Sparse high-dimensional FFT based on rank-1 lattice sampling

Toni Volkmer

Faculty of Mathematics Technische Universität Chemnitz

http://www.tu-chemnitz.de/~tovo

joint work with Daniel Potts, Manfred Tasche

supported by

Multivariate trigonometric polynomials

High-dim. sparse FFT via 1-dim. sparse FFT

Sparse dimension-incremental FFT

Non-periodic case

Summary

• approximate high-dim. function $f: \mathbb{T}^d \simeq [0,1)^d \to \mathbb{C}$ by multivariate trigonometric polynomial $p: \mathbb{T}^d \to \mathbb{C}$ with frequencies supported on $I \subset \mathbb{Z}^d$, $|I| < \infty$,

$$p(\boldsymbol{x}) := \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}}, \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{C}$$

• approximate high-dim. function $f: \mathbb{T}^d \simeq [0,1)^d \to \mathbb{C}$ by multivariate trigonometric polynomial $p: \mathbb{T}^d \to \mathbb{C}$ with frequencies supported on $I \subset \mathbb{Z}^d$, $|I| < \infty$,

$$p(\boldsymbol{x}) := \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}}, \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{C}$$

- arbitrary known frequency index set $I \subset \mathbb{Z}^d$, $|I| < \infty$, rank-1 lattice nodes x_j , $j = 0, \ldots, M 1$
 - fast evaluation $p(x_j)$, (e.g. [Li, Hickernell 03])
 - fast and exact reconstruction of \hat{p}_{k} , $k \in I$, from samples $p(x_{j})$, ([Kämmerer, Kunis, Potts 12] [Kämmerer 13])
 - approximate reconstruction of f by p from samples $f(x_j)$

• approximate high-dim. function $f: \mathbb{T}^d \simeq [0,1)^d \to \mathbb{C}$ by multivariate trigonometric polynomial $p: \mathbb{T}^d \to \mathbb{C}$ with frequencies supported on $I \subset \mathbb{Z}^d$, $|I| < \infty$,

$$p(\boldsymbol{x}) := \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}}, \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{C}$$

- arbitrary known frequency index set $I \subset \mathbb{Z}^d$, $|I| < \infty$, rank-1 lattice nodes x_j , $j = 0, \ldots, M 1$
 - fast evaluation $p(x_j)$, (e.g. [Li, Hickernell 03])
 - fast and exact reconstruction of \hat{p}_{k} , $k \in I$, from samples $p(x_{j})$, ([Kämmerer, Kunis, Potts 12] [Kämmerer 13])
 - approximate reconstruction of f by p from samples $f(x_j)$

• unknown frequency index set *I*?

Trigonometric polynomials - fast evaluation

• rank-1 lattice $\operatorname{R1L}(\boldsymbol{z}, M)$: $\boldsymbol{z} \in \mathbb{N}_0^d, M \in \mathbb{N}$

$$oldsymbol{x}_j = rac{j}{M}oldsymbol{z} egin{array}{c} \mathsf{mod} \ \mathbf{1}; \ j = 0, \dots, M-1 \end{array}$$

Korobov 59 Maisonneuve 72 Sloan & Kachoyan 84,87,90 Temlyakov 86 Lyness 89 Sloan & Joe 94 Sloan & Reztsov 01 Li & Hickernell 03

Trigonometric polynomials - fast evaluation

a (c)

DIT (

• rank-1 lattice R1L(
$$z, M$$
): $z \in \mathbb{N}_{0}^{d}, M \in \mathbb{N}$
 $x_{j} = \frac{j}{M} z \mod 1; \ j = 0, \dots, M-1$
• multivariate high-dim. trigonometric
polynomial $p(x) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i k \cdot x}$
• reformulation
 $p(x_{j}) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \left(\sum_{\substack{k \in I \\ k \cdot z \equiv l \pmod{M}}} \hat{p}_{k} \right) e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \hat{g}_{l} e^{2\pi i \frac{jl}{M}}$
 \hat{g}_{l}
 $\hat{g}_$

nrd nr

D T

Trigonometric polynomials - fast evaluation

• rank-1 lattice R1L(z, M):
$$z \in \mathbb{N}_{0}^{d}, M \in \mathbb{N}$$

 $x_{j} = \frac{j}{M} z \mod 1; \ j = 0, \dots, M-1$
• multivariate high-dim. trigonometric polynomial $p(x) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i k \cdot x}$
• reformulation
 $p(x_{j}) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \left(\sum_{\substack{k \in I \ k \in I \ (mod M)}} \hat{p}_{k} \right) e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \hat{g}_{l} e^{2\pi i \frac{jl}{M}}$
• $p(x_{j}) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \left(\sum_{\substack{k \in I \ (mod M)}} \hat{p}_{k} \right) e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \hat{g}_{l} e^{2\pi i \frac{jl}{M}}$
• $p(x_{j}) = \sum_{k \in I} \hat{p}_{k} e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \left(\sum_{\substack{k \in I \ (mod M)}} \hat{p}_{k} \right) e^{2\pi i \frac{jk \cdot z}{M}} = \sum_{l=0}^{M-1} \hat{g}_{l} e^{2\pi i \frac{jl}{M}}$

1 r

Trigonometric polynomials - fast reconstruction

• rank-1 lattice R1L(
$$\boldsymbol{z}, M$$
): $\boldsymbol{z} \in \mathbb{N}_0^d, M \in \mathbb{N}$
 $\boldsymbol{x}_j := \frac{j}{M} \boldsymbol{z} \mod \boldsymbol{1}; \ j = 0, \dots, M-1$

• reconstruction of Fourier coefficients \hat{p}_k of multivariate trigonometric polynomial $p(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

Trigonometric polynomials - fast reconstruction

- rank-1 lattice R1L(\boldsymbol{z}, M): $\boldsymbol{z} \in \mathbb{N}_0^d, M \in \mathbb{N}$ $\boldsymbol{x}_j := \frac{j}{M} \boldsymbol{z} \mod \boldsymbol{1}; \ j = 0, \dots, M - 1$
- reconstruction of Fourier coefficients \hat{p}_{k} of multivariate trigonometric polynomial $p(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$

- $\Rightarrow \text{ Definition reconstructing } R1L(\boldsymbol{z}, M, I) \text{ for } I:$ $\boldsymbol{k} \cdot \boldsymbol{z} \neq \boldsymbol{k'} \cdot \boldsymbol{z} \pmod{M} \text{ for all } \boldsymbol{k}, \boldsymbol{k'} \in I, \ \boldsymbol{k} \neq \boldsymbol{k'}$
 - $|I| \leq M \leq |I|^2$, CBC construction algorithm (Kämmerer 2012)

Trigonometric polynomials - fast approximation

- reconstructing rank-1 lattice R1L(z, M, I), $x_j := \frac{j}{M} z \mod 1; \ j = 0, \dots, M-1$ • approximation of function $f : \mathbb{T}^d \to \mathbb{C}$ by multivariate trigonometric polynomial $p(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$
 - [Kuo, Sloan, Woźniakowski 06] [Kämmerer, Potts, V. 15] [Byrenheid, Kämmerer, Ullrich, V. 16]

- given frequency index set *I*
- ${\, \bullet \, }$ compute $\hat{p}_{{\bm k}}$ from samples along reconstructing rank-1 lattice

• given frequency index set *I*

 $\bullet\,$ compute $\hat{p}_{\boldsymbol{k}}$ from samples along reconstructing rank-1 lattice

- next: unknown I
 - search for location *I* of largest Fourier coefficients of *f* or non-zero Fourier coefficients of *p* (and compute Fourier coefficients *p̂_k*, *k* ∈ *I*)

• given frequency index set *I*

 \bullet compute $\hat{p}_{\pmb{k}}$ from samples along reconstructing rank-1 lattice

next: unknown I

- search for location *I* of largest Fourier coefficients of *f* or non-zero Fourier coefficients of *p* (and compute Fourier coefficients *p̂_k*, *k* ∈ *I*)
- search domain: (possibly) large index set $\Gamma \subset \mathbb{Z}^d$, e.g., full grid $\hat{G}_N^d := \{ \boldsymbol{k} \in \mathbb{Z}^d : \|\boldsymbol{k}\|_{\infty} \leq N \}$, $(|\hat{G}_{64}^{10}| \approx 1.28 \cdot 10^{21})$

• given frequency index set *I*

 \bullet compute $\hat{p}_{\pmb{k}}$ from samples along reconstructing rank-1 lattice

next: unknown I

- search for location *I* of largest Fourier coefficients of *f* or non-zero Fourier coefficients of *p* (and compute Fourier coefficients *p̂_k*, *k* ∈ *I*)
- search domain: (possibly) large index set $\Gamma \subset \mathbb{Z}^d$, e.g., full grid $\hat{G}_N^d := \{ \mathbf{k} \in \mathbb{Z}^d : \|\mathbf{k}\|_{\infty} \leq N \}$, $(|\hat{G}_{64}^{10}| \approx 1.28 \cdot 10^{21})$
- \Rightarrow multi-dimensional sparse FFT

Multi-dimensional sparse FFT

Various existing methods, e.g.

- filters [Indyk, Kapralov 14]
- Chinese remainder theorem
 - [Cuyt, Lee 08]
 - [Iwen 13]
- Prony's method
 - multiple lines [Tasche, Potts 13]
 - COMMON ZEROS [Peter, Plonka, Schaback 15] [Kunis, Peter, Römer, von der Ohe 15]
- dimension-incremental projection
 - Zippel's Algorithm [Zippel 79] [Kaltofen, Lee 03] [Javadi Monagan 10]
 - via (reconstructing) rank-1 lattices [Potts, V. 15]
- randomized Kronecker substitution

[Arnold, Roche 14] [Arnold, Giesbrecht, Roche 15]

• (reconstructing) rank-1 lattice and 1d method [Potts, Tasche, V. 16]

8 / 20

Multi-dimensional sparse FFT

Various existing methods, e.g.

- filters [Indyk, Kapralov 14]
- Chinese remainder theorem
 - [Cuyt, Lee 08]
 - [Iwen 13]
- Prony's method
 - multiple lines [Tasche, Potts 13]
 - COMMON ZEROS [Peter, Plonka, Schaback 15] [Kunis, Peter, Römer, von der Ohe 15]
- dimension-incremental projection
 - Zippel's Algorithm [Zippel 79] [Kaltofen, Lee 03] [Javadi Monagan 10]
 - via (reconstructing) rank-1 lattices [Potts, V. 15]
- randomized Kronecker substitution

[Arnold, Roche 14] [Arnold, Giesbrecht, Roche 15]

• (reconstructing) rank-1 lattice and 1d method

[Potts, Tasche, V. 16]

• multivariate problem:

•
$$p(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}} = \sum_{r=1}^{|I|} \hat{p}_{r} e^{2\pi i \boldsymbol{w}_{r} \cdot \boldsymbol{x}}$$

• determine: $I \subset \Gamma$, $\hat{p}_{k} \in \mathbb{C}$ or $|I| \in \mathbb{N}$, $w_{r} \in \Gamma$, $\hat{p}_{r} \in \mathbb{C}$

• multivariate problem:

۲

•
$$p(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}} = \sum_{r=1}^{|I|} \hat{p}_r e^{2\pi i \boldsymbol{w}_r \cdot \boldsymbol{x}}$$

• determine: $I \subset \Gamma$, $\hat{p}_{\boldsymbol{k}} \in \mathbb{C}$ or $|I| \in \mathbb{N}$, $\boldsymbol{w}_r \in \Gamma$, $\hat{p}_r \in \mathbb{C}$
use reconstructing rank-1 lattice $\operatorname{R1L}(\boldsymbol{z}, M, \Gamma)$ for $\Gamma \supset I$:

•
$$p\left(\frac{j}{M}\boldsymbol{z}\right) = \sum_{r=1}^{|I|} \hat{p}_r e^{2\pi i (\boldsymbol{w}_r \cdot \boldsymbol{z}) j/M}$$

• multivariate problem:

•
$$p(\boldsymbol{x}) = \sum_{\boldsymbol{k}\in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}} = \sum_{r=1}^{|I|} \hat{p}_{r} e^{2\pi i \boldsymbol{w}_{r} \cdot \boldsymbol{x}}$$

• determine: $I \subset \Gamma$, $\hat{p}_{\boldsymbol{k}} \in \mathbb{C}$ or $|I| \in \mathbb{N}$, $\boldsymbol{w}_{r} \in \Gamma$, $\hat{p}_{r} \in \mathbb{C}$
• use reconstructing rank-1 lattice $\operatorname{R1L}(\boldsymbol{z}, M, \Gamma)$ for $\Gamma \supset I$:
• $p\left(\frac{j}{M}\boldsymbol{z}\right) = \sum_{r=1}^{|I|} \hat{p}_{r} e^{2\pi i (\boldsymbol{w}_{r} \cdot \boldsymbol{z}) j/M} = \sum_{r=1}^{|I|} \hat{p}_{r} e^{2\pi i t_{r} j/M} = \tilde{p}\left(\frac{j}{M}\right)$
 \Rightarrow injective mapping of multi-dim. frequencies to 1-dim.,
 $\Gamma \subset \mathbb{Z}^{d} \rightarrow \{0, 1, \dots, M-1\}, \boldsymbol{w}_{r} \mapsto \boldsymbol{w}_{r} \cdot \boldsymbol{z} \mod M =: t_{r}$

• multivariate problem:

•
$$p(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}} = \sum_{r=1}^{|I|} \hat{p}_{r} e^{2\pi i \boldsymbol{w}_{r} \cdot \boldsymbol{x}}$$

• determine: $I \subset \Gamma$, $\hat{p}_{\boldsymbol{k}} \in \mathbb{C}$ or $|I| \in \mathbb{N}$, $\boldsymbol{w}_{r} \in \Gamma$, $\hat{p}_{r} \in \mathbb{C}$
• use reconstructing rank-1 lattice $\operatorname{R1L}(\boldsymbol{z}, M, \Gamma)$ for $\Gamma \supset I$:
• $p\left(\frac{j}{M}\boldsymbol{z}\right) = \sum_{r=1}^{|I|} \hat{p}_{r} e^{2\pi i (\boldsymbol{w}_{r} \cdot \boldsymbol{z}) j/M} = \sum_{r=1}^{|I|} \hat{p}_{r} e^{2\pi i t_{r} j/M} = \tilde{p}\left(\frac{j}{M}\right)$
 \Rightarrow injective mapping of multi-dim. frequencies to 1-dim.,
 $\Gamma \subset \mathbb{Z}^{d} \rightarrow \{0, 1, \dots, M-1\}, \boldsymbol{w}_{r} \mapsto \boldsymbol{w}_{r} \cdot \boldsymbol{z} \mod M =: t_{r}$
• $\tilde{p}(\boldsymbol{x}) = \sum_{r=1}^{|I|} \hat{p}_{r} e^{2\pi i t_{r} \boldsymbol{x}}$, sample at $\boldsymbol{x} = j/M$
• determine: $|I| \in \mathbb{N}, t_{r} \equiv \boldsymbol{w}_{r} \cdot \boldsymbol{z} \pmod{M} \in \mathbb{Z}, \hat{p}_{r} \in \mathbb{C}$

usage of 1-dim. sparse FFT methods based on e.g.

	samples	computational costs
compressed	$\mathcal{O}\left(I \log^4(M)\log(1/\eta)\right)$	$\mathcal{O}\left(\boldsymbol{M}\left I\right \log^{4}(M)\log(1/\eta)\right)$
sensing	[Rauhut 07] [Kunis, Rauhut 08] [Gröchenig, P	ötscher, Rauhut 10] [Foucart, Rauhut 13]
filters	$\mathcal{O}\left(I (\log M)(\log(M/ I))\right)$	$\mathcal{O}\left(I (\log M)(\log(M/ I))\right)$
	[Hassanieh, Indyk, Katabi, Price 12]	
C.R.T.	$\mathcal{O}\left(I \log^4(M)\right)$	$\mathcal{O}\left(I \log^4(M)\right)$
	[lwen 10] [lwen 13]	
shifted	$\mathcal{O}\left(I \log(M/ I) ight)$	$\mathcal{O}\left(I \log(M/ I) ight)$
sampling	(on average) [Christlieb, Lawlor, Wang 15]	
ESPRIT	$\mathcal{O}(I)$	$\mathcal{O}(I ^3)$
	(deterministic) [Roy, Kailath 89]	
ESPRIT +	$\mathcal{O}(I)$	$\mathcal{O}\left(I ^{5/3} ight)$
shifted samp.	(1 iteration) [Potts, Tasche, V. 16]	

problems: constants?, noise / stability, "whp", implementation

usage of 1-dim. sparse FFT methods based on e.g.

	samples	computational costs
compressed	$\mathcal{O}\left(I \log^4(M)\log(1/\eta)\right)$	$\mathcal{O}\left(\boldsymbol{M}\left I\right \log^4(M)\log(1/\eta)\right)$
sensing	[Rauhut 07] [Kunis, Rauhut 08] [Gröchenig, F	"ötscher, Rauhut 10] [Foucart, Rauhut 13]
filters	$\mathcal{O}\left(I (\log M)(\log(M/ I))\right)$	$\mathcal{O}\left(I (\log M)(\log(M/ I))\right)$
	[Hassanieh, Indyk, Katabi, Price 12]	
C.R.T.	$\mathcal{O}\left(I \log^4(M) ight)$	$\mathcal{O}\left(I \log^4(M)\right)$
	[lwen 10] [lwen 13]	
shifted	$\mathcal{O}\left(I \log(M/ I) ight)$	$\mathcal{O}\left(I \log(M/ I) ight)$
sampling	(on average) [Christlieb, Lawlor, Wang 15]	
ESPRIT	$\mathcal{O}(I)$	$\mathcal{O}(I ^3)$
	(deterministic) [Roy, Kailath 89]	
ESPRIT +	$\mathcal{O}(I)$	$\mathcal{O}\left(I ^{5/3} ight)$
shifted samp.	(1 iteration) [Potts, Tasche, V. 16]	

problems: constants?, noise / stability, "whp", implementation \Rightarrow next: different approach based on dimension-incremental idea

$$\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p\left(\begin{pmatrix} \ell/17\\ x'_2\\ x'_3 \end{pmatrix} \right) \, \mathrm{e}^{-2\pi \mathrm{i} \frac{\ell k_1}{17}}$$

$$k_1 = -8, \ldots, 8$$

1-dim ←

$$\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p\left(\begin{pmatrix} \ell/17\\ x'_2\\ x'_3 \end{pmatrix} \right) e^{-2\pi i \frac{\ell k_1}{17}} \\ = \sum_{\substack{(h_2,h_3) \in \{-8,\dots,8\}^2\\ (k_1,h_2,h_3)^\top \in \operatorname{supp} \hat{p}}} \hat{p}_{\binom{k_1}{h_3}} e^{2\pi i (h_2 x'_2 + h_3 x'_3)}, \\ k_1 = -8,\dots, 8$$

1-dim ←

1-dim

 $8 \stackrel{1}{\downarrow} k_3$

0

-8

 $I^{(3)}$

search domain $\Gamma = \hat{G}_N^d$ full grid, $\sqrt{N} \lesssim |I| \lesssim N^d$

- samples: $\mathcal{O}(|I|^2 \log |\Gamma|)$ (1 iteration)
- computational costs: $O(d |I|^3 + |I|^2 (\log |\Gamma|) \log(|I| \log |\Gamma|))$ (1 iteration)
- for arbitrary Fourier coefficients p̂_k ∈ C: probabilistic approach with several iterations
- if $(\text{Re}(\hat{p}_k) \text{ identical sign})$ AND $(\text{Im}(\hat{p}_k) \text{ identical sign})$ then deterministic version with 1 iteration

Sparse dimension-incremental FFT - example

• B-spline
$$N_m(x) := \sum_{k \in \mathbb{Z}} C_m \operatorname{sinc} \left(\frac{\pi}{m}k\right)^m \cos(\pi k) e^{2\pi i k x}$$
,
 $\|N_m|L^2(\mathbb{T})\| = 1$, $|\hat{N}_m(k)| \sim |k|^{-m}$
• $f(x) := \prod_{t \in \{1,3,8\}} N_2(x_t) + \prod_{t \in \{2,5,6,10\}} N_4(x_t) + \prod_{t \in \{4,7,9\}} N_6(x_t)$

Sparse dimension-incremental FFT - example

• B-spline
$$N_m(x) := \sum_{k \in \mathbb{Z}} C_m \operatorname{sinc} \left(\frac{\pi}{m}k\right)^m \cos(\pi k) e^{2\pi i k x}$$
,
 $\|N_m|L^2(\mathbb{T})\| = 1$, $|\hat{N}_m(k)| \sim |k|^{-m}$
• $f(x) := \prod_{k \in \mathbb{Z}} N_2(x_k) + \prod_{k \in \mathbb{Z}} N_k(x_k) + \prod_{k \in \mathbb{Z}} N_k(x_k)$

•
$$f(\boldsymbol{x}) := \prod_{t \in \{1,3,8\}} N_2(x_t) + \prod_{t \in \{2,5,6,10\}} N_4(x_t) + \prod_{t \in \{4,7,9\}} N_6(x_t)$$

• full grid for N=64, d=10: $|\hat{G}_{64}^{10}|=129^{10}\approx 1.28\cdot 10^{21}$

• symmetric hyperbolic cross: $|I_{64}^{10}| = 696\,036\,321$ relative $L^2(\mathbb{T}^d)$ -error (best case) 4.1e-04

Sparse dimension-incremental FFT - example

• B-spline
$$N_m(x) := \sum_{k \in \mathbb{Z}} C_m \operatorname{sinc} \left(\frac{\pi}{m}k\right)^m \cos(\pi k) e^{2\pi i k x}$$
,
 $\|N_m | L^2(\mathbb{T})\| = 1$, $|\hat{N}_m(k)| \sim |k|^{-m}$

•
$$f(\mathbf{x}) := \prod_{t \in \{1,3,8\}} N_2(x_t) + \prod_{t \in \{2,5,6,10\}} N_4(x_t) + \prod_{t \in \{4,7,9\}} N_6(x_t)$$

- full grid for N = 64, d = 10: $|\hat{G}_{64}^{10}| = 129^{10} \approx 1.28 \cdot 10^{21}$
- symmetric hyperbolic cross: $|I_{64}^{10}| = 696\,036\,321$ relative $L^2(\mathbb{T}^d)$ -error (best case) 4.1e-04
- results for dimension incremental algorithm with $\Gamma = \hat{G}_{64}^{10}$:

threshold	#samples	I	rel. L_2 -error
1.0e-02	254 530	491	1.4e-01
1.0e-03	2 789 050	1 1 2 1	1.1e-02
1.0e-04	17 836 042	3013	1.7e-03
1.0e-05	82 222 438	7 163	4.7e-04

Non-periodic case

results can be transfered from periodic to non-periodic case:

 multivariate algebraic polynomial p : [-1,1]^d → ℝ in Chebyshev form with frequencies supp. on I ⊂ N^d₀, |I| < ∞,

$$a(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in I} \hat{a}_{\boldsymbol{k}} \prod_{t=1}^{d} T_{k_t}(x_t), \quad \hat{a}_{\boldsymbol{k}} \in \mathbb{R},$$

basis function $e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$ $\prod_{t=1}^{d} T_{k_t}(x_t)$		periodic	non-periodic
	basis function	$e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$	$\prod_{t=1}^{d} T_{k_t}(x_t)$

Non-periodic case

results can be transfered from periodic to non-periodic case:

 multivariate algebraic polynomial p : [-1,1]^d → ℝ in Chebyshev form with frequencies supp. on I ⊂ N^d₀, |I| < ∞,

$$a(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in I} \hat{a}_{\boldsymbol{k}} \prod_{t=1}^{d} T_{k_t}(x_t), \quad \hat{a}_{\boldsymbol{k}} \in \mathbb{R},$$

	periodic	non-periodic
basis function	$e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$	$\prod_{t=1}^{d} T_{k_t}(x_t)$
spatial nodes	rank-1 lattice	rank-1 Chebyshev lattice
	$oldsymbol{x}_j = rac{j}{M}oldsymbol{z} { m mod} oldsymbol{1}$	$oldsymbol{x}_j = \cos\left(rac{j}{M}\pioldsymbol{z} ight)$
		[Poppe, Cools 12]

Non-periodic case

results can be transfered from periodic to non-periodic case:

• multivariate algebraic polynomial $p: [-1,1]^d \to \mathbb{R}$ in Chebyshev form with frequencies supp. on $I \subset \mathbb{N}_0^d$, $|I| < \infty$,

$$a(\boldsymbol{x}) = \sum_{\boldsymbol{k}\in I} \hat{a}_{\boldsymbol{k}} \prod_{t=1}^{d} T_{k_t}(x_t), \quad \hat{a}_{\boldsymbol{k}} \in \mathbb{R},$$

	periodic	non-periodic
basis function	$e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{x}}$	$\prod_{t=1}^{d} T_{k_t}(x_t)$
spatial nodes	rank-1 lattice	rank-1 Chebyshev lattice
	$oldsymbol{x}_j = rac{j}{M}oldsymbol{z} mod oldsymbol{1}$	$oldsymbol{x}_j = \cos\left(rac{j}{M}\pioldsymbol{z} ight)$
		[Poppe, Cools 12]
evaluation /	1-dim. FFT	1-dim. DCT
reconstruction	[Li, Hickernell 03] / [Kämmerer 13]	[Cools, Poppe 11] [Potts, V. 15] /
	[Kämmerer, Kunis, Potts 12]	[Poppe, Cools 13] [Potts, V. 15]

multivar. polynomial approx. on Lissajous curves [Bos, De Marchi, Vianello 15]

- $\ell_{z}(t) := (\cos(z_1 t), \dots, \cos(z_d t)), t \in [0, \pi]$
- rank-1 Chebyshev lattice if $t=0,\pi/M,2\pi/M,\ldots,\pi$
- ullet results for algebraic polynomials of total or max. deg. $\leq n$
- hyperinterpolation for $d\geq 3$

multivar. polynomial approx. on Lissajous curves [Bos, De Marchi, Vianello 15]

- $\ell_{z}(t) := (\cos(z_1 t), \dots, \cos(z_d t)), t \in [0, \pi]$
- rank-1 Chebyshev lattice if $t=0,\pi/M,2\pi/M,\ldots,\pi$
- ullet results for algebraic polynomials of total or max. deg. $\leq n$
- $\bullet\,$ hyperinterpolation for $d\geq 3$
- case d = 2 interpolation
 - Padua point set,

e.g. [Bos, Caliari, Marchi, Vianello, Xu 06] $\mathcal{A}_n := \{ \boldsymbol{x}_j := (\cos(j\pi/(n+1)), \cos(j\pi/n))^\top : j = 0, \dots, M \}$ • $\mathcal{A}_n = \operatorname{CL}(\boldsymbol{z}, M)$, where $\boldsymbol{z} := (n, n+1)^\top$ and M := n (n+1)• exact reconstruction of arbitrary 2d algebraic polynomial of total degree < n

multivar. polynomial interpolation on Lissajous-Chebyshev nodes $_{\left[\text{Dencker, Erb 15} \right]}$

Summary

- known (arbitrary) frequency index set via rank-1 lattices
 - fast evaluation / reconstruction of trigonometric polynomials
 - [Li, Hickernell 03] / [Kämmerer, Kunis, Potts 12] [Kämmerer 13]
 - approximation of periodic functions

[Kuo, Sloan, Woźniakowski 06] [Kämmerer, Potts, V. 15] [Byrenheid, Kämmerer, Ullrich, V. 16]

- fast evaluation / reconstruction of algebraic polynomials [Potts, V. 15] / [Potts, V. 15]
- approximation of non-periodic functions (not in this talk) see e.g. [Dick, Nuyens, Pillichshammer 14] [Suryanarayana, Nuyens, Cools 15] [Cools, Kuo, Nuyens, Suryanarayana 16]

unknown frequency index set

• multivariate sparse FFT via C.R.T. / Prony

e.g. [Cuyt, Lee 08] [Peter, Plonka, Schaback 15] [Kunis, Peter, Römer, von der Ohe 15]

- high-dim. sparse FFT via rank-1 lattice and 1-dim. sparse FFT
 e.g. [Potts, Tasche, V. 16]
- sparse dimension-incremental FFT based on rank-1 lattices (periodic and non-periodic)

[Potts, V. 15] [V. 17]