High-dimensional approximation and sparse FFT using multiple rank-1 lattices

Frequency index set I

Task

We want to reconstruct a high-dimensional (e.g. $d=10$) periodic signal using a trigonometric polynomial $p: \mathbb{T}^{d} \simeq[0,1)^{d} \rightarrow \mathbb{C}$,

$$
p(\boldsymbol{x}):=\sum_{k \in I} \hat{p}_{k} \mathrm{e}^{2 \pi i k \cdot x}, \quad \hat{p}_{k} \in \mathbb{C},
$$

from samples, where $I \subset \mathbb{Z}^{d}$ is a suitable and possibly unknown frequency index set.

Sampling nodes

Known frequency index set I

Multiple rank-1 lattices as sampling sets

A multiple rank-1 lattice Λ is the union of $L \in \mathbb{N}$ many rank- 1 lattices,

$$
\begin{aligned}
\Lambda=\Lambda\left(\boldsymbol{z}_{1}, M_{1}, \ldots, \boldsymbol{z}_{L}, M_{L}\right) & :=\bigcup_{\ell=1}^{L} \Lambda\left(\boldsymbol{z}_{\ell}, M_{\ell}\right) \\
\Lambda(\boldsymbol{z}, M) & :=\{j \boldsymbol{z} / M \bmod \mathbf{1}: j=0, \ldots, M-1\} \subset \mathbb{T}^{d}
\end{aligned}
$$

and consists of $|\Lambda| \leq 1-L+\sum_{\ell=1}^{L} M_{\ell}$ many nodes.
Reconstructing multiple rank-1 lattice Λ for I, sufficient condition:

$$
\boldsymbol{k} \cdot \boldsymbol{z}_{\ell} \not \equiv \boldsymbol{k}^{\prime} \cdot \boldsymbol{z}_{\ell}\left(\bmod M_{\ell}\right) \text { for all } \boldsymbol{k} \in I_{\ell}, \boldsymbol{k}^{\prime} \in I, \boldsymbol{k} \neq \boldsymbol{k}^{\prime}, \quad \bigcup_{\ell=1}^{L} I_{\ell}=I
$$

Fast construction and high-dimensional FFT

Fast probabilistic construction algorithm for reconstructing Λ is available. Under mild assumptions with high probability, we have $|\Lambda| \lesssim|I| \log |I|$ and the construction requires $\mathcal{O}(|I|(d+\log |I|) \log |I|)$ arithmetic operations.
Oversampling factor $|\Lambda| /|I| \lesssim L$ does not depend on the dimension d. FFT requires only $\mathcal{O}(|I|(d+\log |I|) \log |I|)$ arithmetic operations.

Approximation results

$f \in \mathcal{A}_{\text {mix }}^{\beta}:=\left\{g \in L_{1}\left(\mathbb{T}^{d}\right):\left\|g\left|\mathcal{A}_{\text {mix }}^{\beta} \|:=\sum_{k \in \mathbb{Z}^{d}}\right| \hat{g}_{k} \mid \Pi_{s=1}^{d} \max \left(1,\left|k_{s}\right|\right)^{\beta}<\infty\right\}\right.$.
For hyperbolic cross frequency index sets I, one can show $\left\|f-S_{I}^{\Lambda} f\left|L_{2}\left(\mathbb{T}^{d}\right)\|\leq\| f-S_{I}^{\Lambda} f\right| L_{\infty}\left(\mathbb{T}^{d}\right)\right\| \lesssim M^{-\beta}(\log M)^{d \beta+1}\left\|f \mid \mathcal{A}_{\text {mix }}^{\beta}\right\|$.

Numerical example

See also the references in

L. Kämmerer. Constructing spatial discretizations for sparse multivariate trigonometric polynomials that allow for a fast discrete Fourier transform. ArXiv e-prints 1703.07230, Nov. 2017.

Unknown frequency index set I

Dimension-incremental sparse FFT method

Adaptively construct the index set of frequencies belonging to the approx. largest (or non-zero) Fourier coefficients in a dimension incremental way. Compute projected Fourier coefficients from samples along multiple rank-1 lattices and then determine frequency locations.

- MATLAB implementation available
- samples: $\mathcal{O}\left(d|I|^{2} N(\log |I|)^{2}|\log \varepsilon|\right)$ w.h.p., arithm. operations: $\mathcal{O}\left(d^{2}|I|^{2} N(\log |I|)^{3}|\log \varepsilon|\right)$ w.h.p. (if $I \subset\left([-N, N]^{d} \cap \mathbb{Z}^{d}\right.$) and $\left.|I| \gtrsim N\right)$

Steps for reconstruction of 3 -dim. trigonometric polynomial

Example: Approximation of 10 -dimensional test function

See also the references in

L. Kämmerer, D. Potts, T. Volkmer. High-dimensional sparse FFT based on sampling along multiple rank-1 lattices. ArXiv e-prints 1711.05152, Nov. 2017.

EFRE

