Nonequidistant fast Fourier transform for frequencies supported on a subset of the full grid

Toni Volkmer

Chemnitz University of Technology
supported by DFG-SPP 1324

Road map

Introduction

Rank-1 lattices

Taylor and rank-1 lattice based NFFT
Method
Error estimate
Numerical Results

Summary

Introduction

- evaluation of trigonometric polynomials $f: \mathbb{T}^{d} \simeq[0,1)^{d} \rightarrow \mathbb{C}$, $f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}, \hat{f}_{\boldsymbol{j}} \in \mathbb{C}, \mathcal{I}_{N} \subset \mathbb{Z}^{d} \cap[-N, N]^{d}, N \in \mathbb{N}$,
at $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$
direct evaluation: arithmetic complexity $\mathcal{O}\left(L\left|\mathcal{I}_{N}\right|\right)$

Introduction

- evaluation of trigonometric polynomials $f: \mathbb{T}^{d} \simeq[0,1)^{d} \rightarrow \mathbb{C}$, $f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}, \hat{f}_{\boldsymbol{j}} \in \mathbb{C}, \mathcal{I}_{N} \subset \mathbb{Z}^{d} \cap[-N, N]^{d}, N \in \mathbb{N}$,
at $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$ direct evaluation: arithmetic complexity $\mathcal{O}\left(L\left|\mathcal{I}_{N}\right|\right)$
- $\mathcal{I}_{N}=G_{N}^{d}:=\mathbb{Z}^{d} \cap[-N, N)^{d},\left|\mathcal{I}_{N}\right|=(2 N)^{d}$ \Rightarrow curse of dimensionality even for moderate dimensions

Introduction

- evaluation of trigonometric polynomials $f: \mathbb{T}^{d} \simeq[0,1)^{d} \rightarrow \mathbb{C}$, $f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}, \hat{f}_{\boldsymbol{j}} \in \mathbb{C}, \mathcal{I}_{N} \subset \mathbb{Z}^{d} \cap[-N, N]^{d}, N \in \mathbb{N}$,
at $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$
direct evaluation: arithmetic complexity $\mathcal{O}\left(L\left|\mathcal{I}_{N}\right|\right)$
- $\mathcal{I}_{N}=G_{N}^{d}:=\mathbb{Z}^{d} \cap[-N, N)^{d},\left|\mathcal{I}_{N}\right|=(2 N)^{d}$
\Rightarrow curse of dimensionality even for moderate dimensions
- fast Fourier transform (FFT) for equispaced \boldsymbol{y}_{ℓ}, arithmetic complexity $\mathcal{O}\left(N^{d} \log N\right)$ for $L \sim\left|\mathcal{I}_{N}\right|$

Introduction

- evaluation of trigonometric polynomials $f: \mathbb{T}^{d} \simeq[0,1)^{d} \rightarrow \mathbb{C}$,

$$
f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}, \hat{f}_{\boldsymbol{j}} \in \mathbb{C}, \mathcal{I}_{N} \subset \mathbb{Z}^{d} \cap[-N, N]^{d}, N \in \mathbb{N}
$$

at $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$
direct evaluation: arithmetic complexity $\mathcal{O}\left(L\left|\mathcal{I}_{N}\right|\right)$

- $\mathcal{I}_{N}=G_{N}^{d}:=\mathbb{Z}^{d} \cap[-N, N)^{d},\left|\mathcal{I}_{N}\right|=(2 N)^{d}$
\Rightarrow curse of dimensionality even for moderate dimensions
- fast Fourier transform (FFT) for equispaced \boldsymbol{y}_{ℓ}, arithmetic complexity $\mathcal{O}\left(N^{d} \log N\right)$ for $L \sim\left|\mathcal{I}_{N}\right|$
- nonequispaced fast Fourier transform (NFFT) (Potts, Steidl, Tasche) for arbitrary $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}$, arithmetic complexity $\mathcal{O}\left(|\log \epsilon|^{d} L+N^{d} \log N\right)$

Introduction

- evaluation of trigonometric polynomials $f: \mathbb{T}^{d} \simeq[0,1)^{d} \rightarrow \mathbb{C}$,

$$
f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}, \hat{f}_{\boldsymbol{j}} \in \mathbb{C}, \mathcal{I}_{N} \subset \mathbb{Z}^{d} \cap[-N, N]^{d}, N \in \mathbb{N}
$$

at $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$
direct evaluation: arithmetic complexity $\mathcal{O}\left(L\left|\mathcal{I}_{N}\right|\right)$

- $\mathcal{I}_{N}=G_{N}^{d}:=\mathbb{Z}^{d} \cap[-N, N)^{d},\left|\mathcal{I}_{N}\right|=(2 N)^{d}$
\Rightarrow curse of dimensionality even for moderate dimensions
- fast Fourier transform (FFT) for equispaced \boldsymbol{y}_{ℓ}, arithmetic complexity $\mathcal{O}\left(N^{d} \log N\right)$ for $L \sim\left|\mathcal{I}_{N}\right|$
- nonequispaced fast Fourier transform (NFFT) (Potts, Steidl, Tasche) for arbitrary $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}$, arithmetic complexity $\mathcal{O}\left(|\log \epsilon|^{d} L+N^{d} \log N\right)$
- Taylor expansion based NFFT (Anderson, Dahleh 1996; Kunis 2008) for arbitrary $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}$, arithmetic complexity $\mathcal{O}\left(|\log \epsilon|^{d} L+|\log \epsilon|^{d} N^{d} \log N\right)$

Introduction

- nonequispaced hyperbolic cross fast Fourier transform (Döhler, Kunis, Potts 2010)
- dyadic hyperbolic cross $\mathcal{I}_{N}=\tilde{H}_{n}^{d}:=\cup_{\boldsymbol{j} \in \mathbb{N}_{0}^{d},\|\boldsymbol{j}\|_{1}=n} \tilde{G}_{\boldsymbol{j}}$ $\tilde{G}_{\boldsymbol{j}}:=\mathbb{Z}^{d} \cap \times_{t=1}^{d}\left(-2^{j_{t}-1}, 2^{j_{t}-1}\right],\|\boldsymbol{j}\|_{1}=\left|j_{1}\right|+\ldots+\left|j_{d}\right|$
- based on hyperbolic cross discrete/fast Fourier transform (Baszenski, Delvos 1989; Hallatschek 1992; Gradinaru 2007) and spline interpolation on sparse grid
- arithmetic complexity $\mathcal{O}\left(\left|\tilde{H}_{n}^{d}\right| \log \left|\tilde{H}_{n}^{d}\right|+|\log \epsilon|\left|\tilde{H}_{n}^{d}\right|+|\log \epsilon|^{d} L \log \left|\tilde{H}_{n}^{d}\right|\right)$, $\left|\tilde{H}_{n}^{d}\right| \leq C n^{d-1} 2^{n}, C>0$

Introduction

In this talk:

- method for fast approximative evaluation of

$$
f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} j \boldsymbol{x}}, \quad \mathcal{I}_{N} \subset \mathbb{Z}^{d} \cap[-N, N]^{d}, N \in \mathbb{N}
$$

 based on FFT at nodes of rank-1 lattice of size M and multivariate Taylor expansion of degree $m-1$ arithmetic complexity $\mathcal{O}\left(m^{d}\left(L+M \log M+\left|\mathcal{I}_{N}\right|\right)\right)$

Introduction

In this talk:

- method for fast approximative evaluation of

$$
f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}, \quad \mathcal{I}_{N} \subset \mathbb{Z}^{d} \cap[-N, N]^{d}, N \in \mathbb{N}
$$

at arbitrary ${\underset{\boldsymbol{y}}{\ell}}_{\boldsymbol{y} \in \mathcal{I}_{N}} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$, based on FFT at nodes of rank-1 lattice of size M and multivariate Taylor expansion of degree $m-1$ arithmetic complexity $\mathcal{O}\left(m^{d}\left(L+M \log M+\left|\mathcal{I}_{N}\right|\right)\right)$

- error estimate and numerical results for symmetric hyperbolic cross index sets

$$
\mathcal{I}_{N}=H_{N}^{d}:=\left\{\boldsymbol{j} \in \mathbb{Z}^{d}: r(\boldsymbol{j}) \leq N\right\}, r(\boldsymbol{j}):=\prod_{t=1}^{d} \max \left(1,\left|j_{t}\right|\right)
$$

Rank-1 lattices - General

Definition (Rank-1 lattice; eq. Sloan, Joe 1994)

Let be $\boldsymbol{z} \in \mathbb{Z}^{d}$ and $M \in \mathbb{N}$. We define the (integer) rank-1 lattice

$$
\Lambda=\Lambda(\boldsymbol{z}, M):=\{(k \boldsymbol{z} / M) \bmod 1: k=0, \ldots, M-1\} \subset \mathbb{T}^{d}
$$

Rank-1 lattices - Lattice based FFT

- evaluation of multivariate function $f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}$ at

$$
\begin{aligned}
& \boldsymbol{x}_{k}=(k \boldsymbol{z} / M) \bmod 1 \in \Lambda(\boldsymbol{z}, M) \\
& f\left(\boldsymbol{x}_{k}\right)=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} k \frac{\boldsymbol{j} \boldsymbol{z}}{M}} \\
& k=0, \ldots, M-1
\end{aligned}
$$

Rank-1 lattices - Lattice based FFT

- evaluation of multivariate function $f(\boldsymbol{x})=\sum_{j \in \mathcal{I}_{N}} \hat{f}_{j} \mathrm{e}^{-2 \pi \mathrm{i} j \boldsymbol{x}}$ at $x_{k}=(k z / M) \bmod 1 \in \Lambda(z, M)$,

$$
f\left(\boldsymbol{x}_{k}\right)=\sum_{j \in \mathcal{I}_{N}} \hat{f}_{j} \mathrm{e}^{-2 \pi \mathrm{i} k \frac{j z}{M}}=\sum_{r=0}^{M-1}\left(\sum_{\substack{j \in \mathcal{I}_{N} \\ j z \equiv r(\bmod M)}} \hat{f}_{j}\right) \mathrm{e}^{-2 \pi \mathrm{i} k \frac{r}{M}}
$$

$k=0, \ldots, M-1$, by 1 d DFT $/$ FFT (M)
(e.g. Li, Hickernell 2003; Kämmerer 2012)
arithmetic complexity $\mathcal{O}\left(\left|\mathcal{I}_{N}\right|+M \log M\right)$

Rank-1 lattices - Lattice based FFT

- evaluation of multivariate function $f(\boldsymbol{x})=\sum_{j \in \mathcal{I}_{N}} \hat{f}_{j} \mathrm{e}^{-2 \pi \mathrm{i} j \boldsymbol{x}}$ at $x_{k}=(k z / M) \bmod 1 \in \Lambda(z, M)$,

$$
f\left(\boldsymbol{x}_{k}\right)=\sum_{j \in \mathcal{I}_{N}} \hat{f}_{j} \mathrm{e}^{-2 \pi \mathrm{i} k \frac{j z}{M}}=\sum_{r=0}^{M-1}\left(\sum_{\substack{j \in \mathcal{I}_{N} \\ j z \equiv r(\bmod M)}} \hat{f}_{j}\right) \mathrm{e}^{-2 \pi \mathrm{i} k \frac{r}{M}}
$$

$k=0, \ldots, M-1$, by $1 \mathrm{~d} \operatorname{DFT} / \operatorname{FFT}(M)$
(e.g. Li, Hickernell 2003; Kämmerer 2012)
arithmetic complexity $\mathcal{O}\left(\left|\mathcal{I}_{N}\right|+M \log M\right)$

Rank-1 lattices - Lattice based FFT

- evaluation of multivariate function $f(\boldsymbol{x})=\sum_{j \in \mathcal{I}_{N}} \hat{f}_{j} \mathrm{e}^{-2 \pi \mathrm{i} j x}$ at $x_{k}=(k z / M) \bmod 1 \in \Lambda(z, M)$,

$$
f\left(\boldsymbol{x}_{k}\right)=\sum_{j \in \mathcal{I}_{N}} \hat{f}_{j} \mathrm{e}^{-2 \pi \mathrm{i} k \frac{j z}{M}}=\sum_{r=0}^{M-1}\left(\sum_{\substack{j \in \mathcal{I}_{N} \\ j z \equiv r(\bmod M)}} \hat{f}_{j}\right) \mathrm{e}^{-2 \pi \mathrm{i} k \frac{r}{M}}
$$

$$
k=0, \ldots, M-1 \text {, by } 1 \mathrm{~d} \operatorname{DFT} / \operatorname{FFT}(M)
$$

(e.g. Li, Hickernell 2003; Kämmerer 2012)
arithmetic complexity $\mathcal{O}\left(\left|\mathcal{I}_{N}\right|+M \log M\right)$

Taylor and rank-1 lattice based NFFT - Method

- Let $m \in \mathbb{N}, \Lambda(\boldsymbol{z}, M)$ be given. Approximate $f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}$ by Taylor expansion $s_{m}(\boldsymbol{x})$ at $\boldsymbol{x}_{k^{\prime}}=\underset{\boldsymbol{x}_{k} \in \Lambda(\boldsymbol{z}, M)}{\arg \min } \min _{\boldsymbol{j} \in \mathbb{Z}^{d}}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}+\boldsymbol{j}\right\|_{\infty}$
$s_{m}(\boldsymbol{x})=f\left(\boldsymbol{x}_{k^{\prime}}\right)+\sum_{0<|\boldsymbol{s}|<m} \frac{\left(\boldsymbol{x}-\boldsymbol{x}_{k^{\prime}}\right)^{\boldsymbol{s}}}{\boldsymbol{s}!}\left(D^{\boldsymbol{s}} f\right)\left(\boldsymbol{x}_{k^{\prime}}\right)$
- $\boldsymbol{x}:=\left(x_{1}, \ldots, x_{d}\right)^{\top}, \boldsymbol{s}:=\left(s_{1}, \ldots, s_{d}\right) \in \mathbb{N}_{0}^{d},|\boldsymbol{s}|:=s_{1}+\ldots+s_{d}$, $D^{s} f:=\frac{\partial^{s_{1}}}{\partial x_{1} s_{1}} \ldots \frac{\partial^{s_{d}}}{\partial x_{d}{ }^{s_{d}}}, s!:=s_{1}!\cdot \ldots \cdot s_{d}!, \boldsymbol{x}^{s}:=x_{1}{ }^{s_{1}} \cdot \ldots \cdot x_{d}{ }^{s_{d}}$

Taylor and rank-1 lattice based NFFT - Method

- Let $m \in \mathbb{N}, \Lambda(\boldsymbol{z}, M)$ be given. Approximate $f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}$ by Taylor expansion $s_{m}(\boldsymbol{x})$ at

$$
\boldsymbol{x}_{k^{\prime}}=\underset{\boldsymbol{x}_{k} \in \Lambda(\boldsymbol{z}, M)}{\arg \min } \min _{\boldsymbol{j} \in \mathbb{Z}^{d}}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}+\boldsymbol{j}\right\|_{\infty}
$$

$$
\begin{aligned}
s_{m}(\boldsymbol{x}) & =f\left(\boldsymbol{x}_{k^{\prime}}\right)+\sum_{0<|\boldsymbol{s}|<m} \frac{\left(\boldsymbol{x}-\boldsymbol{x}_{k^{\prime}}\right)^{\boldsymbol{s}}}{s!}\left(D^{s} f\right)\left(\boldsymbol{x}_{k^{\prime}}\right) \\
& =\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}_{k^{\prime}}}
\end{aligned}
$$

$$
+\sum_{0<|\boldsymbol{s}|<m} \frac{\left(\boldsymbol{x}-\boldsymbol{x}_{k^{\prime}}\right)^{\boldsymbol{s}}}{\boldsymbol{s}!} \sum_{\boldsymbol{j} \in \mathcal{I}_{N}}(-2 \pi \mathrm{i} \boldsymbol{j})^{\boldsymbol{s}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}_{k^{\prime}}}
$$

- $\boldsymbol{x}:=\left(x_{1}, \ldots, x_{d}\right)^{\top}, \boldsymbol{s}:=\left(s_{1}, \ldots, s_{d}\right) \in \mathbb{N}_{0}^{d},|\boldsymbol{s}|:=s_{1}+\ldots+s_{d}$, $D^{s} f:=\frac{\partial^{s_{1}}}{\partial x_{1} s_{1}} \ldots \frac{\partial^{s_{d}}}{\partial x_{d}{ }^{s_{d}}}, s!:=s_{1}!\cdot \ldots \cdot s_{d}!, \boldsymbol{x}^{s}:=x_{1}{ }^{s_{1}} \cdot \ldots \cdot x_{d}{ }^{s_{d}}$

Taylor and rank-1 lattice based NFFT - Method

- Let $m \in \mathbb{N}, \Lambda(\boldsymbol{z}, M)$ be given. Approximate

$$
f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}} \text { by Taylor expansion } s_{m}(\boldsymbol{x}) \text { at }
$$

$$
\boldsymbol{x}_{k^{\prime}}=\underset{\boldsymbol{x}_{k} \in \Lambda(\boldsymbol{z}, M)}{\arg \min } \min _{\boldsymbol{j} \in \mathbb{Z}^{d}}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}+\boldsymbol{j}\right\|_{\infty}
$$

$$
\begin{aligned}
s_{m}(\boldsymbol{x})= & f\left(\boldsymbol{x}_{k^{\prime}}\right)+\sum_{0<|\boldsymbol{s}|<m} \frac{\left(\boldsymbol{x}-\boldsymbol{x}_{k^{\prime}}\right)^{\boldsymbol{s}}}{\boldsymbol{s}!}\left(D^{\boldsymbol{s}} f\right)\left(\boldsymbol{x}_{k^{\prime}}\right) \\
= & \sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}_{k^{\prime}}} \\
& +\sum_{0<|\boldsymbol{s}|<m} \frac{\left(\boldsymbol{x}-\boldsymbol{x}_{k^{\prime}}\right)^{\boldsymbol{s}}}{\boldsymbol{s}!} \sum_{\boldsymbol{j} \in \mathcal{I}_{N}}(-2 \pi \mathrm{i} \boldsymbol{j})^{\boldsymbol{s}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}_{k^{\prime}}}
\end{aligned}
$$

- For fixed $\boldsymbol{s} \in \mathbb{N}_{0}^{d}$, compute $\left(D^{\boldsymbol{s}} f\right)\left(\boldsymbol{x}_{k}\right)=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}}(-2 \pi \mathrm{i} \boldsymbol{j})^{\boldsymbol{s}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}_{k}}$ for all $\boldsymbol{x}_{k} \in \Lambda(\boldsymbol{z}, M)$ with $1 d \operatorname{FFT}(M)$ in $\mathcal{O}\left(M \log M+\left|\mathcal{I}_{N}\right|\right)$

Taylor and rank-1 lattice based NFFT - Method

Algorithm (Taylor and rank-1 lattice based NFFT)

Input: $\mathcal{I}_{N}, \hat{f}_{j} \in \mathbb{C}, \Lambda(\boldsymbol{z}, M), m \in \mathbb{N}, \boldsymbol{y}_{\ell} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$, index $\mu_{\ell} \in\{0, \ldots, M-1\}$ of $\boldsymbol{x}_{\mu_{\ell}} \in \Lambda(\boldsymbol{z}, M)$ closest to \boldsymbol{y}_{ℓ}
1: Set $\tilde{s}\left(\boldsymbol{y}_{\ell}\right):=0, \ell=0, \ldots, L-1$.
2: for all $\boldsymbol{s} \in\left\{\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}: 0 \leq|\boldsymbol{\alpha}| \leq m-1\right\}$ do
3: Compute

$$
\begin{aligned}
& \quad\left(D^{s} f\right)\left(\boldsymbol{x}_{k}\right)=\sum_{r=0}^{M-1}\left(\sum_{\substack{\boldsymbol{j} \in \mathcal{I}_{N} \\
\boldsymbol{j z \equiv r (\operatorname { m o d } M)}}}(-2 \pi \mathrm{i} \boldsymbol{j})^{s} \hat{f}_{\boldsymbol{j}}\right) \mathrm{e}^{-2 \pi \mathrm{i} \frac{k r}{M},} \\
& \quad k=0, \ldots, M-1, \operatorname{using} 1 D F F T(M) .
\end{aligned}
$$

5: end for
Output: $s_{m}\left(\boldsymbol{y}_{\ell}\right):=\tilde{s}\left(\boldsymbol{y}_{\ell}\right), \ell=0, \ldots, M-1$ arithmetic complexity $\mathcal{O}\left(m^{d}\left(\left|\mathcal{I}_{N}\right|+M \log M+L\right)\right)$

Taylor and rank-1 lattice based NFFT - Method

evaluation of Taylor expansion $s_{m}(\boldsymbol{x})$ at $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$

- arithmetic complexity $\mathcal{O}\left(m^{d} L+m^{d}\left(M \log M+\left|\mathcal{I}_{N}\right|\right)\right)$

Taylor and rank-1 lattice based NFFT - Method

evaluation of Taylor expansion $s_{m}(\boldsymbol{x})$ at $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$

- arithmetic complexity $\mathcal{O}\left(m^{d} L+m^{d}\left(M \log M+\left|\mathcal{I}_{N}\right|\right)\right)$
- choose $M \sim\left|\mathcal{I}_{N}\right|$

$$
\Longrightarrow \mathcal{O}\left(m^{d} L+m^{d}\left|\mathcal{I}_{N}\right| \log \left|\mathcal{I}_{N}\right|\right)
$$

Taylor and rank-1 lattice based NFFT - Method

evaluation of Taylor expansion $s_{m}(\boldsymbol{x})$ at $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$

- arithmetic complexity $\mathcal{O}\left(m^{d} L+m^{d}\left(M \log M+\left|\mathcal{I}_{N}\right|\right)\right)$
- choose $M \sim\left|\mathcal{I}_{N}\right|$

$$
\Longrightarrow \mathcal{O}\left(m^{d} L+m^{d}\left|\mathcal{I}_{N}\right| \log \left|\mathcal{I}_{N}\right|\right)
$$

- for symmetric hyperbolic cross index sets

$$
\begin{aligned}
& \mathcal{I}_{N}=H_{N}^{d}:=\left\{\boldsymbol{j} \in \mathbb{Z}^{d}: r(\boldsymbol{j}) \leq N\right\}, r(\boldsymbol{j}):=\prod_{t=1}^{d} \max \left(1,\left|j_{t}\right|\right) \\
& \left|H_{N}^{d}\right| \leq C N \log ^{d-1} N \\
& \Longrightarrow \mathcal{O}\left(m^{d} L+m^{d} N \log ^{d} N\right)
\end{aligned}
$$

Taylor and rank-1 lattice based NFFT - Error estimate

Theorem

Let a symmetric hyperbolic cross index set $\mathcal{I}_{N}=H_{N}^{d}, N \in \mathbb{N}$, $N \geq 2$, and a trigonometric polynomial $f(\boldsymbol{x}):=\sum_{\boldsymbol{j} \in H_{N}^{d}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}, \hat{f}_{\boldsymbol{j}} \in \mathbb{C}$, be given. Then, there exists a rank-1 lattice $\Lambda(\boldsymbol{z}, M)$ of size $M,\left|H_{N}^{d}\right| \leq M \leq C_{d}\left|H_{N}^{d}\right|$, such that $R_{m}(\boldsymbol{x}):=f(\boldsymbol{x})-s_{m}(\boldsymbol{x})$ is bounded by

$$
\left|R_{m}(\boldsymbol{x})\right|<C(m, d) \frac{N^{(m-\alpha)+}}{M^{m / d}} \sum_{\boldsymbol{j} \in H_{N}^{d}}\left|\hat{f}_{\boldsymbol{j}}\right| r(\boldsymbol{j})^{\alpha}
$$

for all $\alpha \geq 0$, where $C(m, d)>0$ and $(x)_{+}:=\max (0, x)$.

Taylor and rank-1 lattice based NFFT - Error estimate

Theorem

Let a symmetric hyperbolic cross index set $\mathcal{I}_{N}=H_{N}^{d}, N \in \mathbb{N}$, $N \geq 2$, and a trigonometric polynomial $f(\boldsymbol{x}):=\sum_{\boldsymbol{j} \in H_{N}^{d}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}, \hat{f}_{\boldsymbol{j}} \in \mathbb{C}$, be given. Then, there exists a rank-1 lattice $\Lambda(\boldsymbol{z}, M)$ of size $M,\left|H_{N}^{d}\right| \leq M \leq C_{d}\left|H_{N}^{d}\right|$, such that $R_{m}(\boldsymbol{x}):=f(\boldsymbol{x})-s_{m}(\boldsymbol{x})$ is bounded by

$$
\left|R_{m}(\boldsymbol{x})\right|<C(m, d) \frac{N^{(m-\alpha)_{+}}}{M^{m / d}} \sum_{\boldsymbol{j} \in H_{N}^{d}}\left|\hat{f}_{\boldsymbol{j}}\right| r(\boldsymbol{j})^{\alpha}
$$

for all $\alpha \geq 0$, where $C(m, d)>0$ and $(x)_{+}:=\max (0, x)$.

Corollary

$$
\max _{\boldsymbol{x} \in \mathbb{T} d}\left|R_{m}(\boldsymbol{x})\right|
$$

For fixed $N \in \mathbb{N}, N \geq 2$, we have $\frac{\boldsymbol{x} \in \mathbb{T}^{d}}{\sum_{\boldsymbol{j} \in H_{N}^{d}}\left|\hat{f}_{\boldsymbol{j}}\right| r(\boldsymbol{j})^{\alpha}} \lesssim M^{-m / d}$.

Taylor and rank-1 lattice based NFFT - Error estimate

Theorem

Let a symmetric hyperbolic cross index set $\mathcal{I}_{N}=H_{N}^{d}, N \in \mathbb{N}$, $N \geq 2$, and a trigonometric polynomial $f(\boldsymbol{x}):=\sum_{\boldsymbol{j} \in H_{N}^{d}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{j} \boldsymbol{x}}, \hat{f}_{\boldsymbol{j}} \in \mathbb{C}$, be given. Then, there exists a rank-1 lattice $\Lambda(\boldsymbol{z}, M)$ of size $M,\left|H_{N}^{d}\right| \leq M \leq C_{d}\left|H_{N}^{d}\right|$, such that $R_{m}(\boldsymbol{x}):=f(\boldsymbol{x})-s_{m}(\boldsymbol{x})$ is bounded by

$$
\left|R_{m}(\boldsymbol{x})\right|<C(m, d) \frac{N^{(m-\alpha)+}}{M^{m / d}} \sum_{\boldsymbol{j} \in H_{N}^{d}}\left|\hat{f}_{\boldsymbol{j}}\right| r(\boldsymbol{j})^{\alpha}
$$

for all $\alpha \geq 0$, where $C(m, d)>0$ and $(x)_{+}:=\max (0, x)$.

Corollary

$$
\max _{\boldsymbol{m} \in \mathbb{T} d}\left|R_{m}(\boldsymbol{x})\right|
$$

For $\alpha=m$, we have $\frac{\boldsymbol{x} \in \mathbb{T}^{d}}{\sum_{\boldsymbol{j} \in H_{N}^{d}}\left|\hat{f}_{\boldsymbol{j}}\right| r(\boldsymbol{j})^{m}} \lesssim\left(N \log ^{d-1} N\right)^{-m / d}$.

Taylor and rank-1 lattice based NFFT - Numerical Results

- Taylor and rank-1 lattice based NFFT for frequency index set $\mathcal{I}_{N} \subset \mathbb{Z}^{d} \cap[-N, N]^{d}$ implemented in MATLAB
- numerical tests for symmetric hyperbolic cross index set $\mathcal{I}_{N}=H_{N}^{d}$
- rank-1 lattice size $M \sim\left|H_{N}^{d}\right| \leq C N \log ^{d-1} N$
- test cases $d=2, \ldots, 4$ for Taylor expansions $s_{m}, m=2, \ldots, 6$
- $L=100000$ (uniformly) randomly distributed nodes $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}$, $\mathcal{Y}:=\left\{\boldsymbol{y}_{\ell}\right\}_{\ell=0}^{L-1}$
- determination of maximum relative error

$$
E_{\alpha}:=\frac{\max _{\boldsymbol{y}_{\ell} \in \mathcal{Y}}\left|R_{m}\left(\boldsymbol{y}_{\ell}\right)\right|}{\left(\sum_{\boldsymbol{j} \in H_{N}^{d}}\left|\hat{f}_{\boldsymbol{j}}\right| r(\boldsymbol{j})^{\alpha}\right)}
$$

Taylor and rank-1 lattice based NFFT - Numerical Results

- (uniformly) random Fourier coefficients $\hat{f}_{\boldsymbol{j}} \in(0,1] / r(\boldsymbol{j})^{\alpha}$
- $M=\sigma 2\left|H_{N}^{d}\right| \leq C N \log ^{d-1} N$, case $d=4$ for $m=4,6$
- error $E_{0}:=\frac{\max _{\boldsymbol{y}_{\ell} \in \mathcal{Y}}\left|R_{m}\left(\boldsymbol{y}_{\ell}\right)\right|}{\sum_{j \in H_{N}^{d}}\left|\hat{f}_{j}\right|}$

Taylor and rank-1 lattice based NFFT - Numerical Results

- Fourier coefficient $\hat{f}_{(N, 0, \ldots, 0)^{\top}}=1 / r(\boldsymbol{j})^{\alpha}$, other $\hat{f}_{\boldsymbol{j}}=0$
- $M \approx 2\left|H_{N}^{d}\right| \leq C N \log ^{d-1} N$, case $d=3,4$
- error $E_{m}:=\frac{\max _{\boldsymbol{y}_{\ell} \in \mathcal{Y}}\left|R_{m}\left(\boldsymbol{y}_{\ell}\right)\right|}{\sum_{\boldsymbol{j} \in H_{N}^{d}}\left|\hat{f}_{\boldsymbol{j}}\right| r(\boldsymbol{j})^{m}}$
should decrease like $\sim \frac{1}{\left(N \log ^{d-1} N\right)^{m / d}}$

Summary

- curse of dimensionality attenuated by using a (small) subset \mathcal{I}_{N} of the full grid $\mathbb{Z}^{d} \cap[-N, N]^{d}$ in frequency domain
- algorithm for the fast approximative evaluation of trigonometric polynomials

$$
f(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \mathcal{I}_{N}} \hat{f}_{\boldsymbol{j}} \mathrm{e}^{-2 \pi \mathrm{i} j \boldsymbol{x}}, \hat{f}_{\boldsymbol{j}} \in \mathbb{C}, \mathcal{I}_{N} \subset \mathbb{Z}^{d} \cap[-N, N]^{d}, N \in \mathbb{N}
$$

at arbitrary nodes $\boldsymbol{y}_{\ell} \in \mathbb{T}^{d}, \ell=0, \ldots, L-1$, presented

- error estimate for symmetric hyperbolic cross index sets $\mathcal{I}_{N}=H_{N}^{d}$ presented
- numerical results confirmed theoretical error estimates

