hat{G}_{64}^{10}| \approx 1.28 \cdot 10^{21})$

• given frequency index set *I*

 \bullet compute $\hat{p}_{\pmb{k}}$ from samples along reconstructing rank-1 lattice

next: unknown I

- search for location *I* of largest Fourier coefficients of *f* or non-zero Fourier coefficients of *p* (and compute Fourier coefficients *p̂_k*, *k* ∈ *I*)
- search domain: (possibly) large index set $\Gamma \subset \mathbb{Z}^d$, e.g., full grid $\hat{G}_N^d := \{ \mathbf{k} \in \mathbb{Z}^d : \|\mathbf{k}\|_{\infty} \leq N \}$, $(|\hat{G}_{64}^{10}| \approx 1.28 \cdot 10^{21})$
- \Rightarrow multi-dimensional sparse FFT

Multi-dimensional sparse FFT

Various existing methods, e.g.

- filters [Indyk, Kapralov 14]
- Chinese remainder theorem
 - [Cuyt, Lee 08]
 - [Iwen 13]
- Prony's method
 - multiple lines [Tasche, Potts 13]
 - COMMON ZEROS [Peter, Plonka, Schaback 15] [Kunis, Peter, Römer, von der Ohe 15]
- dimension-incremental projection
 - Zippel's Algorithm [Zippel 79] [Kaltofen, Lee 03] [Javadi Monagan 10]
 - via (reconstructing) rank-1 lattices [Potts, V. 15]
- randomized Kronecker substitution

[Arnold, Roche 14] [Arnold, Giesbrecht, Roche 15]

• (reconstructing) rank-1 lattice and 1d method [Potts, Tasche, V. 16]

8 / 22

Multi-dimensional sparse FFT

Various existing methods, e.g.

- filters [Indyk, Kapralov 14]
- Chinese remainder theorem
 - [Cuyt, Lee 08]
 - [Iwen 13]
- Prony's method
 - multiple lines [Tasche, Potts 13]
 - COMMON ZEROS [Peter, Plonka, Schaback 15] [Kunis, Peter, Römer, von der Ohe 15]
- dimension-incremental projection
 - Zippel's Algorithm [Zippel 79] [Kaltofen, Lee 03] [Javadi Monagan 10]
 - via (reconstructing) rank-1 lattices [Potts, V. 15]
- randomized Kronecker substitution

[Arnold, Roche 14] [Arnold, Giesbrecht, Roche 15]

• (reconstructing) rank-1 lattice and 1d method [Potts, Tasche, V. 16]

$$\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p\left(\begin{pmatrix} \ell/17\\ x'_2\\ x'_3 \end{pmatrix} \right) \, \mathrm{e}^{-2\pi \mathrm{i}\frac{\ell k_1}{17}}$$

$$k_1 = -8, \ldots, 8$$

 $\stackrel{1-dim}{\leftarrow}$

$$\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p\left(\begin{pmatrix} \ell/17\\ x'_2\\ x'_3 \end{pmatrix} \right) e^{-2\pi i \frac{\ell k_1}{17}} \\ = \sum_{\substack{(h_2,h_3) \in \{-8,\dots,8\}^2\\ (k_1,h_2,h_3)^\top \in \operatorname{supp} \hat{p}}} \hat{p}_{\binom{k_1}{h_3}} e^{2\pi i (h_2 x'_2 + h_3 x'_3)}, \\ k_1 = -8,\dots, 8$$

 $\stackrel{1-dim}{\leftarrow}$

1-dim ← iFFT

 $\overset{1-\text{dim}}{\leftarrow}_{iFFT}$

search domain $\Gamma = \hat{G}_N^d$ full grid, $\sqrt{N} \lesssim |I| \lesssim N^d$

• samples: $\mathcal{O}(|I|^2 \log |\Gamma|)$

- computational costs: $\mathcal{O}(d |I|^3 + |I|^2 (\log |\Gamma|) \log(|I| \log |\Gamma|))$
- for arbitrary Fourier coefficients p̂_k ∈ C: probabilistic approach with several iterations
- if $(\operatorname{Re}(\hat{p}_k) \text{ identical sign})$ AND $(\operatorname{Im}(\hat{p}_k) \text{ identical sign})$ then deterministic version with 1 iteration

```
    Potts, D., Volkmer, T.
    Sparse high-dimensional FFT based on rank-1 lattice sampling.
    Appl. Comput. Harm. Anal. 41, 713 – 748, 2016.
(http://www.tu-chemnitz.de/~tovo)
```

Sparse dimension-incremental FFT - example

• B-spline
$$N_m(x) := \sum_{k \in \mathbb{Z}} C_m \operatorname{sinc} \left(\frac{\pi}{m}k\right)^m \cos(\pi k) e^{2\pi i k x}$$
,
 $\|N_m|L^2(\mathbb{T})\| = 1$, $|\hat{N}_m(k)| \sim |k|^{-m}$
• $f(x) := \prod_{t \in \{1,3,8\}} N_2(x_t) + \prod_{t \in \{2,5,6,10\}} N_4(x_t) + \prod_{t \in \{4,7,9\}} N_6(x_t)$

Sparse dimension-incremental FFT - example

• B-spline
$$N_m(x) := \sum_{k \in \mathbb{Z}} C_m \operatorname{sinc} \left(\frac{\pi}{m}k\right)^m \cos(\pi k) e^{2\pi i k x}$$
,
 $\|N_m|L^2(\mathbb{T})\| = 1$, $|\hat{N}_m(k)| \sim |k|^{-m}$
• $f(x) := \prod_{k \in \mathbb{Z}} N_2(x_k) + \prod_{k \in \mathbb{Z}} N_k(x_k) + \prod_{k \in \mathbb{Z}} N_k(x_k)$

•
$$f(\boldsymbol{x}) := \prod_{t \in \{1,3,8\}} N_2(x_t) + \prod_{t \in \{2,5,6,10\}} N_4(x_t) + \prod_{t \in \{4,7,9\}} N_6(x_t)$$

• full grid for N=64, d=10: $|\hat{G}_{64}^{10}|=129^{10}\approx 1.28\cdot 10^{21}$

• symmetric hyperbolic cross: $|I_{64}^{10}| = 696\,036\,321$ relative $L^2(\mathbb{T}^d)$ -error (best case) 4.1e-04

Sparse dimension-incremental FFT - example

• B-spline
$$N_m(x) := \sum_{k \in \mathbb{Z}} C_m \operatorname{sinc} \left(\frac{\pi}{m} k\right)^m \cos(\pi k) e^{2\pi i k x}$$
,
 $\|N_m | L^2(\mathbb{T})\| = 1$, $|\hat{N}_m(k)| \sim |k|^{-m}$

•
$$f(\mathbf{x}) := \prod_{t \in \{1,3,8\}} N_2(x_t) + \prod_{t \in \{2,5,6,10\}} N_4(x_t) + \prod_{t \in \{4,7,9\}} N_6(x_t)$$

- full grid for N = 64, d = 10: $|\hat{G}_{64}^{10}| = 129^{10} \approx 1.28 \cdot 10^{21}$
- symmetric hyperbolic cross: $|I_{64}^{10}| = 696\,036\,321$ relative $L^2(\mathbb{T}^d)$ -error (best case) 4.1e-04
- results for dimension incremental algorithm with $\Gamma = \hat{G}_{64}^{10}$:

threshold	#samples	I	rel. L_2 -error	
1.0e-02	254 530	491	1.4e-01	
1.0e-03	2 789 050	1 1 2 1	1.1e-02	
1.0e-04	17 836 042	3013	1.7e-03	
1.0e-05	82 222 438	7 163	4.7e-04	

sparse dimension-incremental FFT:

- method required function f to be evaluated at arbitrary (rank-1 lattice) points
- ullet What if sampling points ${\boldsymbol y}_\ell \in {\mathbb T}^d$ are given a priori?

sparse dimension-incremental FFT:

• method required function f to be evaluated at arbitrary (rank-1 lattice) points

• What if sampling points $oldsymbol{y}_\ell \in \mathbb{T}^d$ are given a priori? task:

- \bullet Given a set of data $S:=\{(\boldsymbol{y}_{\ell},f_{\ell})\}_{\ell=0,\dots,L-1}$
 - $\bullet\,$ with nodes ${\boldsymbol y}_\ell \in {\mathbb T}^d$ and
 - function values $f_\ell := f(oldsymbol{y}_\ell) \in \mathbb{R}$,
- determine
 - frequency index set $I\subset\Gamma\subset\mathbb{Z}^d$ and
 - Fourier coefficients \hat{p}_{k}

of approximant $p({\bm x}) := \sum_{{\bm k} \in I} \hat{p}_{{\bm k}} \, \mathrm{e}^{2 \pi \mathrm{i} {\bm k} \cdot {\bm x}}$

ansatz: for set of data $S := \{(\boldsymbol{y}_\ell, f_\ell)\}_{\ell=0,\dots,L-1}$

 use regularization network approach and consider the regularized least squares problem

e.g. [Garcke, Griebel, Thess 01]

$$\frac{1}{L}\sum_{\ell=0}^{L-1} (f_{\ell} - p(\boldsymbol{y}_{\ell}))^2 + \lambda \Phi(p) \to \min$$

with regularization parameter $\lambda \geq 0$ and e.g. with $\Phi(p) := \|\nabla p\|_2^2$

ansatz: for set of data $S := \{(\boldsymbol{y}_\ell, f_\ell)\}_{\ell=0,\dots,L-1}$

 use regularization network approach and consider the regularized least squares problem

e.g. [Garcke, Griebel, Thess 01]

$$\frac{1}{L}\sum_{\ell=0}^{L-1} (f_{\ell} - p(\boldsymbol{y}_{\ell}))^2 + \lambda \Phi(p) \to \min$$

with regularization parameter
$$\lambda \geq 0$$
 and
e.g. with $\Phi(p) := \|\nabla p\|_2^2$
 \Rightarrow solve $\left(\frac{1}{L} \mathbf{A}^* \mathbf{A} + \lambda \mathbf{C}\right) (\hat{p}_{\mathbf{k}})_{\mathbf{k}\in\Gamma} = \frac{1}{L} \mathbf{A}^* (f_\ell)_{\ell=0}^{L-1}$,
 $\mathbf{A} = \left(e^{2\pi i \mathbf{k} \cdot \mathbf{y}_\ell}\right)_{\ell=0,\dots,L-1; \ \mathbf{k}\in\Gamma}$
 $\mathbf{C} = \left(\langle \nabla e^{2\pi i \mathbf{k} \cdot \mathbf{x}}, \nabla e^{2\pi i \mathbf{h} \cdot \mathbf{x}} \rangle_2 \right)_{\mathbf{k},\mathbf{h}\in\Gamma} = \operatorname{diag}\left((4\pi^2 \|\mathbf{k}\|_2^2)_{\mathbf{k}\in\Gamma}\right)$

ansatz: for set of data $S := \{(\boldsymbol{y}_\ell, f_\ell)\}_{\ell=0,\dots,L-1}$

 use regularization network approach and consider the regularized least squares problem

e.g. [Garcke, Griebel, Thess 01]

$$\frac{1}{L}\sum_{\ell=0}^{L-1} (f_{\ell} - p(\boldsymbol{y}_{\ell}))^2 + \lambda \Phi(p) \to \min$$

with regularization parameter
$$\lambda \geq 0$$
 and
e.g. with $\Phi(p) := \|\nabla p\|_2^2$
 \Rightarrow solve $(\frac{1}{L} A^* A + \lambda C) (\hat{p}_k)_{k \in \Gamma} = \frac{1}{L} A^* (f_\ell)_{\ell=0}^{L-1}$,
 $A = (e^{2\pi i k y_\ell})_{\ell=0,...,L-1; \ k \in \Gamma}$
 $C = (\langle \nabla e^{2\pi i k \cdot x}, \nabla e^{2\pi i h \cdot x} \rangle_2)_{k,h \in \Gamma} = \text{diag} ((4\pi^2 \|k\|_2^2)_{k \in \Gamma})$
• combine with dimension-incremental idea

idea of the approach step-by-step:

• start with 1 attribute

- start with 1 attribute
 - compute projected Fourier coefficients from given samples by solving the regularized least squares problem
 - keep largest Fourier coefficients
 - obtain (one-dimensional) approximant

- start with 1 attribute
 - compute projected Fourier coefficients from given samples by solving the regularized least squares problem
 - keep largest Fourier coefficients
 - obtain (one-dimensional) approximant
- for 2nd to last attribute
 - add attribute into consideration

- start with 1 attribute
 - compute projected Fourier coefficients from given samples by solving the regularized least squares problem
 - keep largest Fourier coefficients
 - obtain (one-dimensional) approximant
- for 2nd to last attribute
 - add attribute into consideration
 - compute projected Fourier coefficients from given samples by solving the regularized least squares problem
 - keep largest Fourier coefficients
 - obtain (low dimensional) approximant

- start with 1 attribute
 - compute projected Fourier coefficients from given samples by solving the regularized least squares problem
 - keep largest Fourier coefficients
 - obtain (one-dimensional) approximant
- for 2nd to last attribute
 - add attribute into consideration
 - compute projected Fourier coefficients from given samples by solving the regularized least squares problem
 - keep largest Fourier coefficients
 - obtain (low dimensional) approximant
 - ${\ensuremath{\, \bullet }}$ evaluate approximant on train / eval data set
 - if no improvement compared to previous case, then reject newly added attribute

Regression - example

• B-spline
$$N_m(x) := \sum_{k \in \mathbb{Z}} C_m \operatorname{sinc} \left(\frac{\pi}{m}k\right)^m \cos(\pi k) e^{2\pi i k x}$$
,
 $\|N_m|L^2(\mathbb{T})\| = 1, \ |\hat{N}_m(k)| \sim |k|^{-m}$
• $f(x) := \prod_{t \in \{1,3,8\}} N_2(x_t) + \prod_{t \in \{2,5,6,10\}} N_4(x_t) + \prod_{t \in \{4,7,9\}} N_6(x_t)$

Regression - example

• B-spline
$$N_m(x) := \sum_{k \in \mathbb{Z}} C_m \operatorname{sinc} \left(\frac{\pi}{m}k\right)^m \cos(\pi k) e^{2\pi i k x}$$
,
 $\|N_m|L^2(\mathbb{T})\| = 1$, $|\hat{N}_m(k)| \sim |k|^{-m}$
• $f(x) := \prod_{t \in \{1,3,8\}} N_2(x_t) + \prod_{t \in \{2,5,6,10\}} N_4(x_t) + \prod_{t \in \{4,7,9\}} N_6(x_t)$

• hyperbolic cross I_N^d for N = 16, d = 10: $|I_{16}^{10}| = 45\,548\,649$

index set I	I	rel. L_2 -error (best case)		
I_{16}^{10}	45 548 649	3.1e-03		
$I \subset I_{16}^{10}$	2 000	4.0e-03		
$I \subset I_{16}^{10}$	1 000	1.2e-02		

Regression - example

• B-spline
$$N_m(x) := \sum_{k \in \mathbb{Z}} C_m \operatorname{sinc} \left(\frac{\pi}{m}k\right)^m \cos(\pi k) e^{2\pi i k x}$$
,
 $\|N_m|L^2(\mathbb{T})\| = 1$, $|\hat{N}_m(k)| \sim |k|^{-m}$
• $f(x) := \prod_{t \in \{1,3,8\}} N_2(x_t) + \prod_{t \in \{2,5,6,10\}} N_4(x_t) + \prod_{t \in \{4,7,9\}} N_6(x_t)$

• hyperbolic cross I_N^d for N=16, d=10: $|I_{16}^{10}|=45\,548\,649$

index set I	I	rel. L_2 -error (best case)		
I_{16}^{10}	45 548 649	3.1e-03		
$I \subset I_{16}^{10}$	2 000	4.0e-03		
$I \subset I_{16}^{10}$	1 000	1.2e-02		

• results for dimension incremental algorithm with $I \subset \Gamma = I_{16}^{10}$ for given set of data $S := \{(\boldsymbol{y}_{\ell}, f_{\ell})\}_{\ell=0,\dots,L-1},$ $\boldsymbol{C} := \operatorname{diag} \left((4\pi^2 \prod_{s=1}^d \max(1, |k_s|))_{\boldsymbol{k} \in \Gamma} \right)$ $\underline{\# \text{samples } L \mid |I| \mid \text{rel. } L_2\text{-error} \atop 400\,000 \mid 2\,000 \mid 2.5\text{e-}02}$ common approach for two-class problem:

- map classes to $f_\ell \in \{0,1\}$ or $\in \{-1,1\}$
- set of data $S:=\{({m y}_\ell,f_\ell)\}_{\ell=0,\dots,L-1}$
- solve the regularized least squares problem
 - e.g. [Garcke, Griebel, Thess 01]

$$\frac{1}{L}\sum_{\ell=0}^{L-1}(f_{\ell}-p(\boldsymbol{y}_{\ell}))^2+\lambda\Phi(p)\to\min$$

- ullet for data point y
 - map approximant p to one class if $p(\boldsymbol{y}) \leq \text{threshold}$
 - and to the other if $p(\boldsymbol{y}) > \text{threshold}$

common approach for two-class problem:

- map classes to $f_\ell \in \{0,1\}$ or $\in \{-1,1\}$
- set of data $S:=\{({m y}_\ell,f_\ell)\}_{\ell=0,\dots,L-1}$
- solve the regularized least squares problem
 - e.g. [Garcke, Griebel, Thess 01]

$$\frac{1}{L}\sum_{\ell=0}^{L-1}(f_\ell-p(\boldsymbol{y}_\ell))^2+\lambda\Phi(p)\to\min$$

- ullet for data point y
 - map approximant p to one class if $p(\boldsymbol{y}) \leq \text{threshold}$
 - and to the other if $p(\boldsymbol{y}) > \text{threshold}$
- \Rightarrow apply dimension-incremental method

- DMC2013 data set (shopping cart cancellation)
- target attribute order $\in \{0, 1\}$
- 21 attributes
- 429 000 lines of train/eval data (split 50/50)
- 45068 lines of test data

	classification rate		
method	train	eval	test
order := 1	0.6763	0.6758	0.6806
Decision Tree	0.7787	0.7718	0.7547
dimension incremental	0.7522	0.7519	0.7562

• known (arbitrary) frequency index set via rank-1 lattices

- fast evaluation / reconstruction of trigonometric polynomials [Li, Hickernell 03] / [Kämmerer, Kunis, Potts 12] [Kämmerer 13]
- approximation of periodic functions
- unknown frequency index set
 - sparse dimension-incremental FFT based on rank-1 lattices

 Potts, D., Volkmer, T.
 Sparse high-dimensional FFT based on rank-1 lattice sampling.
 Appl. Comput. Harm. Anal. 41, 713 – 748, 2016. (http://www.tu-chemnitz.de/~tovo)

• dimension-incremental method for regression / classification

23 / 22

- dimension incremental method uses evaluations $p(\boldsymbol{y}_{\ell}) := \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{y}_{\ell}}, \ \ell = 0, \dots, L-1.$
- \Rightarrow fast version desired
 - approximate $p(\bm{y}_\ell)$ by Taylor expansion $s_m(\bm{y}_\ell)$ at closest rank-1 lattice point $\bm{x}_{\ell'}$,

$$s_{m}(\boldsymbol{y}_{\ell}) = p(\boldsymbol{x}_{\ell'}) + \sum_{0 < |\boldsymbol{\nu}| < m} \frac{(\boldsymbol{y}_{\ell} - \boldsymbol{x}_{\ell'})^{\boldsymbol{\nu}}}{\boldsymbol{\nu}!} (D^{\boldsymbol{\nu}} p)(\boldsymbol{x}_{\ell'})$$

- dimension incremental method uses evaluations $p(\boldsymbol{y}_{\ell}) := \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{y}_{\ell}}, \ \ell = 0, \dots, L-1.$
- \Rightarrow fast version desired
 - approximate $p(\pmb{y}_\ell)$ by Taylor expansion $s_m(\pmb{y}_\ell)$ at closest rank-1 lattice point $\pmb{x}_{\ell'}$,

$$s_m(\boldsymbol{y}_{\boldsymbol{\ell}}) = p(\boldsymbol{x}_{\boldsymbol{\ell}'}) + \sum_{0 < |\boldsymbol{\nu}| < m} \frac{(\boldsymbol{y}_{\boldsymbol{\ell}} - \boldsymbol{x}_{\boldsymbol{\ell}'})^{\boldsymbol{\nu}}}{\boldsymbol{\nu}!} (D^{\boldsymbol{\nu}} p)(\boldsymbol{x}_{\boldsymbol{\ell}'})$$
$$= p(\boldsymbol{x}_{\boldsymbol{\ell}'}) + \sum_{0 < |\boldsymbol{\nu}| < m} \frac{(\boldsymbol{y}_{\boldsymbol{\ell}} - \boldsymbol{x}_{\boldsymbol{\ell}'})^{\boldsymbol{\nu}}}{\boldsymbol{\nu}!} \left(\sum_{\boldsymbol{k} \in I} (2\pi i \boldsymbol{k})^{\boldsymbol{\nu}} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}_{\boldsymbol{\ell}'}} \right)$$

- dimension incremental method uses evaluations $p(\boldsymbol{y}_{\ell}) := \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{y}_{\ell}}, \ \ell = 0, \dots, L-1.$
- \Rightarrow fast version desired
 - approximate $p(\pmb{y}_\ell)$ by Taylor expansion $s_m(\pmb{y}_\ell)$ at closest rank-1 lattice point $\pmb{x}_{\ell'},$

$$s_m(\boldsymbol{y}_{\ell}) = p(\boldsymbol{x}_{\ell'}) + \sum_{0 < |\boldsymbol{\nu}| < m} \frac{(\boldsymbol{y}_{\ell} - \boldsymbol{x}_{\ell'})^{\boldsymbol{\nu}}}{\boldsymbol{\nu}!} (D^{\boldsymbol{\nu}} p)(\boldsymbol{x}_{\ell'})$$
$$= p(\boldsymbol{x}_{\ell'}) + \sum_{0 < |\boldsymbol{\nu}| < m} \frac{(\boldsymbol{y}_{\ell} - \boldsymbol{x}_{\ell'})^{\boldsymbol{\nu}}}{\boldsymbol{\nu}!} \left(\sum_{\boldsymbol{k} \in I} (2\pi i \boldsymbol{k})^{\boldsymbol{\nu}} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}_{\ell'}} \right)$$

• for fixed $\boldsymbol{\nu} \in \mathbb{N}_0^d$, compute $(D^{\boldsymbol{\nu}}p)(\boldsymbol{x}_j)$ for all \boldsymbol{x}_j , $j = 0, \dots, M-1$, with 1-dim FFT(M) in $\mathcal{O}(M \log M + d|I|)$

- dimension incremental method uses evaluations $p(\boldsymbol{y}_{\ell}) := \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{y}_{\ell}}, \ \ell = 0, \dots, L-1.$
- \Rightarrow fast version desired
 - approximate $p(\pmb{y}_\ell)$ by Taylor expansion $s_m(\pmb{y}_\ell)$ at closest rank-1 lattice point $\pmb{x}_{\ell'},$

$$s_m(\boldsymbol{y}_{\boldsymbol{\ell}}) = p(\boldsymbol{x}_{\boldsymbol{\ell}'}) + \sum_{0 < |\boldsymbol{\nu}| < m} \frac{(\boldsymbol{y}_{\boldsymbol{\ell}} - \boldsymbol{x}_{\boldsymbol{\ell}'})^{\boldsymbol{\nu}}}{\boldsymbol{\nu}!} (D^{\boldsymbol{\nu}} p)(\boldsymbol{x}_{\boldsymbol{\ell}'})$$
$$= p(\boldsymbol{x}_{\boldsymbol{\ell}'}) + \sum_{0 < |\boldsymbol{\nu}| < m} \frac{(\boldsymbol{y}_{\boldsymbol{\ell}} - \boldsymbol{x}_{\boldsymbol{\ell}'})^{\boldsymbol{\nu}}}{\boldsymbol{\nu}!} \left(\sum_{\boldsymbol{k} \in I} (2\pi i \boldsymbol{k})^{\boldsymbol{\nu}} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}_{\boldsymbol{\ell}'}} \right)$$

• for fixed
$$\boldsymbol{\nu} \in \mathbb{N}_0^d$$
, compute $(D^{\boldsymbol{\nu}}p)(\boldsymbol{x}_j)$ for all \boldsymbol{x}_j ,
 $j = 0, \dots, M-1$, with 1-dim FFT (M) in $\mathcal{O}(M \log M + d|I|)$
 \Rightarrow in total $\mathcal{O}\left(m^d(L + M \log M + d|I|)\right)$ arithmetic operations

Lemma (V. 13)

Let $I = I_N^d$ hyperbolic cross,

Lemma (V. 13)

Let
$$I=I_N^d$$
 hyperbolic cross, $p(m{x}):=\sum_{m{k}\in I_N^d}\hat{p}_{m{k}}~{
m e}^{2\pi{
m i}m{k}\cdotm{x}}$

Lemma (V. 13)

Let $I=I_N^d$ hyperbolic cross, $p({\bm x}):=\sum_{{\bm k}\in I_N^d}\hat{p}_{{\bm k}}\ {\rm e}^{2\pi{\rm i}{\bm k}\cdot{\bm x}}$, ${\rm R1L}({\bm z},M)$

Lemma (V. 13)

Let $I = I_N^d$ hyperbolic cross, $p(\boldsymbol{x}) := \sum_{\boldsymbol{k} \in I_N^d} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$, R1L (\boldsymbol{z}, M) and $\min_{\boldsymbol{h} \in \mathbb{Z}^d} \| \boldsymbol{y}_{\ell} - \boldsymbol{x}_{\ell'} + \boldsymbol{h} \|_{\infty} \leq \varepsilon$ be given.

Lemma (V. 13)

Lemma (V. 13)

Lemma (V. 13)

Let
$$I = I_N^d$$
 hyperbolic cross, $p(\boldsymbol{x}) := \sum_{\boldsymbol{k} \in I_N^d} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$,
R1L (\boldsymbol{z}, M) and $\min_{\boldsymbol{h} \in \mathbb{Z}^d} \|\boldsymbol{y}_{\ell} - \boldsymbol{x}_{\ell'} + \boldsymbol{h}\|_{\infty} \leq \varepsilon$ be given. Then,
 $|(p - s_m)(\boldsymbol{y}_{\ell})| \leq \frac{(2\pi)^m}{m!} \varepsilon^m \sum_{\boldsymbol{k} \in I_N^d} |\hat{p}_{\boldsymbol{k}}| \|\boldsymbol{k}\|_1^m$
 $\leq \frac{(2\pi d)^m}{m!} \varepsilon^m N^m \sum_{\boldsymbol{k} \in I_N^d} |\hat{p}_{\boldsymbol{k}}|$

 error estimates can be generalized to other finite frequency index sets I ⊂ Z^d, e.g. ℓ₁ balls, energy-based hyperbolic crosses, ...

Lemma (V. 13)

Let
$$I = I_N^d$$
 hyperbolic cross, $p(\boldsymbol{x}) := \sum_{\boldsymbol{k} \in I_N^d} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$,
R1L (\boldsymbol{z}, M) and $\min_{\boldsymbol{h} \in \mathbb{Z}^d} \|\boldsymbol{y}_{\ell} - \boldsymbol{x}_{\ell'} + \boldsymbol{h}\|_{\infty} \leq \varepsilon$ be given. Then,
 $|(p - s_m)(\boldsymbol{y}_{\ell})| \leq \frac{(2\pi)^m}{m!} \varepsilon^m \sum_{\boldsymbol{k} \in I_N^d} |\hat{p}_{\boldsymbol{k}}| \|\boldsymbol{k}\|_1^m$
 $\leq \frac{(2\pi d)^m}{m!} \varepsilon^m N^m \sum_{\boldsymbol{k} \in I_N^d} |\hat{p}_{\boldsymbol{k}}|$

- error estimates can be generalized to other finite frequency index sets $I \subset \mathbb{Z}^d$, e.g. ℓ_1 balls, energy-based hyperbolic crosses, ...
- decay properties of Fourier coefficients may be included

26 / 22