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High-dimensional approximation and sparse FFT
using multiple rank-1 lattices

We want to reconstruct a high-dimensional (e. g d = 10) periodic signal
using a trigonometric polynomial p: T¢ ~ [0,1)¢ — C,

plx) =Y ppe®™**  p € C,

Sampling nodes

kel 5 4 ° g%
from samples, where I C Z“ is a suitable and possibly unknown frequency
index set. S R
Known frequency index set / Unknown frequency index set /

Multiple rank-1 lattices as sampling sets Dimension-incremental sparse FFT method

A multiple rank-1 lattice A is the union of L € N many rank-1 lattices, Adaptively construct the index set of frequencies belonging to the approx.

largest (or non-zero) Fourier coefficients in a dimension incremental way.

A=Az, M., 20, ML) = U Aze, Me), Compute projected Fourier coefficients from samples along multiple rank-1
Az, M) = { J 2/Mmod1:j=0,. N cT? lattices and then determine frequency locations.

and consists of |[A| < 1 — L + >, M, many nodes. » MATLAB implementation available
~ samples: O(d |I|°N (log |1])?| log £]) w.h.p.,

Reconstructing multiple rank-1 lattice A for 7, sufficient condition: . arithm. operations: O (d|712N (log |1))?| log <) w.h.p.
k-z Zk'-z; (mod My)forallk e I,, K" e I.k+#Kk', |JI,=1. (if I ¢ (]—=N,N|4nZ4) and |I| > N)
(=1

Steps for reconstruction of 3-dim. trigonometric polynomial

Fast construction and high-dimensional FFT

Fast probabilistic construction algorithm for reconstructing A is available. ces Supponied on dex set [ g | | T deetion determine 0,0 e || & Sample anddreston
. . . . - black-box.
Under mild assumptions with high probability, we have |A| < |I|log |I| and <> <> <>
the construction requires O(|I|(d + log |I|) log |I|) arithmetic operations. 1 ~L "
Oversampling factor |A|/|I| < L does not depend on the dimension d. N : 1 ST ) 1
p g ‘ /‘ ‘ Y p _SH\/]Q oxl\o/ 0\14
FFT requ"es Only O(‘[ (d —l_ 1Og ‘[D 1Og ‘[D arlthmenc Operat|0ns 4. 1-dim. FU along 2nd direction, 5. Build 7(V) x 1. 6. Sample at A in first two 7. FFT, determine /(%)
determine /1%, directions.

Approximation results
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fe A ={g€ LT [lg| Al = Saens 98] Ty max(1, k]’ < oo}, T ~CT
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For hyperbolic cross frequency index sets 7, one can show
| f = STALATH) < || f — S f | Loo(T)

8. Sample in 3rd direction.

5 M_B (log M)dﬁ—i_l Hf‘AgllXH . 9. 1-dim. FFT along 3rd direction,

12. FFT, determine 7(1:2%), We have
[(17273) p— ]

determine 7(3). Q
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Number of sampling points A/ B,, is B-Spline of order m Sparsity |/| Number of sampling points A/
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