Approximation of high-dimensional multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling

Toni Volkmer

Department of Mathematics Technische Universität Chemnitz http://www.tu-chemnitz.de/~tovo

TECHNISCHE UNIVERSITÄT CHEMNITZ

joint work with L. Kämmerer and D. Potts

supported by

 $1 \, / \, 15$

Content

Introduction

Multivariate trigonometric polynomials

Fast evaluation at rank-1 lattices

Fast, exact and stable reconstruction

Approximate reconstruction of functions $f \in \mathcal{H}^{\omega}(\mathbb{T}^d)$

by sampling at rank-1 lattice nodes

Error estimates

Numerical results

Improved error estimates

Summary

• $\mathbb{T}^d \simeq [0,1)^d, \ f: \mathbb{T}^d \to \mathbb{C}$ multivariate continuous function

- $\mathbb{T}^d \simeq [0,1)^d$, $f:\mathbb{T}^d \to \mathbb{C}$ multivariate continuous function
- approximate f by multivariate trigonometric polynomial p supported on $\mathbf{I} \subset \mathbb{Z}^d, \ |\mathbf{I}| < \infty$,

$$p(\mathbf{x}) := \sum_{\mathbf{k} \in \mathbf{I}} \hat{p}_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{x}}, \qquad \hat{p}_{\mathbf{k}} \in \mathbb{C}$$

- $\mathbb{T}^d \simeq [0,1)^d$, $f:\mathbb{T}^d \to \mathbb{C}$ multivariate continuous function
- approximate f by multivariate trigonometric polynomial p supported on $\mathbf{I}\subset\mathbb{Z}^d,\ |\mathbf{I}|<\infty,$

$$p(\mathbf{x}) := \sum_{\mathbf{k} \in \mathbf{I}} \hat{p}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \hat{p}_{\mathbf{k}} \in \mathbb{C}$$

 $\bullet\,$ e.g., approximate f using its Fourier partial sum $S_{\rm I}f$,

$$p(\mathbf{x}) = S_{\mathrm{I}} f(\mathbf{x}) := \sum_{\mathbf{k} \in \mathrm{I}} \widehat{f}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \mathrm{I} \subset \mathbb{Z}^d, \ |\mathrm{I}| < \infty,$$

where the Fourier coefficients of f are given by

$$\hat{f}_{\mathbf{k}} = \int_{\mathbb{T}^d} f(\mathbf{x}) \mathrm{e}^{-2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{d} \mathbf{x}, \qquad \mathbf{k} \in \mathbb{Z}^d$$

- $\mathbb{T}^d \simeq [0,1)^d$, $f:\mathbb{T}^d \to \mathbb{C}$ multivariate continuous function
- approximate f by multivariate trigonometric polynomial p supported on $\mathbf{I} \subset \mathbb{Z}^d, \ |\mathbf{I}| < \infty$,

$$p(\mathbf{x}) := \sum_{\mathbf{k} \in \mathbf{I}} \hat{p}_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{x}}, \qquad \hat{p}_{\mathbf{k}} \in \mathbb{C}$$

 $\bullet\,$ e.g., approximate f using its Fourier partial sum $S_{\rm I}f$,

$$p(\mathbf{x}) = S_{\mathrm{I}} f(\mathbf{x}) := \sum_{\mathbf{k} \in \mathrm{I}} \hat{f}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \mathrm{I} \subset \mathbb{Z}^d, \ |\mathrm{I}| < \infty,$$

 $\bullet\,$ e.g., $\mathrm{I}=\mathbb{Z}^d\cap [-N,N)^d$ full grid, \mathbf{y}_j equispaced nodes

- $\mathbb{T}^d \simeq [0,1)^d$, $f:\mathbb{T}^d \to \mathbb{C}$ multivariate continuous function
- approximate f by multivariate trigonometric polynomial p supported on $\mathbf{I} \subset \mathbb{Z}^d, \ |\mathbf{I}| < \infty$,

$$p(\mathbf{x}) := \sum_{\mathbf{k} \in \mathbf{I}} \hat{p}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \hat{p}_{\mathbf{k}} \in \mathbb{C}$$

 $\bullet\,$ e.g., approximate f using its Fourier partial sum $S_{\rm I}f$,

$$p(\mathbf{x}) = S_{\mathrm{I}} f(\mathbf{x}) := \sum_{\mathbf{k} \in \mathrm{I}} \widehat{f}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \mathrm{I} \subset \mathbb{Z}^d, \ |\mathrm{I}| < \infty,$$

• e.g., $\mathbf{I} = \mathbb{Z}^d \cap [-N,N)^d$ full grid, \mathbf{y}_j equispaced nodes

• problem: $|\mathbf{I}| = (2N)^d \Rightarrow$ curse of dimensionality

- $\mathbb{T}^d \simeq [0,1)^d$, $f:\mathbb{T}^d \to \mathbb{C}$ multivariate continuous function
- approximate f by multivariate trigonometric polynomial p supported on $\mathbf{I} \subset \mathbb{Z}^d, \ |\mathbf{I}| < \infty$,

$$p(\mathbf{x}) := \sum_{\mathbf{k} \in \mathbf{I}} \hat{p}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \hat{p}_{\mathbf{k}} \in \mathbb{C}$$

 $\bullet\,$ e.g., approximate f using its Fourier partial sum $S_{\rm I}f$,

$$p(\mathbf{x}) = S_{\mathrm{I}} f(\mathbf{x}) := \sum_{\mathbf{k} \in \mathrm{I}} \hat{f}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \mathrm{I} \subset \mathbb{Z}^d, \ |\mathrm{I}| < \infty,$$

• e.g., $I = H_N^d$ hyperbolic cross, y_j sparse grid nodes

- $\mathbb{T}^d \simeq [0,1)^d$, $f:\mathbb{T}^d \to \mathbb{C}$ multivariate continuous function
- approximate f by multivariate trigonometric polynomial p supported on $\mathbf{I} \subset \mathbb{Z}^d, \ |\mathbf{I}| < \infty$,

$$p(\mathbf{x}) := \sum_{\mathbf{k} \in \mathbf{I}} \hat{p}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \hat{p}_{\mathbf{k}} \in \mathbb{C}$$

 $\bullet\,$ e.g., approximate f using its Fourier partial sum $S_{\rm I}f$,

$$p(\mathbf{x}) = S_{\mathrm{I}} f(\mathbf{x}) := \sum_{\mathbf{k} \in \mathrm{I}} \hat{f}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \mathrm{I} \subset \mathbb{Z}^d, \ |\mathrm{I}| < \infty,$$

• e.g., $I = H_N^d$ hyperbolic cross, y_j sparse grid nodes

• problem: stability (Kämmerer, Kunis 2011)

- $\mathbb{T}^d \simeq [0,1)^d$, $f:\mathbb{T}^d \to \mathbb{C}$ multivariate continuous function
- approximate f by multivariate trigonometric polynomial p supported on $\mathbf{I} \subset \mathbb{Z}^d, \ |\mathbf{I}| < \infty$,

$$p(\mathbf{x}) := \sum_{\mathbf{k} \in \mathbf{I}} \hat{p}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \hat{p}_{\mathbf{k}} \in \mathbb{C}$$

 $\bullet\,$ e.g., approximate f using its Fourier partial sum $S_{\rm I}f$,

$$p(\mathbf{x}) = S_{\mathrm{I}} f(\mathbf{x}) := \sum_{\mathbf{k} \in \mathrm{I}} \hat{f}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \qquad \mathrm{I} \subset \mathbb{Z}^d, \ |\mathrm{I}| < \infty,$$

• e.g., $\mathbf{I} = H_N^d$ hyperbolic cross, \mathbf{y}_j sparse grid nodes

• problem: stability (Kämmerer, Kunis 2011)

• implementation of algorithm (HCFFT) is effortful

• Hilbert space

$$\mathcal{H}^{\omega}(\mathbb{T}^d) := \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}$$

where $\omega\colon \mathbb{Z}^d\to [1,\infty]$ is weight function

• Hilbert space

$$\mathcal{H}^{\omega}(\mathbb{T}^d) := \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}$$

where $\omega \colon \mathbb{Z}^d \to [1,\infty]$ is weight function

• define frequency index set $I := I_N^d := \left\{ \mathbf{k} \in \mathbb{Z}^d \colon \omega(\mathbf{k}) \leq N \right\}$

• Hilbert space

$$\mathcal{H}^{\omega}(\mathbb{T}^d) := \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}$$

where $\omega\colon \mathbb{Z}^d\to [1,\infty]$ is weight function

- define frequency index set $I := I_N^d := \left\{ \mathbf{k} \in \mathbb{Z}^d \colon \omega(\mathbf{k}) \leq N \right\}$
- assume cardinality of I^d_N finite for all $N\in\mathbb{R}$, e.g.,

• Hilbert space

$$\mathcal{H}^{\omega}(\mathbb{T}^d) := \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}^{\frac{1}{2}}_{\frac{1}{2}} \leq \frac{1}{2} \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}^{\frac{1}{2}}_{\frac{1}{2}} = \frac{1}{2} \left\{ f \in L^2(\mathbb{T}^d) : \omega(\mathbf{k}) \leq N \right\} \quad \ell_1 \text{-ball}}$$
• define frequency index set $\mathbf{I} := \mathbf{I}_N^d := \left\{ \mathbf{k} \in \mathbb{Z}^d : \omega(\mathbf{k}) \leq N \right\} \quad \ell_1 \text{-ball}$

• assume cardinality of I_N^d finite for all $N\in\mathbb{R},$ e.g.,

• $\omega(\mathbf{k}) = \max(1, \|\mathbf{k}\|_1) \Rightarrow \mathbf{I}_N^d$ is ℓ_1 -ball, $|\mathbf{I}_N^d| \in \mathcal{O}\left(N^d\right)$

• Hilbert space

$$\mathcal{H}^{\omega}(\mathbb{T}^d) := \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}^{\frac{1}{2}}$$
where $\omega : \mathbb{Z}^d \to [1, \infty]$ is weight function

- define frequency index set $\mathrm{I}:=\mathrm{I}_N^d:=\left\{\mathbf{k}\in\mathbb{Z}^d\colon\omega(\mathbf{k})\leq N
 ight\}$ ℓ_1 -ball
- assume cardinality of I_N^d finite for all $N\in\mathbb{R}$, e.g.,

• $\omega(\mathbf{k}) = \max(1, \|\mathbf{k}\|_1) \Rightarrow \mathbf{I}_N^d$ is ℓ_1 -ball, $|\mathbf{I}_N^d| \in \mathcal{O}\left(N^d\right)$

• Hilbert space

$$\mathcal{H}^{\omega}(\mathbb{T}^d) := \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}_{\frac{1}{2}}^{\frac{1}{2}} \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}_{\frac{1}{2}}^{\frac{1}{2}} \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}_{\frac{1}{2}}^{\frac{1}{2}} \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}_{\frac{1}{2}}^{\frac{1}{2}} \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}_{\frac{1}{2}}^{\frac{1}{2}} \left\{ f \in L^2(\mathbb{T}^d) : \frac{1}{2} \left\{ f \in L^2(\mathbb{T}^d) : \frac{1$$

• $\omega(\mathbf{k}) = \prod_{s=1}^{d} \max(1, |k_s|) \Rightarrow \mathbf{I}_N^d$ is hyperbolic cross, $|\mathbf{I}_N^d| \in \mathcal{O}\left(N \log^{d-1} N\right)$ [Temlyakov, ...]

• Hilbert space

$$\mathcal{H}^{\omega}(\mathbb{T}^d) := \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}^{\frac{1}{2}}$$
where $\omega : \mathbb{Z}^d \to [1, \infty]$ is weight function
• define frequency index set $\mathbf{I} := \mathbf{I}_N^d := \left\{ \mathbf{k} \in \mathbb{Z}^d : \omega(\mathbf{k}) \leq N \right\}$ hyperbolic
• assume cardinality of \mathbf{I}_N^d finite for all $N \in \mathbb{R}$, e.g.,
• $\omega(\mathbf{k}) = \max(1, \|\mathbf{k}\|_1) \Rightarrow \mathbf{I}_N^d$ is ℓ_1 -ball, $|\mathbf{I}_N^d| \in \mathcal{O}(N^d)$
• $\omega(\mathbf{k}) = \prod_{s=1}^d \max(1, |k_s|) \Rightarrow \mathbf{I}_N^d$ is hyperbolic cross,
 $|\mathbf{I}_N^d| \in \mathcal{O}\left(N \log^{d-1} N\right)$ [Temlyakov, ...]

• Hilbert space

$$\mathcal{H}^{\omega}(\mathbb{T}^d) := \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}^{\bullet}_{\bullet \to \bullet} \xrightarrow{\bullet \to \bullet} \cdots \xrightarrow{\bullet \to \bullet} \cdots \xrightarrow{\bullet \to \bullet} \cdots \xrightarrow{\bullet} \cdots \xrightarrow{\bullet}$$

•
$$\omega(\mathbf{k}) = \prod_{s=1}^{d} \max(1, |k_s|) \Rightarrow \mathbf{I}_N^d$$
 is hyperbolic cross,
 $|\mathbf{I}_N^d| \in \mathcal{O}\left(N \log^{d-1} N\right)$ [Temlyakov, ...]

• $\omega(\mathbf{k}) = c_d \max(1, \|\mathbf{k}\|_1)^{\frac{\alpha}{\alpha+\beta}} \prod_{s=1}^d \max(1, |k_s|)^{\frac{\beta}{\alpha+\beta}},$ $-1 < \frac{\alpha}{\beta} < 0, \Rightarrow I_N^d$ is energy-norm based hyperbolic cross, $|I_N^d| \in \mathcal{O}(N)$ [Griebel, Hamaekers, Knapek]

•
$$\omega(\mathbf{k}) = c_d \max(1, \|\mathbf{k}\|_1)^{\frac{\alpha}{\alpha+\beta}} \prod_{s=1}^d \max(1, |k_s|)^{\frac{\beta}{\alpha+\beta}},$$

 $-1 < \frac{\alpha}{\beta} < 0, \Rightarrow \mathbf{I}_N^d$ is energy-norm based hyperbolic cross,
 $|\mathbf{I}_N^d| \in \mathcal{O}(N)$ [Griebel, Hamaekers, Knapek]

• Hilbert space

$$\mathcal{H}^{\omega}(\mathbb{T}^d) := \begin{cases} f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \end{cases}^{\mathbf{1}_{\mathbf{0}}} \xrightarrow{\mathbf{1}_{\mathbf{0}}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{\mathbf{0$$

• rank-1 lattice: $\mathbf{z} \in \mathbb{N}^d, M \in \mathbb{N}$

$$\mathbf{x}_j = \frac{j}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1$$

Korobov 59 Maisonneuve 72 Sloan & Kachoyan 84,87,90 Temlyakov 86 Lyness 89 Sloan & Joe 94 Sloan & Reztsov 01 Li & Hickernell 03

• rank-1 lattice:
$$\mathbf{z} \in \mathbb{N}^d, M \in \mathbb{N}$$

$$\mathbf{x}_j = \frac{\jmath}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1$$

- multivariate trigonometric polynomial $p(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{I}_N^d} \hat{p}_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{x}}$
- reformulation

$$p(\mathbf{x}_j) = \sum_{\mathbf{k} \in \mathbf{I}_N^d} \hat{p}_{\mathbf{k}} \mathbf{e}^{2\pi \mathbf{i} \frac{j\mathbf{k} \cdot \mathbf{z}}{M}} = \sum_{l=0}^{M-1} \underbrace{\left(\sum_{\substack{\mathbf{k} \in \mathbf{I}_N^d \\ \mathbf{k} \cdot \mathbf{z} \equiv l \pmod{M}}} \hat{p}_{\mathbf{k}}\right)}_{\hat{g}_l} \mathbf{e}^{2\pi \mathbf{i} \frac{j\mathbf{k} \cdot \mathbf{z}}{M}} = \sum_{l=0}^{M-1} \hat{g}_l \mathbf{e}^{2\pi \mathbf{i} \frac{jl}{M}}$$

z = (1, 3)0.8 -M = 110.6 -0.4 -

0.2

$$\mathbf{x}_j = \frac{j}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1$$

- multivariate trigonometric polynomial $p(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{I}_N^d} \hat{p}_{\mathbf{k}} \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}$
- reformulation

$$p(\mathbf{x}_{j}) = \sum_{\mathbf{k} \in \mathbf{I}_{N}^{d}} \hat{p}_{\mathbf{k}} e^{2\pi \mathbf{i} \frac{j\mathbf{k} \cdot \mathbf{z}}{M}} = \sum_{l=0}^{M-1} \underbrace{\left(\sum_{\substack{\mathbf{k} \in \mathbf{I}_{N}^{d} \\ \mathbf{k} \cdot \mathbf{z} \equiv l \pmod{M}}} \hat{p}_{\mathbf{k}}\right)}_{\hat{g}_{l}} e^{2\pi \mathbf{i} \frac{j\mathbf{k}}{M}} e^{2\pi \mathbf{i} \frac{j\mathbf{k}}$$

0.6 0.4

0.2

z = (1, 3)0.8 - M = 110.6 0.4

5/15

0.2

$$\mathbf{x}_j = \frac{j}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1$$

- multivariate trigonometric polynomial $p(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{I}_N^d} \hat{p}_{\mathbf{k}} \mathrm{e}^{2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}}$

• reformulation

$$p(\mathbf{x}_{j}) = \sum_{\mathbf{k} \in \mathbf{I}_{N}^{d}} \hat{p}_{\mathbf{k}} \mathbf{e}^{2\pi \mathbf{i} \frac{j\mathbf{k} \cdot \mathbf{z}}{M}} = \sum_{l=0}^{M-1} \left(\sum_{\substack{\mathbf{k} \in \mathbf{I}_{N}^{d} \\ \mathbf{k} \cdot \mathbf{z} \equiv l \pmod{M}}} \hat{p}_{\mathbf{k}} \right) \mathbf{e}^{2\pi \mathbf{i} \frac{j\mathbf{k} \cdot \mathbf{z}}{M}} = \sum_{l=0}^{M-1} \hat{g}_{l} \mathbf{e}^{2\pi \mathbf{i} \frac{j\mathbf{k}}{M}} = \sum_{$$

/

• rank-1 lattice: $\mathbf{z} \in \mathbb{N}^d, M \in \mathbb{N}$

$$\mathbf{x}_j = \frac{j}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1$$

• reconstruction of the Fourier coefficients of $p(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{I}_N^d} \hat{p}_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{x}}$ by applying a lattice rule

• rank-1 lattice:
$$\mathbf{z} \in \mathbb{N}^d, M \in \mathbb{N}$$

$$\mathbf{x}_j = \frac{\jmath}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1$$

• reconstruction of the Fourier coefficients of $p(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{I}_N^d} \hat{p}_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{x}}$ by applying a lattice rule

$$\hat{p}_{\mathbf{k}} = \int_{\mathbb{T}^d} p(\mathbf{x}) \mathrm{e}^{-2\pi \mathrm{i}\mathbf{k}\cdot\mathbf{x}} \mathrm{d}\mathbf{x} \approx \mathsf{Q}(p(\cdot)\mathrm{e}^{-2\pi \mathrm{i}\mathbf{k}\cdot(\cdot)}) = \underbrace{\frac{1}{M} \sum_{j=0}^{M-1} p(\mathbf{x}_j) \mathrm{e}^{-2\pi \mathrm{i}\mathbf{k}\cdot\mathbf{x}_j}}_{\hat{p}_{\mathbf{k}}}$$

• rank-1 lattice:
$$\mathbf{z} \in \mathbb{N}^d, M \in \mathbb{N}$$

$$\mathbf{x}_j = \frac{\jmath}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1$$

• reconstruction of the Fourier coefficients of $p(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{I}_N^d} \hat{p}_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{x}}$ by applying a lattice rule

$$\hat{p}_{\mathbf{k}} = \int_{\mathbb{T}^d} p(\mathbf{x}) \mathrm{e}^{-2\pi \mathrm{i}\mathbf{k}\cdot\mathbf{x}} \mathrm{d}\mathbf{x} \approx \mathsf{Q}(p(\cdot)\mathrm{e}^{-2\pi \mathrm{i}\mathbf{k}\cdot(\cdot)}) = \underbrace{\frac{1}{M} \sum_{j=0}^{M-1} p(\mathbf{x}_j) \mathrm{e}^{-2\pi \mathrm{i}\mathbf{k}\cdot\mathbf{x}_j}}_{\hat{p}_{\mathbf{k}}}$$

$$\Rightarrow \hat{\tilde{p}}_{\mathbf{k}} = \hat{p}_{\mathbf{k}} \Leftrightarrow \mathbf{k}_1 \cdot \mathbf{z} \not\equiv \mathbf{k}_2 \cdot \mathbf{z} \pmod{M} \text{ for all } \mathbf{k}_1 \neq \mathbf{k}_2 \in \mathrm{I}_N^d$$

• rank-1 lattice:
$$\mathbf{z} \in \mathbb{N}^d, M \in \mathbb{N}$$

$$\mathbf{x}_j = \frac{\jmath}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1$$

• reconstruction of the Fourier coefficients of $p(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{I}_N^d} \hat{p}_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{x}}$ by applying a lattice rule

$$\hat{p}_{\mathbf{k}} = \int_{\mathbb{T}^d} p(\mathbf{x}) \mathrm{e}^{-2\pi \mathrm{i}\mathbf{k}\cdot\mathbf{x}} \mathrm{d}\mathbf{x} \approx \mathsf{Q}(p(\cdot)\mathrm{e}^{-2\pi \mathrm{i}\mathbf{k}\cdot(\cdot)}) = \underbrace{\frac{1}{M} \sum_{j=0}^{M-1} p(\mathbf{x}_j) \mathrm{e}^{-2\pi \mathrm{i}\mathbf{k}\cdot\mathbf{x}_j}}_{\hat{p}_{\mathbf{k}}}$$

 $\Rightarrow \hat{\hat{p}}_{\mathbf{k}} = \hat{p}_{\mathbf{k}} \Leftrightarrow \mathbf{k}_1 \cdot \mathbf{z} \not\equiv \mathbf{k}_2 \cdot \mathbf{z} \pmod{M} \text{ for all } \mathbf{k}_1 \neq \mathbf{k}_2 \in \mathbf{I}_N^d$ $\Rightarrow \text{ Definition: reconstructing rank-1 lattice } \Lambda(\mathbf{z}, M, \mathbf{I}_N^d) \text{ for } \mathbf{I}_N^d,$

$$\mathbf{x}_j = \frac{j}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1$$

• reconstruction of the Fourier coefficients of $p(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{I}_N^d} \hat{p}_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{x}}$ by applying a lattice rule

z = (1, 3)

0.6 0.8

0.6

0.2

- reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M, \mathbf{I}_N^d)$: $\mathbf{x}_j = \frac{j}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1; \quad |\mathbf{I}_N^d| \le M \le |\mathbf{I}_N^d|^2$
- approximate reconstruction of the Fourier coefficients of $f\in\mathcal{H}^\omega(\mathbb{T}^d)\cap\mathcal{C}(\mathbb{T}^d)$ by applying a lattice rule

• reconstructing rank-1 lattice
$$\Lambda(\mathbf{z}, M, \mathbf{I}_N^d)$$
:
 $\mathbf{x}_j = \frac{j}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M-1; \quad |\mathbf{I}_N^d| \le M \le |\mathbf{I}_N^d|^2$
• approximate reconstruction of the Fourier coefficients of
 $f \in \mathcal{H}^{\omega}(\mathbb{T}^d) \cap \mathcal{C}(\mathbb{T}^d)$ by applying a lattice rule
 $\hat{f}_{\mathbf{k}} = \int_{\mathbb{T}^d} f(\mathbf{x}) \mathrm{e}^{-2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{d} \mathbf{x} \approx \mathsf{Q}(f(\cdot) \mathrm{e}^{-2\pi \mathrm{i} \mathbf{k} \cdot (\cdot)}) = \underbrace{\frac{1}{M} \sum_{j=0}^{M-1} f(\mathbf{x}_j) \mathrm{e}^{-2\pi \mathrm{i} \mathbf{k} \cdot \mathbf{x}_j}}_{\hat{f}_{\mathbf{k}}}$

• reconstructing rank-1 lattice
$$\Lambda(\mathbf{z}, M, \mathbf{I}_N^d)$$
:
 $\mathbf{x}_j = \frac{j}{M} \mathbf{z} \mod \mathbf{1}; \ j = 0, \dots, M - 1; \quad |\mathbf{I}_N^d| \le M \le |\mathbf{I}_N^d|^2$
• approximate reconstruction of the Fourier coefficients of $f \in \mathcal{H}^{\omega}(\mathbb{T}^d) \cap \mathcal{C}(\mathbb{T}^d)$ by applying a lattice rule
 $\hat{f}_{\mathbf{k}} = \int_{\mathbb{T}^d} f(\mathbf{x}) \mathbf{e}^{-2\pi i \mathbf{k} \cdot \mathbf{x}} d\mathbf{x} \approx \mathbf{Q}(f(\cdot) \mathbf{e}^{-2\pi i \mathbf{k} \cdot (\cdot)}) = \underbrace{\frac{1}{M} \sum_{j=0}^{M-1} f(\mathbf{x}_j) \mathbf{e}^{-2\pi i \mathbf{k} \cdot \mathbf{x}_j}}_{\hat{f}_{\mathbf{k}}}$
• $\widehat{f}_{\mathbf{k}} = \underbrace{\int_{\mathbb{T}^d} f(\mathbf{x}) \mathbf{e}^{-2\pi i \mathbf{k} \cdot \mathbf{x}}}_{(\widehat{f}_{\mathbf{k}})_{\mathbf{k} \in I_N^d}} \mathcal{O}(M \log M + d|\mathbf{I}_N^d|)$
• approximation $\tilde{S}_{\mathbf{I}_N^d} f$ of f by $\tilde{S}_{\mathbf{I}_N^d} f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{I}_N^d} \widehat{f}_{\mathbf{k}} \mathbf{e}^{2\pi i \mathbf{k} \cdot \mathbf{x}}$

$$\underbrace{\|f - \tilde{S}_{\mathrm{I}_N^d} f | L^2(\mathbb{T}^d) \|}_{\text{approximation error}} \leq \underbrace{\|f - S_{\mathrm{I}_N^d} f | L^2(\mathbb{T}^d) \|}_{\text{truncation error}} + \underbrace{\|S_{\mathrm{I}_N^d} f - \tilde{S}_{\mathrm{I}_N^d} f | L^2(\mathbb{T}^d) \|}_{\text{aliasing error}}$$

$$\begin{split} \underbrace{\|f - \tilde{S}_{\mathbf{I}_N^d} f | L^2(\mathbb{T}^d) \|}_{\text{approximation error}} &\leq \underbrace{\|f - S_{\mathbf{I}_N^d} f | L^2(\mathbb{T}^d) \|}_{\text{truncation error}} + \underbrace{\|S_{\mathbf{I}_N^d} f - \tilde{S}_{\mathbf{I}_N^d} f | L^2(\mathbb{T}^d) \|}_{\text{aliasing error}} \\ \|f - S_{\mathbf{I}_N^d} f | L^2(\mathbb{T}^d) \| &\leq \frac{1}{N} \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega(\mathbf{k})^2 \left| \hat{f}_{\mathbf{k}} \right|^2} = \frac{1}{N} \|f| \mathcal{H}^{\omega}(\mathbb{T}^d) \| \end{split}$$

$$\begin{split} \underbrace{\|f - \tilde{S}_{\mathrm{I}_{N}^{d}} f | L^{2}(\mathbb{T}^{d}) \|}_{\text{approximation error}} \leq \underbrace{\|f - S_{\mathrm{I}_{N}^{d}} f | L^{2}(\mathbb{T}^{d}) \|}_{\text{truncation error}} + \underbrace{\|S_{\mathrm{I}_{N}^{d}} f - \tilde{S}_{\mathrm{I}_{N}^{d}} f | L^{2}(\mathbb{T}^{d}) \|}_{\text{aliasing error}} \\ \|f - S_{\mathrm{I}_{N}^{d}} f | L^{2}(\mathbb{T}^{d}) \| &\leq \frac{1}{N} \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})^{2} \left| \hat{f}_{\mathbf{k}} \right|^{2}} = \frac{1}{N} \|f| \mathcal{H}^{\omega}(\mathbb{T}^{d}) \| \\ \|S_{\mathrm{I}_{N}^{d}} f - \tilde{S}_{\mathrm{I}_{N}^{d}} f | L^{2}(\mathbb{T}^{d}) \| &\leq \frac{1}{N} \left(1 + 2\zeta(2\lambda) \right)^{\frac{d}{2}} \\ &\cdot \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})^{2} \left| \hat{f}_{\mathbf{k}} \right|^{2} \prod_{s=1}^{d} \max(1, |k_{s}|)^{2\lambda}} \\ &(\lambda > 1/2) \end{split}$$

Example: hyperbolic cross
index set:
$$|\mathbf{I}_N^d| \in \mathcal{O}(N \log^{d-1} N)$$

 $\mathbf{I}_N^d := \left\{ \mathbf{k} \in \mathbb{Z}^d \colon \prod_{s=1}^d \max(1, |k_s|) \leq N \right\}$
weights: $\omega(\mathbf{k}) := \omega^{0,\beta}(\mathbf{k}) := \prod_{s=1}^d \max(1, |k_s|)^{\beta}$
Hilbert space:

$$\mathcal{H}^{0,\beta}(\mathbb{T}^d) := \left\{ f \colon \|f|\mathcal{H}^{0,\beta}(\mathbb{T}^d)\| := \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \omega^{0,\beta}(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}$$
arithmetic complexity: $\mathcal{O}\left(N^2 \log^{d-1} N\right)$

error estimate: $\beta > t \ge 0$, $\lambda > 1/2$

$$\|f - \tilde{S}_{\mathrm{I}_{N}^{d}} f|\mathcal{H}^{0,t}(\mathbb{T}^{d})\| \leq (1 + 2\zeta(2\lambda))^{\frac{d}{2}} N^{t-\beta} \|f|\mathcal{H}^{0,\beta+\lambda}(\mathbb{T}^{d})\|$$

40

Example: energy-norm based hyperbolic cross

index set: for
$$0 < \alpha - r < \beta - t$$
, $|\mathbf{I}_N^d| \in \mathcal{O}(N)$

$$\mathbf{I}_N^d := \left\{ \mathbf{k} \in \mathbb{Z}^d \colon \max(1, \|\mathbf{k}\|_1)^{\frac{\alpha - r}{\alpha - r + \beta - t}} \prod_{s=1}^d \max(1, |k_s|)^{\frac{\beta - t}{\alpha - r + \beta - t}} \leq N \right\}$$
weights: $\omega^{\alpha, \beta}(\mathbf{k}) := \max(1, \|\mathbf{k}\|_1)^{\alpha} \prod_{s=1}^d \max(1, |k_s|)^{\beta}$
Hilbert space:

$$\mathcal{H}^{\alpha,\beta}(\mathbb{T}^d) := \left\{ f \colon \|f|\mathcal{H}^{\alpha,\beta}(\mathbb{T}^d)\| := \sqrt{\sum_{\mathbf{k}\in\mathbb{Z}^d} \omega^{\alpha,\beta}(\mathbf{k})^2 |\hat{f}_{\mathbf{k}}|^2} < \infty \right\}$$
arithmetic complexity: $\mathcal{O}\left(N^2 \log N\right)$

error estimate: $\beta > t \geq 0$, ${\color{black}{\lambda}} > 1/2$

$$\|f - \tilde{S}_{\mathcal{I}_N^d} f | \mathcal{H}^{r,t}(\mathbb{T}^d) \| \le (1 + 2\zeta(2\lambda))^{\frac{d}{2}} N^{r-\alpha+t-\beta} \| f | \mathcal{H}^{\alpha,\beta+\lambda}(\mathbb{T}^d) \|$$

• function
$$f \in \mathcal{H}^{0,\frac{5}{2}-\epsilon}(\mathbb{T}^d)$$
, $\epsilon > 0$,
$$f(\mathbf{x}) := \prod_{s=1}^d \left(4 + \operatorname{sgn}\left(x_s - \frac{1}{2}\right) \sin\left(2\pi x_s\right)^2 + \operatorname{sgn}\left(x_s - \frac{1}{2}\right) \sin\left(2\pi x_s\right)^3 \right),$$

• hyperbolic cross index set $I_N^d := \left\{ \mathbf{k} \in \mathbb{Z}^d \colon \prod_{s=1}^d \max(1, |k_s|) \le N \right\}$

• function
$$f \in \mathcal{H}^{0,\frac{5}{2}-\epsilon}(\mathbb{T}^d)$$
, $\epsilon > 0$,
$$f(\mathbf{x}) := \prod_{s=1}^d \left(4 + \operatorname{sgn}\left(x_s - \frac{1}{2}\right) \sin\left(2\pi x_s\right)^2 + \operatorname{sgn}\left(x_s - \frac{1}{2}\right) \sin\left(2\pi x_s\right)^3\right),$$

- hyperbolic cross index set $I_N^d := \left\{ \mathbf{k} \in \mathbb{Z}^d \colon \prod_{s=1}^d \max(1, |k_s|) \le N \right\}$
- $\bullet~{\rm error}$ estimate: $\tilde{\epsilon}>0$, $\lambda>1/2$

$$\|f - \tilde{S}_{\mathbf{I}_N^d} f | L^2(\mathbb{T}^d) \| \lesssim N^{-2+\tilde{\epsilon}} \| f | \mathcal{H}^{0,2-\tilde{\epsilon}+\lambda}(\mathbb{T}^d)$$

• function
$$f \in \mathcal{H}^{0,\frac{5}{2}-\epsilon}(\mathbb{T}^d)$$
, $\epsilon > 0$,
$$f(\mathbf{x}) := \prod_{s=1}^d \left(4 + \operatorname{sgn}\left(x_s - \frac{1}{2}\right) \sin\left(2\pi x_s\right)^2 + \operatorname{sgn}\left(x_s - \frac{1}{2}\right) \sin\left(2\pi x_s\right)^3\right),$$

• hyperbolic cross index set $I_N^d := \left\{ \mathbf{k} \in \mathbb{Z}^d \colon \prod_{s=1}^d \max(1, |k_s|) \le N \right\}$

• error estimate:
$$\tilde{\epsilon} > 0$$
, $\lambda > 1/2$

$$\|f - \tilde{S}_{\mathrm{I}^{d}_{N}} f|L^{2}(\mathbb{T}^{d})\| \lesssim N^{-2+\tilde{\epsilon}} \|f|\mathcal{H}^{0,2-\tilde{\epsilon}+\lambda}(\mathbb{T}^{d})\|$$

• we compute the relative $L^2(\mathbb{T}^d)=\mathcal{H}^{0,0}(\mathbb{T}^d)$

• i.e.,
$$\|f - ilde{S}_{\mathrm{I}^d_N} f | L^2(\mathbb{T}^d) \| / \| f | L^2(\mathbb{T}^d) \|$$

 $\bullet\,$ corresponds to the above error estimate with r=t=0 up to a "constant" since

$$\frac{\|f - \tilde{S}_{\mathcal{I}_N^d} f | \mathcal{H}^{0,0,\gamma}(\mathbb{T}^d) \|}{\|f| \mathcal{H}^{\alpha,\beta+\lambda}(\mathbb{T}^d)\|} = \underbrace{\frac{\|f| L^2(\mathbb{T}^d)\|}{\|f| \mathcal{H}^{\alpha,\beta+\lambda}(\mathbb{T}^d)\|}}_{\leq 1} \frac{\|f - \tilde{S}_{\mathcal{I}_N^d} f | L^2(\mathbb{T}^d) \|}{\|f| L^2(\mathbb{T}^d)\|}$$

d	N	$ I_N^d $	M	$\frac{M}{ I_N^d }$	rel. $L^2(\mathbb{T}^d)$ error
6	64	1 709 857	31 829 977	18.6	5.3e-05
6	128	5 137 789	192 757 285	37.5	9.9e-06
6	256	14 977 209	1 400 567 254	93.5	1.8e-06
8	8	768 609	6 027 975	7.8	9.6e-03
8	16	2 935 521	49 768 670	17.0	2.2e-03
8	32	10 665 297	359 896 131	33.7	4.8e-04
10	4	2 421 009	30 780 958	12.7	4.1e-02
10	8	10819089	194 144 634	17.9	1.2e-02
10	16	45 548 649	2 040 484 044	44.8	3.1e-03

idea from Temlyakov 1986:

• more structure: use generating vector of Korobov form, $\mathbf{z} = (1, a, a^2, \dots, a^{d-1})^\top$, $a \in \{1, \dots, M-1\}$

idea from Temlyakov 1986:

• more structure: use generating vector of Korobov form, $\mathbf{z} = (1, a, a^2, \dots, a^{d-1})^\top$, $a \in \{1, \dots, M-1\}$

 \implies Lagrange's theorem: for M prime and fixed $\mathbf{k}\in\mathbb{Z}^d\setminus(M\mathbb{Z}^d)$

$$\left|\left\{a \in \{1, \dots, M-1\} : k_1 + k_2 a + \dots + k_d a^{d-1} \equiv 0 \pmod{M}\right\}\right| \le d-1$$

idea from Temlyakov 1986:

- more structure: use generating vector of Korobov form, $\mathbf{z} = (1, a, a^2, \dots, a^{d-1})^\top$, $a \in \{1, \dots, M-1\}$
- \implies Lagrange's theorem: for M prime and fixed $\mathbf{k}\in\mathbb{Z}^d\setminus(M\mathbb{Z}^d)$

$$\left\{ a \in \{1, \dots, M-1\} : k_1 + k_2 \, a + \dots + k_d \, a^{d-1} \equiv 0 \pmod{M} \right\} \right| \le d-1$$

• improvement of error estimates for $\beta>1-\alpha$:

$$\begin{split} f &\in \mathcal{H}^{\alpha,\beta}(\mathbb{T}^d) := \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \max(1, \|\mathbf{k}\|_1)^{2\alpha} \prod_{s=1}^d \max(1, |k_s|)^{2\beta} |\hat{f}_{\mathbf{k}}|^2} < \infty \right\} \\ \mathbf{I}_N^{d,\alpha,\beta} &:= \left\{ \mathbf{k} \in \mathbb{Z}^d \colon \max(1, \|\mathbf{k}\|_1)^{\frac{\alpha}{\alpha+\beta}} \prod_{s=1}^d \max(1, |k_s|)^{\frac{\beta}{\alpha+\beta}} \le N \right\} \\ & \|S_{\mathbf{I}_N^{d,\alpha,\beta}} f - \tilde{S}_{I_N^{d,\alpha,\beta}} f |L^2(\mathbb{T}^d)\| \le C(d,\alpha,\beta) \ N^{-(\alpha+\beta)} \|f| \mathcal{H}^{\alpha,\beta}(\mathbb{T}^d)\| \end{split}$$

idea from Temlyakov 1986:

- more structure: use generating vector of Korobov form, $\mathbf{z} = (1, a, a^2, \dots, a^{d-1})^\top$, $a \in \{1, \dots, M-1\}$
- \implies Lagrange's theorem: for M prime and fixed $\mathbf{k} \in \mathbb{Z}^d \setminus (M\mathbb{Z}^d)$

$$\left| \left\{ a \in \{1, \dots, M-1\} : k_1 + k_2 \, a + \dots + k_d \, a^{d-1} \equiv 0 \pmod{M} \right\} \right| \le d-1$$

 \bullet improvement of error estimates for $\beta>1-\alpha:$

$$\begin{split} f \in \mathcal{H}^{\alpha,\beta}(\mathbb{T}^d) &:= \left\{ f \in L^2(\mathbb{T}^d) : \sqrt{\sum_{\mathbf{k} \in \mathbb{Z}^d} \max(1, \|\mathbf{k}\|_1)^{2\alpha} \prod_{s=1}^d \max(1, |k_s|)^{2\beta} |\hat{f}_{\mathbf{k}}|^2} < \infty \right\} \\ \mathbf{I}_N^{d,\alpha,\beta} &:= \left\{ \mathbf{k} \in \mathbb{Z}^d \colon \max(1, \|\mathbf{k}\|_1)^{\frac{\alpha}{\alpha+\beta}} \prod_{s=1}^d \max(1, |k_s|)^{\frac{\beta}{\alpha+\beta}} \le N \right\} \\ & \|S_{\mathbf{I}_N^{d,\alpha,\beta}} f - \tilde{S}_{I_N^{d,\alpha,\beta}} f |L^2(\mathbb{T}^d)\| \le C(d,\alpha,\beta) \ N^{-(\alpha+\beta)} \ \|f|\mathcal{H}^{\alpha,\beta}(\mathbb{T}^d)\| \end{split}$$

drawback: non-constructive proof, i.e., for sufficiently large prime M, $|I_N^{d,\alpha,\beta}| \lesssim M \lesssim |I_N^{d,\alpha,\beta}|^2$, there exists $\mathbf{z} = (1, a, a^2, \dots, a^{d-1})^\top$ such that above error estimates are valid

Summary

approximate reconstruction of (multivariate) functions $f \in \mathcal{H}^{\omega}(\mathbb{T}^d)$ by sampling along rank-1 lattice nodes

- perfectly stable
- \bullet computation only uses single one-dimensional FFT + SP
- oversampling factor up to $|\mathbf{I}_N^d|$
- arithmetic complexity $\mathcal{O}\left(|\mathbf{I}_N^d|^2 \log |\mathbf{I}_N^d|\right)$
- observed oversampling factor lower for realistic problem sizes
- estimates for approximation error of optimal order (non-constructive, generating vector z of Korobov form)
- Numerical tests encourage theoretical results

Summary

approximate reconstruction of (multivariate) functions $f \in \mathcal{H}^{\omega}(\mathbb{T}^d)$ by sampling along rank-1 lattice nodes

- perfectly stable
- \bullet computation only uses single one-dimensional FFT + SP
- oversampling factor up to $|\mathbf{I}_N^d|$
- arithmetic complexity $\mathcal{O}\left(|\mathbf{I}_N^d|^2\log|\mathbf{I}_N^d|\right)$
- observed oversampling factor lower for realistic problem sizes
- estimates for approximation error of optimal order (non-constructive, generating vector z of Korobov form)
- Numerical tests encourage theoretical results
- Kämmerer, L., Potts, D., Volkmer, T. **Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank-1 lattice with generating vector of Korobov form**. DFG-Schwerpunktprogramm 1324, Preprint 159, 2014. (http://www.tu-chemnitz.de/~tovo)