Fast and exact reconstruction of arbitrary multivariate algebraic polynomials in Chebyshev form

Toni Volkmer

Faculty of Mathematics Technische Universität Chemnitz http://www.tu-chemnitz.de/~tovo

TECHNISCHE UNIVERSITÄT CHEMNITZ

joint work with L. Kämmerer and D. Potts

Fast and exact reconstruction periodic case non-periodic case

Multiple lattices

Approximation

Summary

Fast and exact reconstruction periodic case non-periodic case

Multiple lattices

Approximation

Summary

- d-dimensional torus $\mathbb{T}^d \simeq [0,1)^d$
- multivariate trigonometric polynomial $\tilde{p} \colon \mathbb{T}^d \to \mathbb{C}$ with frequencies supported on $\tilde{I} \subset \mathbb{Z}^d$, $|\tilde{I}| < \infty$,

$$\tilde{p}(\boldsymbol{x}) := \sum_{\boldsymbol{\tilde{k}} \in \tilde{1}} \hat{\tilde{p}}_{\boldsymbol{\tilde{k}}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{\tilde{k}} \cdot \boldsymbol{x}}, \quad \hat{\tilde{p}}_{\boldsymbol{\tilde{k}}} \in \mathbb{C}$$

• hyperbolic cross frequency index sets $ilde{I}$

([Baszenski, Delvos 89] [Hallatschek 92] [Gradinaru 07] [Griebel, Hamaekers 14])

- d-dimensional torus $\mathbb{T}^d \simeq [0,1)^d$
- multivariate trigonometric polynomial $\tilde{p} \colon \mathbb{T}^d \to \mathbb{C}$ with frequencies supported on $\tilde{I} \subset \mathbb{Z}^d$, $|\tilde{I}| < \infty$,

$$\widetilde{p}(\boldsymbol{x}) := \sum_{\tilde{\boldsymbol{k}} \in \widetilde{\mathbf{I}}} \hat{\widetilde{p}}_{\tilde{\boldsymbol{k}}} \mathrm{e}^{2\pi \mathrm{i} \tilde{\boldsymbol{k}} \cdot \boldsymbol{x}}, \quad \hat{\widetilde{p}}_{\tilde{\boldsymbol{k}}} \in \mathbb{C}$$

• arbitrary frequency index sets \tilde{I}

• fast evaluation
$$\tilde{p}(x_j)$$
,
 $j = 0, \dots, M-1$
(e.g. [Li, Hickernell 03])
• fast and exact reconstruction
of $\hat{\tilde{p}}_{\tilde{k}}$, $\tilde{k} \in \tilde{I}$,
from samples $\tilde{p}(x_j)$,
 $j = 0, \dots, M-1$
([Kämmerer, Kunis, Potts 12]
[Kämmerer 13])

- d-dimensional torus $\mathbb{T}^d \simeq [0,1)^d$
- multivariate trigonometric polynomial $\tilde{p} \colon \mathbb{T}^d \to \mathbb{C}$ with frequencies supported on $\tilde{I} \subset \mathbb{Z}^d$, $|\tilde{I}| < \infty$,

$$\tilde{p}(\boldsymbol{x}) := \sum_{\boldsymbol{\tilde{k}} \in \tilde{\mathbf{l}}} \hat{\tilde{p}}_{\boldsymbol{\tilde{k}}} \mathrm{e}^{2\pi \mathrm{i} \boldsymbol{\tilde{k}} \cdot \boldsymbol{x}}, \quad \hat{\tilde{p}}_{\boldsymbol{\tilde{k}}} \in \mathbb{C}$$

• arbitrary frequency index sets \tilde{I}

Aim: transfer results to non-periodic case

• multivariate algebraic polynomial $p: [-1,1]^d \to \mathbb{R}$ in Chebyshev form with frequencies supp. on $I \subset \mathbb{N}^d_{\Omega_1}$, $|I| < \infty$, $p(\boldsymbol{x}) = \sum \hat{p}_{\boldsymbol{k}} T_{\boldsymbol{k}}(\boldsymbol{x}) = \sum \hat{p}_{\boldsymbol{k}} \prod T_{k_t}(x_t), \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{R}, \quad (1)$ $k \in I$ $k \in I$ t=1 $T_m: [-1,1] \to [-1,1], T_m(x) := \cos(m \arccos x), m \in \mathbb{N}_0$ $(T_m \text{ is algebraic polynomial of degree } m \text{ restricted to domain } [-1,1])$ $T_0(x) = 1$ $T_1(x) = x$ $T_2(x) = 2x^2 - 1$ $T_3(x) = 4x^3 - 3x$ $T_4(x) = 8x^4 - 8x^2 + 1$ $T_{m+1}(x) = 2xT_m(x) - T_{m-1}(x) \quad m \in \mathbb{N}$ 1 0 -1 $^{-1}$ 0

• multivariate algebraic polynomial $p: [-1,1]^d \to \mathbb{R}$ in Chebyshev form with frequencies supp. on $I \subset \mathbb{N}_0^d$, $|I| < \infty$,

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \boldsymbol{I}} \hat{p}_{\boldsymbol{k}} T_{\boldsymbol{k}}(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \boldsymbol{I}} \hat{p}_{\boldsymbol{k}} \prod_{t=1}^{n} T_{k_{t}}(x_{t}), \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{R}, \quad (1)$$

 $T_m: [-1,1] \rightarrow [-1,1], \ T_m(x) := \cos(m \ \arccos x), \ m \in \mathbb{N}_0$

 $(T_m \text{ is algebraic polynomial of degree } m \text{ restricted to domain } [-1,1])$

- e.g. hyperbolic cross index sets I
- \Rightarrow fast evaluation/reconstruction
 - at Chebyshev sparse grid nodes

[Barthelmann, Novak, Ritter 00] [Shen, Yu 10]

• multivariate algebraic polynomial $p: [-1,1]^d \to \mathbb{R}$ in Chebyshev form with frequencies supp. on $I \subset \mathbb{N}^d_{n}, |I| < \infty$, $p(\boldsymbol{x}) = \sum \hat{p}_{\boldsymbol{k}} T_{\boldsymbol{k}}(\boldsymbol{x}) = \sum \hat{p}_{\boldsymbol{k}} \prod T_{k_t}(x_t), \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{R},$ (1) $k \in I$ t=1 $\mathbf{k} \in I$ $T_m: [-1,1] \to [-1,1], T_m(x) := \cos(m \arccos x), m \in \mathbb{N}_0$ $(T_m \text{ is algebraic polynomial of degree } m \text{ restricted to domain } [-1,1])$ • e.g. ℓ_1 -ball index set $I = I_n^d := \{ \mathbf{k} \in \mathbb{N}_0^d : \|\mathbf{k}\|_1 \leq n \}, n \in \mathbb{N}_0$ \Rightarrow each algebraic polynomial 16of total degree < n(restricted to the domain $[-1, 1]^d$) can be written as (1) with $I = I_n^d$ 16

- multivariate algebraic polynomial $p: [-1,1]^d \to \mathbb{R}$ in Chebyshev form with frequencies supp. on $I \subset \mathbb{N}^d_{\Omega}$, $|I| < \infty$, $p(\boldsymbol{x}) = \sum \hat{p}_{\boldsymbol{k}} T_{\boldsymbol{k}}(\boldsymbol{x}) = \sum \hat{p}_{\boldsymbol{k}} \prod T_{k_t}(x_t), \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{R},$ (1) $k \in I$ t=1 $T_m: [-1,1] \to [-1,1], T_m(x) := \cos(m \arccos x), m \in \mathbb{N}_0$ $(T_m \text{ is algebraic polynomial of degree } m \text{ restricted to domain } [-1,1])$ • e.g. ℓ_1 -ball index set $I = I_n^d := \{ \mathbf{k} \in \mathbb{N}_0^d : \|\mathbf{k}\|_1 \leq n \}, n \in \mathbb{N}_0$ \Rightarrow each algebraic polynomial 16of total degree < n(restricted to the domain $[-1, 1]^d$) can be written as (1) with $I = I_n^d$ 16Aim:
 - fast evaluation of high-dimensional arbitrary algebraic ¹ polynomials (given in Chebyshev form)
 - fast and exact reconstruction from samples (special case of ℓ_1 -ball index sets $I = I_n^d$ e.g. [Poppe,Cools 12])

4 / 23

Fast evaluation - periodic case

• rank-1 lattice $\operatorname{R1L}(\boldsymbol{z}, \tilde{M})$: $\boldsymbol{z} \in \mathbb{N}^d, \tilde{M} \in \mathbb{N}$

$$oldsymbol{x}_j = rac{\jmath}{ ilde{M}}oldsymbol{z} \,\, ext{mod} \,\, oldsymbol{1}; \,\, j=0,\ldots, ilde{M}-1$$

Korobov 59 Maisonneuve 72 Sloan & Kachoyan 84,87,90 Temlyakov 86 Lyness 89 Sloan & Joe 94 Sloan & Reztsov 01 Li & Hickernell 03

Fast evaluation - periodic case

• rank-1 lattice R1L(
$$z, \tilde{M}$$
): $z \in \mathbb{N}^{d}, \tilde{M} \in \mathbb{N}$
 $x_{j} = \frac{j}{\tilde{M}} z \mod 1; j = 0, \dots, \tilde{M} - 1$
• multivariate trigonometric polynomial
 $\tilde{p}(x) = \sum_{\tilde{k} \in \tilde{1}} \hat{p}_{\tilde{k}} e^{2\pi i \tilde{k} \cdot x}$
• reformulation
 $\tilde{p}(x_{j}) = \sum_{\tilde{k} \in \tilde{1}} \hat{p}_{\tilde{k}} e^{2\pi i \frac{j\tilde{k} \cdot x}{\tilde{M}}} = \sum_{l=0}^{\tilde{M}-1} \left(\sum_{\substack{\tilde{k} \in \tilde{1} \\ \tilde{k} \cdot z \equiv l \pmod{\tilde{M}}}} \hat{p}_{\tilde{k}} \right) e^{2\pi i \frac{j\tilde{k} \cdot x}{\tilde{M}}} = \sum_{l=0}^{\tilde{M}-1} \hat{g}_{l} e^{2\pi i \frac{jl}{\tilde{M}}}$

Fast evaluation - periodic case

Fast evaluation - non-periodic case

- *d*-dimensional rank-1 Chebyshev lattice [Cools, Poppe 2011] $\operatorname{CL}(\boldsymbol{z}, M) := \{\boldsymbol{x}_j \colon j = 0, \dots, M\} \subset [-1, 1]^d$ with nodes $oldsymbol{x}_j := \cos\left(rac{j}{M}\pioldsymbol{z}
 ight)$, $j=0,\ldots,M$
 - generating vector $\boldsymbol{z} \in \mathbb{N}_0^d$
 - size parameter $M \in \mathbb{N}_0$

Fast evaluation - non-periodic case

• with Chebyshev nodes
$$m{x}_j := \cos\left(rac{j}{M}\pim{z}
ight)$$
, $j=0,\ldots,M$,

$$p(\boldsymbol{x}_{j}) = \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} T_{\boldsymbol{k}}(\boldsymbol{x}_{j})$$

$$= \sum_{l=0}^{M} \underbrace{\left(\sum_{\substack{\boldsymbol{k} \in I, \ \boldsymbol{s} \in \{-1,1\}^{d} \\ (\boldsymbol{s} \odot \boldsymbol{k}) \cdot \boldsymbol{z} \ \text{emod} \ M = l}}_{\hat{g}_{l}} \cos\left(\frac{jl}{M}\pi\right) = \sum_{l=0}^{M} \hat{g}_{l} \cos\left(\frac{jl}{M}\pi\right)$$

with even-mod relation

$$l \operatorname{emod} M := \begin{cases} l \mod (2M) & \text{for } l \mod (2M) \le M, \\ 2M - (l \mod (2M)) & \text{else} \end{cases}$$

Fast evaluation - non-periodic case

 $(\hat{p}_{\mathbf{k}})_{\mathbf{k}\in I}$

Fast and exact reconstruction - periodic case

- rank-1 lattice R1L($\boldsymbol{z}, \tilde{M}$): $\boldsymbol{z} \in \mathbb{N}^d, \tilde{M} \in \mathbb{N}$ $\boldsymbol{x}_j := \frac{j}{\tilde{M}} \boldsymbol{z} \mod \boldsymbol{1}; \ j = 0, \dots, \tilde{M} - 1$
- reconstruction of Fourier coefficients $\hat{\tilde{p}}_{\tilde{k}}$ of multivariate trigonometric polynomial $\tilde{p}(\boldsymbol{x}) = \sum_{\tilde{\boldsymbol{k}} \in \tilde{I}} \hat{\tilde{p}}_{\tilde{\boldsymbol{k}}} e^{2\pi i \tilde{\boldsymbol{k}} \cdot \boldsymbol{x}}$

Fast and exact reconstruction - periodic case

- rank-1 lattice $\operatorname{R1L}(\boldsymbol{z}, \tilde{M})$: $\boldsymbol{z} \in \mathbb{N}^d, \tilde{M} \in \mathbb{N}$ $\boldsymbol{x}_j := \frac{j}{\tilde{M}} \boldsymbol{z} \mod \boldsymbol{1}; \ j = 0, \dots, \tilde{M} - 1$
- reconstruction of Fourier coefficients $\hat{\tilde{p}}_{\tilde{k}}$ of multivariate trigonometric polynomial $\tilde{p}(\boldsymbol{x}) = \sum_{\tilde{\boldsymbol{k}} \in \tilde{1}} \hat{\tilde{p}}_{\tilde{\boldsymbol{k}}} e^{2\pi i \tilde{\boldsymbol{k}} \cdot \boldsymbol{x}}$

 $\Rightarrow \begin{array}{l} \text{Definition reconstructing } \mathrm{R1L}(\boldsymbol{z}, \tilde{M}) \text{ for I:} \\ \tilde{\boldsymbol{k}} \cdot \boldsymbol{z} \not\equiv \tilde{\boldsymbol{k}}' \cdot \boldsymbol{z} \pmod{\tilde{M}} \text{ for all } \tilde{\boldsymbol{k}}, \tilde{\boldsymbol{k}}' \in \tilde{\mathbf{I}}, \ \tilde{\boldsymbol{k}} \neq \tilde{\boldsymbol{k}}' \\ \bullet |\tilde{\mathbf{I}}| \leq \tilde{M} \leq |\tilde{\mathbf{I}}|^2, \ \mathsf{CBC} \text{ construction algorithm } (\texttt{Kämmerer 2012}) \\ \circ \frac{1}{2} \frac{1}{2} \frac{2}{3} \frac{3}{M} \end{array}$

Theorem (Potts, V. 15)

Let $I \subset \mathbb{N}_0^d$ be an arbitrary index set with $|I| < \infty$. Moreover, let $\operatorname{R1L}(z, \tilde{M}) := \{ x_j := \frac{j}{\tilde{M}} z \mod 1 : j = 0, \dots, \tilde{M} - 1 \}$ be a reconstructing rank-1 lattice with even rank-1 lattice size $\tilde{M} \in 2\mathbb{N}$ for the extended symmetric index set $\mathcal{M}(I)$, i.e.,

 $\tilde{k} \cdot z \not\equiv \tilde{k}' \cdot z \pmod{\tilde{M}}$ for all $\tilde{k}, \tilde{k}' \in \mathcal{M}(I), \ \tilde{k} \neq \tilde{k}'.$

Then, the rank-1 Chebyshev lattice $\operatorname{CL}(\boldsymbol{z}, M = \frac{\tilde{M}}{2}) := \{\boldsymbol{x}_j := \cos(\frac{2j}{\tilde{M}}\pi\boldsymbol{z}) : j = 0, \dots, \frac{\tilde{M}}{2}\}$ allows the reconstruction of the coefficients \hat{p}_k of $p(\boldsymbol{x}) = \sum_{\boldsymbol{k}=\boldsymbol{x}} \hat{p}_k T_k(\boldsymbol{x})$.

Theorem (Potts, V. 15)

Let $I \subset \mathbb{N}_0^d$ be an arbitrary index set with $|I| < \infty$. Moreover, let $\operatorname{R1L}(z, \tilde{M}) := \{ x_j := \frac{j}{\tilde{M}} z \mod 1 : j = 0, \dots, \tilde{M} - 1 \}$ be a reconstructing rank-1 lattice with even rank-1 lattice size $\tilde{M} \in 2\mathbb{N}$ for the extended symmetric index set $\mathcal{M}(I)$, i.e.,

 $\tilde{k} \cdot z \not\equiv \tilde{k}' \cdot z \pmod{\tilde{M}}$ for all $\tilde{k}, \tilde{k}' \in \mathcal{M}(I), \ \tilde{k} \neq \tilde{k}'.$

Then, the rank-1 Chebyshev lattice $\operatorname{CL}(\boldsymbol{z}, M = \frac{\tilde{M}}{2}) := \{\boldsymbol{x}_j := \cos(\frac{2j}{\tilde{M}}\pi\boldsymbol{z}) : j = 0, \dots, \frac{\tilde{M}}{2}\}$ allows the reconstruction of the coefficients \hat{p}_k of $p(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \boldsymbol{I}} \hat{p}_{\boldsymbol{k}} T_{\boldsymbol{k}}(\boldsymbol{x})$.

• under mild assumptions: $\tilde{M} \leq 2^{2d+1}|I|^2$, $M \leq 2^{2d}|I|^2$ [Potts, V. 14] as a consequence of [Kämmerer 13]

Fast and exact reconstruction - non-periodic case

compute with DCT-I coefficients

$$\hat{a}_l := \sum_{j=0}^M (\varepsilon_j^M)^2 \, p(\boldsymbol{x}_j) \, \cos\left(\frac{jl}{M}\pi\right), \, l \in I_M^1, \, \varepsilon_l^M = \begin{cases} 1/\sqrt{2}, & l = 0, M \\ 1, & \text{else} \end{cases}$$

ullet If rank-1 Chebyshev lattice allows reconstruction, then for ${m k} \in I$

$$\hat{p}_{\boldsymbol{k}} = \frac{2(\varepsilon_{\boldsymbol{k}\cdot\boldsymbol{z}\,\mathrm{emod}\,M}^{M})^{2}}{M} \hat{a}_{\boldsymbol{k}\cdot\boldsymbol{z}\,\mathrm{emod}\,M} \\ \cdot \frac{2^{d}}{|\{\boldsymbol{s}\in\{-1,1\}^{d}\colon(\boldsymbol{s}\odot\boldsymbol{k})\cdot\boldsymbol{z}\,\mathrm{emod}\,M=\boldsymbol{k}\cdot\boldsymbol{z}\,\mathrm{emod}\,M\}|}$$

Fast and exact reconstruction - non-periodic case

compute with DCT-I coefficients

$$\hat{a}_l := \sum_{j=0}^M (\varepsilon_j^M)^2 \, p(\boldsymbol{x}_j) \, \cos\left(\frac{jl}{M}\pi\right), \, l \in I_M^1, \, \varepsilon_l^M = \begin{cases} 1/\sqrt{2}, & l = 0, M \\ 1, & \text{else} \end{cases}$$

ullet If rank-1 Chebyshev lattice allows reconstruction, then for ${m k} \in I$

$$\hat{p}_{k} = \frac{2(\varepsilon_{k:z \text{ emod } M}^{M})^{2}}{M} \hat{a}_{k:z \text{ emod } M}$$

$$\cdot \frac{2^{d}}{|\{s \in \{-1,1\}^{d} \colon (s \odot k) \cdot z \text{ emod } M = k \cdot z \text{ emod } M\}|}$$

$$\hat{g}_{l} \qquad M \qquad p\left(\cos\left(\frac{1}{M}\pi z\right)\right)$$

$$\|k \cdot z \text{ emod } M = l$$

$$\hat{g}_{l} \qquad M \qquad p\left(\cos\left(\frac{1}{M}\pi z\right)\right)$$

$$\|k \cdot z \text{ emod } M = l$$

$$O(M \log M + d 2^{d} |I|)$$

$$(p(x_{j}))_{j=0}^{M} \qquad 10$$

Fast and exact reconstruction - Padua points

- Padua point set (special 2-dim. rank-1 Chebyshev lattice), e.g. [Bos, Caliari, Marchi, Vianello, Xu 2006] $\mathcal{A}_n := \{ \boldsymbol{x}_j := (\cos(j\pi/(n+1)), \cos(j\pi/n))^\top : j = 0, \dots, M \}$ e. $\mathcal{A}_n = CL(\boldsymbol{z}, M)$ where $\boldsymbol{z} := (n, n+1)^\top$ and M := n(n+1)
- $\mathcal{A}_n = \operatorname{CL}(\boldsymbol{z}, M)$, where $\boldsymbol{z} := (n, n+1)^\top$ and $M := n \, (n+1)$

Fast and exact reconstruction - Padua points

• Padua point set (special 2-dim. rank-1 Chebyshev lattice), e.g. [Bos, Caliari, Marchi, Vianello, Xu 2006] $\mathcal{A}_n := \{ \boldsymbol{x}_j := (\cos(j\pi/(n+1)), \cos(j\pi/n))^\top : j = 0, \dots, M \}$

• $\mathcal{A}_n = \operatorname{CL}(\boldsymbol{z}, M)$, where $\boldsymbol{z} := (n, n+1)^\top$ and $M := n \, (n+1)$

• allows exact reconstruction of all coefficients \hat{p}_{k} , $k \in I_{n}^{2}$, of an arbitrary 2d algebraic polynomial of total degree $\leq n$ (restricted to the domain $[-1, 1]^{2}$)

•
$$|I_n^2| = |\mathcal{A}_n| = \binom{n+2}{2} = \frac{n^2}{2} + \frac{3}{2}n + 1$$
, whereas $M = n^2 + n$

Relation to tent-transformed rank-1 lattices

- tent-transformed rank-1 lattices $P_{\psi}(\boldsymbol{z}, \tilde{M}) := \{\psi(j\boldsymbol{z}/\tilde{M} \mod \boldsymbol{1}) \colon j = 0, \dots, \tilde{M} - 1\}$ [Dick, Nuyens, Pillichshammer 14], [Suryanarayana, Nuyens, Cools 15]
- tent transform $\psi \colon [0,1] \to [0,1], \ \psi(x) := 1 |2x-1|$
- functions $\tilde{g}: [0,1]^d \to \mathbb{R}$, $\tilde{g}(\boldsymbol{x}) := \sum_{\boldsymbol{k} \in I} \tilde{g}_{\boldsymbol{k}} \phi_{\boldsymbol{k}}(\boldsymbol{x})$, $I \subset \mathbb{N}_0^d$,
- half-periodic cosine functions $\phi_{k}(\boldsymbol{x}) := \prod_{t=1}^{a} \sqrt{2}^{\delta_{0,k_{t}}} \cos(\pi k_{t} x_{t})$,

 $oldsymbol{k} \in \mathbb{N}_0^d$, ONB of $L_2([0,1]^d)$

- reconstructing rank-1 lattice $\operatorname{R1L}(\boldsymbol{z}, \tilde{M})$ for $\mathcal{M}(I)$
- reconstruction from samples $ilde{g}\left(P_\psi(m{z}, ilde{M})
 ight)$ with 1-dim FFT
- polynomials \tilde{g} are not algebraic polynomials in general

Examples of reconstr. rank-1 Chebyshev lattices

- hyperbolic cross index sets $I = H_n^d := \left\{ \boldsymbol{k} \in \mathbb{N}_0^d \colon \prod_{t=1}^d \max(1, k_t) \le n \right\}, \, n, d \in \mathbb{N}$
- $|H_n^d| = \mathcal{O}(2^d n \log^{d-1} n)$
- search for rank-1 Chebyshev lattices $CL(\boldsymbol{z}, M)$ that allow reconstruction of coefficients $\hat{p}_{\boldsymbol{k}}, \, \boldsymbol{k} \in I$, of polynomial $p(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} T_{\boldsymbol{k}}(\boldsymbol{x})$

Examples of reconstr. rank-1 Chebyshev lattices

param.		card.	reco. R1L		direct search	
d	n	$ H_n^d $	$M = \frac{\tilde{M}}{2}$	$\frac{\frac{\tilde{M}}{2}+1}{ H_n^d }$	M	$\frac{M+1}{ H_n^d }$
2	256	1 979	66 050	33.38	66 050	33.38
2	512	4 305	263 170	61.13	263 170	61.13
2	1024	9311	1 050 626	112.84	1 050 626	112.84
3	256	10 303	359 075	34.85	302 883	29.40
3	512	23976	1 424 662	59.42	1 424 613	59.42
3	1024	55 202	5 560 838	100.74	4 600 672	83.34
6	16	8 684	557 773	64.23	303 396	34.94
6	32	26 088	2 867 903	109.93	1 751 513	67.14
6	64	76 433	13 603 339	177.98	8 979 932	117.49
10	2	6 1 4 4	2 157 672	351.18	495 451	80.64
10	4	27 904	15 390 479	551.55	3 083 988	110.52
10	8	109 824	88 580 127	806.56	25 099 619	228.54

14/23

Multiple rank-1 lattices

\bullet reconstructing R1L has size \tilde{M} with $|\tilde{I}| \leq \tilde{M} \leq |\tilde{I}|^2$

Multiple rank-1 lattices

- \bullet reconstructing R1L has size \tilde{M} with $|\tilde{I}| \leq \tilde{M} \leq |\tilde{I}|^2$
- use more than one rank-1 lattice [Kämmerer 15]

Multiple rank-1 lattices

- \bullet reconstructing R1L has size \tilde{M} with $|\tilde{I}| \leq \tilde{M} \leq |\tilde{I}|^2$
- use more than one rank-1 lattice [Kämmerer 15]
- perform greedy search for sequence of rank-1 lattices which reconstruct as much as possible frequencies from \tilde{I}
- each used lattice size $\dot{M} \approx$ number of remaining frequencies
- oversampling factor bounded by e for hyperbolic cross in performed tests (up to d = 10) instead of $O(N/\log N)$

remaining frequencies to reconstruct:

reconstructable freq.:

reconstructable freq.:

remaining frequencies to reconstruct:

reconstructable freq.:

remaining frequencies to reconstruct:

reconstructable freq.:

remaining frequencies to reconstruct:

rank-1 Chebyshev lattice:

reconstructable freq.:

remaining frequencies to reconstruct:

rank-1 Chebyshev lattice:

reconstructable freq.:

remaining frequencies to reconstruct:

reconstructable freq.:

reconstructable freq.:

reconstructable freq.:

remaining frequencies to reconstruct:

reconstructable freq.:

reconstructable freq.:

reconstructable freq.:

reconstructable freq.:

Examples of multiple rank-1 Chebyshev lattices

param.		card.	direct search 1 CL		multiple CL	
d	n	$ H_n^d $	#samples	$\frac{\# {\rm samples}}{ H_n^d }$	#samples	$\frac{\# \text{samples}}{ H_n^d }$
2	256	1 979	66 051	33.38	6 104	3.08
2	512	4 305	263 171	61.13	13 985	3.25
2	1024	9 311	1 050 627	112.84	31 768	3.41
3	256	10 303	302 884	29.40	57 094	5.54
3	512	23976	1 424 614	59.42	140 618	5.86
3	1024	55 202	4 600 673	83.34	348 684	6.32
6	32	26 088	1 751 514	67.14	463 186	17.75
6	64	76 433	8 979 933	117.49	1 631 406	21.34
6	128	217 113	51 662 222	237.95	5 406 934	25.90
10	2	6144	495 452	80.64	285 946	46.54
10	4	27 904	3 083 989	110.52	1 732 161	62.08
10	8	109 824	25 099 620	228.54	8 529 343	77.66

Approximation - some references

periodic case:

• weighted Korobov spaces, rank-1 lattices

[Kuo, Sloan, Woźniakowski 06]

- Sobolev spaces of dominating mixed smoothness
 - sparse grids [Baszenski, Delvos 89] [Hallatschek 92] [Gradinaru 07]
 - rank-1 lattices [Temlyakov 86,...]
- Sobolev spaces of isotropic and dominating mixed smoothness
 - generalized sparse grids [Griebel, Hamaekers 14]
 [Byrenheid, Düng, Sickel, Ullrich 14]
 - rank-1 lattices [Potts, Kämmerer, V. 15]

non-periodic case:

- weighted Korobov / Sobolev spaces, Chebyshev sparse grids / transformed sparse grids [Barthelmann, Novak, Ritter 00] [Shen, Yu 10]
- spaces of half-periodic cosine functions, tent-transformed rank-1 lattices

[Dick, Nuyens, Pillichshammer 14] [Suryanarayana, Nuyens, Cools 15]

- dilated B-Spline $B_2(x)$ of order 2, only $x \in [-1,1]$ considered
- weighted $L_{2,W}([-1,1])$ scalar product $\langle f,g \rangle := \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$ and induced norm $\|f\|_{L_{2,W}([-1,1]^d)} := \sqrt{\langle f,f \rangle}$
- set of $T_k(x) := \cos(k \arccos x)$, $k \in \mathbb{N}_0$, form orthogonal basis
- \Rightarrow tensorization: $B_2^d(m{x}) := \prod_{t=1}^d B_2(x_t)$, $L_{2,\mathrm{W}}([-1,1]^d)$

- dilated B-Spline $B_2(x)$ of order 2, only $x \in [-1,1]$ considered
- weighted $L_{2,W}([-1,1])$ scalar product $\langle f,g \rangle := \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$ and induced norm $\|f\|_{L_{2,W}([-1,1]^d)} := \sqrt{\langle f,f \rangle}$
- set of $T_k(x) := \cos(k \arccos x)$, $k \in \mathbb{N}_0$, form orthogonal basis
- \Rightarrow tensorization: $B_2^d(\boldsymbol{x}) := \prod_{t=1}^d B_2(x_t)$, $L_{2,\mathrm{W}}([-1,1]^d)$
 - hyperbolic crosses $I = H_n^d := \left\{ \boldsymbol{k} \in \mathbb{N}_0^d \colon \prod_{t=1}^d \max(1, k_t) \le n \right\}$

- dilated B-Spline $B_2(x)$ of order 2, only $x \in [-1,1]$ considered
- weighted $L_{2,W}([-1,1])$ scalar product $\langle f,g \rangle := \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$ and induced norm $\|f\|_{L_{2,W}([-1,1]^d)} := \sqrt{\langle f,f \rangle}$
- set of $T_k(x):=\cos(k\,\arccos x)$, $k\in\mathbb{N}_0$, form orthogonal basis
- \Rightarrow tensorization: $B_2^d(m{x}) := \prod_{t=1}^d B_2(x_t)$, $L_{2,\mathrm{W}}([-1,1]^d)$
 - hyperbolic crosses $I = H_n^d := \left\{ \boldsymbol{k} \in \mathbb{N}_0^d \colon \prod_{t=1}^d \max(1, k_t) \le n \right\}$
 - Compute approximation $p(x) = \sum_{k \in I} \hat{p}_k T_k(x)$ from $B_2^d(x_j)$ using 1-dim DCT-I
 - Determine relative error

$$||B_2^d - p||_{L_{2,W}([-1,1]^d)} / ||B_2^d||_{L_{2,W}([-1,1]^d)}$$

- dilated B-Spline $B_2(x)$ of order 2, only $x \in [-1,1]$ considered
- weighted $L_{2,W}([-1,1])$ scalar product $\langle f,g \rangle := \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$ and induced norm $\|f\|_{L_{2,W}([-1,1]^d)} := \sqrt{\langle f,f \rangle}$
- set of $T_k(x) := \cos(k \arccos x)$, $k \in \mathbb{N}_0$, form orthogonal basis
- \Rightarrow tensorization: $B_2^d(m{x}) := \prod_{t=1}^d B_2(x_t)$, $L_{2,\mathrm{W}}([-1,1]^d)$
 - hyperbolic crosses $I = H_n^d := \left\{ \boldsymbol{k} \in \mathbb{N}_0^d \colon \prod_{t=1}^d \max(1, k_t) \le n \right\}$
 - Compute approximation $p(x) = \sum_{k \in I} \hat{p}_k T_k(x)$ from $B_2^d(x_j)$ using 1-dim DCT-I
 - Determine relative error

$$||B_2^d - p||_{L_{2,W}([-1,1]^d)} / ||B_2^d||_{L_{2,W}([-1,1]^d)}$$

Summary

	periodic	non-periodic	
fast evaluation	rank-1 lattice	rank-1 Chebyshev lattice	
(arbitrary freq.)	[Li, Hickernell 03]	[Cools, Poppe 11] [Potts, V. 15]	
fast	rank-1 lattice	rank-1 Chebyshev lattice	
reconstruction	[Kämmerer, Kunis, Potts 12]	[Potts, V. 15]	
(arbitrary freq.)	[Kämmerer 13]		
approximation	sparse grid	Chebyshev sparse grid	
	[Baszenski, Delvos 89]	[Barthelmann, Novak, Ritter 00]	
	[Hallatschek 92] [Gradinaru 07]	[Shen, Yu 10]	
	[Griebel, Hamaekers 14]		
	[Byrenheid, Dũng, Sickel, Ullrich 14]		
	rank-1 lattice	tent-transf. rank-1 lattice	
	[Kuo, Sloan, Woźniakowski 06]	[Dick, Nuyens, Pillichshammer 14]	
	[Kämmerer, Potts, V. 15]	[Suryanarayana, Nuyens, Cools 15]	
		rank-1 Chebyshev lattice	
		(example in this talk, work in progress)	

reconstruction of $p \colon [-1,1]^d \to \mathbb{R}$, $p(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} T_{\boldsymbol{k}}(\boldsymbol{x})$

if I unknown

• adapt methods from periodic case

```
Potts, D., Volkmer, T.
```

Sparse high-dimensional FFT based on rank-1 lattice sampling. Appl. Comput. Harm. Anal., accepted, 2015.

(http://www.tu-chemnitz.de/~tovo)