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Abstract—The nonequispaced fast Fourier transform (NFFT)
allows the fast approximate evaluation of trigonometric polyno-
mials with frequencies supported on full box-shaped grids at
arbitrary sampling nodes. Due to the curse of dimensionality,
the total number of frequencies and thus, the total arithmetic
complexity can already be very large for small refinements at
medium dimensions. In this paper, we present an approach for the
fast approximate evaluation of trigonometric polynomials with
frequencies supported on symmetric hyperbolic cross index sets
at arbitrary sampling nodes. This approach is based on Taylor
expansion and rank-1 lattice methods. We prove error estimates
for the approximation and present numerical results.

I. INTRODUCTION

We consider the evaluation of trigonometric polynomials
f : Td := [0, 1)d → C,

f(x) =
∑
l∈IN

f̂l e−2πilx, f̂l ∈ C, IN ⊂ Zd ∩ [−N,N ]d, (1)

at arbitrary sampling nodes y` ∈ Td, ` = 0, . . . , L− 1. For
given Fourier coefficients f̂l, the direct evaluation of the
trigonometric sums f(y`), ` = 0, . . . , L− 1, takes O(L |IN |)
arithmetic operations. Various fast methods for the approxi-
mate evaluation of the trigonometric sums f(y`) were devel-
oped.

In the case, when the frequency index set IN is a full
grid, IN = GdN := Zd ∩ [−N,N)d, the nonequispaced fast
Fourier transform (NFFT, see [1] and references therein) al-
lows the fast approximate evaluation of the trigonometric poly-
nomial f at arbitrary sampling nodes y`, ` = 0, . . . , L− 1,
in O(| log ε|dL+ |GdN | log |GdN |) arithmetic operations, where
ε is the approximation error. Furthermore, there exist Taylor
based versions (cf. [2], [3]) with an arithmetic complexity of
O(| log ε|d(L+ |GdN | log |GdN |)), which use fast Fourier trans-
forms (FFT) for evaluating the trigonometric polynomial f as
well as its derivatives at equispaced nodes and approximate the
trigonometric sum f(y`) by a Taylor expansion at the closest
equispaced node. However, since the cardinality of the full
grid GdN is |GdN | = (2N)d, the total number of arithmetic
operations can already be very large for small refinements N
at medium dimensionality (e.g. d = 3, 4, 5).

For dyadic hyperbolic crosses H̃d
n := ∪j∈Nd

0 ,‖j‖1=n G̃j ,
G̃j := Zd ∩ ×dt=1(−2jt−1, 2jt−1], ‖j‖1 = |j1|+ . . .+ |jd|,
the nonequispaced hyperbolic cross fast Fourier transform
(NHCFFT) [4] allows the fast approximate evaluation of

trigonometric polynomials with frequencies supported on
the index set IN = H̃d

n at arbitrary sampling nodes y`,
` = 0, . . . , L− 1. The NHCFFT is based on the hyperbolic
cross FFT (cf. [5], [6]) and has an arithmetic complexity of
O(| log ε|d L log |H̃d

n|+ | log ε| |H̃d
n|+ |H̃d

n| log |H̃d
n|), where

|H̃d
n| ≤ C nd−1 2n with a constant C > 0 depending only on

d. In [7], the stability of the hyperbolic cross discrete Fourier
transform was studied.

For symmetric hyperbolic cross index sets
IN = Hd

N := {j ∈ Zd : r(j) ≤ N} in frequency domain
with refinement N ∈ N, r(j) :=

∏d
t=1 max(1, |jt|), we

present an approach for the fast approximate evaluation
at arbitrary sampling nodes y`. This method uses
one-dimensional FFTs for evaluating the trigonometric
polynomial f and its derivatives at nodes of a rank-1 lattice.
Then, for each sampling node y`, a Taylor expansion of
degree m− 1, m ∈ N, at a closest rank-1 lattice node is
performed. This results in a total arithmetic complexity
of O(md (L+M logM + |Hd

N |)), where M ∈ N is the
size of the rank-1 lattice. We show error estimates for the
approximation error of the presented method. Note, that
we have the inclusion H̃d

n ⊂ Hd
2n−1 ⊂ H̃d

n−1+2d, see [8,
Lemma 2.1].

In Section II, we give a short overview over Taylor expan-
sion of trigonometric polynomials and define rank-1 lattices.
We show that trigonometric polynomials can be evaluated
at rank-1 lattice nodes using a one-dimensional FFT. The
proposed method is presented in Section III as well as error
estimates for symmetric hyperbolic cross index sets Hd

N .
Results of numerical tests are presented in Section IV. Finally,
we summarize the results in Section V.

II. PREREQUISITE

A. Taylor expansion

We approximate a function f : Td → C by

f(x) ≈ sm(x) :=
∑

0≤|s|<m

Dsf(a)

s!
(x− a)s,

where m ∈ N, Dsf := ∂s1

∂x1
s1
. . . ∂sd

∂xd
sd

, x := (x1, . . . , xd)
>,

s := (s1, . . . , sd) ∈ Nd0, |s| := |s1|+ . . .+ |sd|, D0f := f ,
s! := s1! · . . . · sd!, xs := x1

s1 · . . . · xdsd .



For a trigonometric polynomial f from (1), we have
Dsf(x) =

∑
l∈IN (−2πil)s f̂l e−2πilx and thus,

sm(x) =
∑

0≤|s|<m

(x− a)s

s!

∑
l∈IN

(−2πil)s f̂l e−2πila. (2)

B. Rank-1 lattice

Definition II.1 (rank-1 lattice). Let M ∈ N,
z ∈ Zd. We define the rank-1 lattice Λ(z,M) ⊂ Td
of size M with generating vector z ∈ Zd by
Λ(z,M) := {xk := ((kz) mod M)/M}M−1

k=0 .

Definition II.2 (mesh norm). Let the metric
µ(x,y) := mink∈Zd ‖x− y + k‖∞ be given for x,y ∈ Td.
We define the mesh norm δ of an arbitrary point set
X := {xk}M−1

k=0 ⊂ Td by δ := 2 max
x∈Td

min
xk∈X

µ(xk,x).

For an arbitrary point set X ⊂ Td of size |X | = M , we have
δ ≥ 1/ d

√
M , see e.g. [9, Lemma 3.1]. The following Lemma

shows the existence of a rank-1 lattice Λ(z,M) of size M ,
such that the mesh norm δ ≤ Cd/

d
√
M , where Cd > 1 is a

constant depending only on d, i.e., we have δ ∼ 1/ d
√
M .

Lemma II.3. Let b ∈ N, b ≥ 3. Then, there exists a
rank-1 lattice Λ(z,M) of size M = b(b+ 1) for d = 2 and
bd · 2

d(d−1)
2 −1 < M ≤ bd · 2d(d−2) for d ≥ 3 with generating

vector z ∈ Zd, such that the mesh norm δ ≤ Cd/ d
√
M , where

Cd > 1 is a constant depending only on d.

Proof: In the case d = 2, we choose the rank-1 lattice size
M := b · (b+ 1) and the generating vector z := (b, b+ 1)>.
Since b and b+ 1 are relatively prime to each other, there
exists a bijective mapping between the rank-1 lattice nodes
xk := (kz mod M)/M , k = 0, . . . ,M − 1, and the grid
(j1/(b+ 1), j2/b)

>, j1 = 0, . . . , b and j2 = 0, . . . , b− 1, cf.
[10]. Obviously, the mesh norm δ = 1/b ≤ 2√

3
/
√
M .

In the case d = 3, we set v1 := 2b+ 1 and v2 := 2b.
Due to Bertrand’s postulate there exists a prime num-
ber p3 ∈ N, b ≤ p3 < 2b. We choose v3 ∈ {p3, . . . , v2 − 1},
such that v3 is relatively prime to v1 and v2. We set
the rank-1 lattice size M := v1 · v2 · v3 and the generat-
ing vector z := (M/v1, M/v2, M/v3)>. Then, the mesh
norm δ ≤ 1/v3 ≤ 1/b ≤ 2/ 3

√
M and the rank-1 lattice size

M = (2b+ 1) · 2b · v3 ≥ (2b+ 1) · 2b · b > b3 · 22.
In the case d ≥ 4, we set v1 := b · 2d−2 + 1 and

v2 := b · 2d−2. We apply Bertrand’s postulate d− 2 times
and choose v3, . . . , vd, such that v1, . . . , vd are relatively
prime to each other and v3 > . . . > vd ≥ b. We choose the
rank-1 lattice size M :=

∏d
t=1 vt and the generating vector

z := (M/v1, . . . ,M/vd)
>. This yields that the mesh norm

δ ≤ 1/vd ≤ 1/b ≤ 2d−2/ d
√
M and the rank-1 lattice size

M ≥ (2d−2b+ 1) · 2d−2b ·
∏d
t=3(2d−tb) > bd · 2

d(d−1)
2 −1.

The following Lemma shows that rank-1 lattices exist where
the constant Cd is arbitrarily close to 1 for constant d and
increasing rank-1 lattice size M .

Lemma II.4. For each constant Cd > 1, there exists a param-
eter M∗ ∈ N, such that for all M ′ ≥M∗ we can construct a

rank-1 lattice Λ(z,M) of sizeM ∈
(
M ′, (Cd)

dM ′
]

with mesh
norm δ < Cd/

d
√
M .

Proof: Let Rc,d be the dth c-Ramanujan prime
[11], i.e., the smallest integer such that there are at
least d primes in the interval (cx, x] for all x ≥ Rc,d,
where c ∈ (0, 1). For arbitrary constant Cd > 1, we set
c := (Cd)

−1, M∗ :=
(
(Cd)

−1R(Cd)−1,d

)d
and x := Cd

d
√
M ′,

M ′ ≥ 1. Then, there are at least d primes v1, . . . , vd in
the interval ( d

√
M ′, Cd

d
√
M ′] for all M ′ ≥M∗. We choose

the rank-1 lattice size M :=
∏d
t=1 vt and the generating

vector z := (M/v1, . . . ,M/vd)
>. Consequently, we have

M ′ < M ≤ (Cd)
dM ′ and δ < 1/ d

√
M ′ ≤ Cd/ d

√
M .

C. Evaluation at rank-1 lattice nodes (rank-1 lattice FFT)
We consider the evaluation of a trigonometric polyno-

mial g : Td → C supported on the frequency index set
IN ⊂ Zd ∩ [−N,N ]d, g(x) :=

∑
l∈IN ĝl e−2πilx, ĝl ∈ C, at

rank-1 lattice nodes xk ∈ Λ(z,M). As presented in [8], we
have

g(xk) = g(kz/M) =

M−1∑
j=0

 ∑
l∈IN

lz≡j(modM)

ĝl

 e−2πi kj
M

and the outer sum is a one-dimensional discrete Fourier
transform of length M . Using a one-dimensional FFT, the
trigonometric polynomial g can be evaluated at all rank-1
lattice nodes in O(M logM + |IN |) arithmetic operations.

Setting the Fourier coefficients ĝl := (−2πil)sf̂l, where
f̂l are the Fourier coefficients of a trigonometric polyno-
mial f from (1), yields g(xk) = Dsf(xk). Thus, for fixed
s ∈ Nd0, the mixed derivatives Dsf(x) of the trigonometric
polynomial f can be evaluated at all rank-1 lattice nodes
xk, k = 0, . . . ,M − 1, in O(M logM + |IN |) arithmetic
operations.

III. NFFT BASED ON TAYLOR EXPANSION AND RANK-1
LATTICE FFT

A. Method
Let a frequency index set IN ⊂ Zd ∩ [−N,N ]d and a

rank-1 lattice Λ(z,M) of size M be given. We replace the
expansion point a in (2) by a closest rank-1 lattice node
xk′ = arg minxk∈Λ(z,M) µ(x,xk), and obtain the Taylor ex-
pansion

sm(x) =
∑

0≤|s|<m

(x− xk′)s

s!

∑
l∈IN

(−2πil)s f̂l e−2πilxk′ . (3)

Assuming that a closest rank-1 lattice node xk′ is known
for each sampling node y`, the Taylor expansion sm in (3)
can be calculated inO

(
md(L+M logM + |IN |)

)
arithmetic

operations for all sampling nodes y`, ` = 0, . . . , L− 1.
For symmetric hyperbolic cross index sets IN = Hd

N ,
N ∈ N, N ≥ 2, we have |Hd

N | ≤ CHN logd−1N for N ≥ 2
with a constant CH > 0, see e.g. [12]. Choosing the rank-1
lattice size M ∼ |Hd

N |, we obtain an arithmetic complexity of
O
(
md(L+N logdN)

)
.



B. Error estimates for symmetric hyperbolic cross index sets
Theorem III.1. Let a trigonometric polynomial f : Td → C
supported on the symmetric hyperbolic cross index set
IN = Hd

N , f(x) =
∑
l∈Hd

N
f̂l e−2πilx, f̂l ∈ C, N ∈ N,

be given. Furthermore, let Λ(z,M) be a rank-1 lattice
with mesh norm δ. Then, for the approximation of the
trigonometric polynomial f by a truncated Taylor series
sm(x) :=

∑m−1
|s|=0

Dsf(xk′ )
s! (x− xk′)s of degree m− 1 from

(3), where m ∈ N and xk′ = arg minxk∈Λ(z,M) µ(x,xk), the
remainder Rm(x) := f(x)− sm(x) is bounded by

|Rm(x)| ≤ dmπm

m!
δmNm−α

∑
l∈Hd

N

|f̂l| r(l)α,

where α ∈ [0,m] is the smoothness parameter.

Proof: Let ξ(t) := xk′ + t(x− xk′), t ∈ [0, 1]. The
remainder Rm(x) can be written (cf. [13, Ch. 1]) in the form

Rm(x) = m
1∫
0

(1− t)m−1
∑
|s|=m

Dsf(ξ(t))
(x− xk′)s

s!
dt.

Then,

|Rm(x)|

≤ m

∫ 1

0

(1− t)m−1
∑
|s|=m

|Dsf(ξ(t))| |(x− xk
′)s|

s!
dt

≤ max
t∈[0,1]

∑
|s|=m

∣∣∣∣∣∣
∑
l∈Hd

N

(−2πil)sf̂l e−2πil(ξ(t))

∣∣∣∣∣∣|(x− xk′)
s|

s!

≤
∑
|s|=m

|(x− xk′)s|
s!

∑
l∈Hd

N

|(−2πil)s||f̂l|.

Since µ(x,xk′) ≤ δ/2 and by applying the multinomial the-
orem, we get

|Rm(x)| ≤
∑
|s|=m

(
δ
2

)|s|
s!

∑
l∈Hd

N

|(−2πil)s| |f̂l|

≤ πmδm
∑
l∈Hd

N

|f̂l|
∑
|s|=m

|l1|s1 · . . . · |ld|sd
s!

≤ πmδm
∑
l∈Hd

N

|f̂l|
‖l‖m1
m!

.

Introducing weights r(l)α, 0 ≤ α ≤ m, we obtain

|Rm(x)| ≤ πmδm
∑
l∈Hd

N

|f̂l| r(l)α
‖l‖m1

r(l)α m!

≤ πmδm

m!

∑
l∈Hd

N

|f̂l| r(l)α
dm r(l)m

r(l)α

≤ dmπmδm

m!

∑
l∈Hd

N

|f̂l| r(l)α
 max
l∈Hd

N

r(l)m−α

=
dmπm

m!
δmNm−α

∑
l∈Hd

N

|f̂l| r(l)α.

Corollary III.2. Let a hyperbolic cross index set IN = Hd
N ,

N ∈ N, N ≥ 2, and a rank-1 lattice Λ(z,M) of size
M := CLN logd−1N ∼ |Hd

N | for some constant CL ≥ 1 be
given, where the generating vector z is chosen as in the proof
of Lemma II.3. Then,

|Rm(x)| ≤ dmπm

m!
(Cd)

mM−m/d Nm−α
∑
l∈Hd

N

|f̂l| r(l)α

=
dmπm

m!
(Cd)

m Nm−α

(CLN logd−1N)
m
d

∑
l∈Hd

N

|f̂l| r(l)α

is valid for all smoothness parameters α ∈ [0,m], where
Cd > 1 is the constant from Lemma II.3.

Proof: From Lemma II.3, we obtain that the mesh norm
δ ≤ CdM−1/d. Applying Theorem III.1 yields the result.

Remark III.3. If we choose the smoothness parameter
α ∈ [d−1

d m,m], Corollary III.2 guarantees a decreasing rel-

ative error |Rm(x)|/
(∑

l∈Hd
N
|f̂l| r(l)α

)
for increasing re-

finement N . Setting the smoothness parameter α := m yields
|Rm(x)| ≤ dmπm

m! (Cd)
m (CLN logd−1N)−

m
d

∑
l∈Hd

N

|f̂l| r(l)m.

Remark III.4. The presented method can also be used for
the approximate evaluation of trigonometric polynomials f
supported on other frequency index sets. For instance, consider
the case of l1 balls, IN = {j ∈ Zd : ‖j‖1 ≤ N}. In the proof
of Theorem III.1, we introduce weights ‖l‖α1 instead of r(l)α.
Then, we obtain |Rm(x)| ≤ πm

m! δ
mNm−α ∑

l∈IN
|f̂l| ‖l‖α1 .

IV. NUMERICAL RESULTS

The Taylor expansion sm in (3) was implemented in
MATLAB for trigonometric polynomials f from (1) as de-
scribed in Section III-A.

For symmetric hyperbolic cross index sets IN = Hd
N , nu-

merical tests were performed. The generating vector z of
each rank-1 lattice Λ(z,M) was chosen as in the proof
of Lemma II.3. The maximum relative approximation error
Eα := maxy`∈Y |Rm(y`)|/

(∑
l∈Hd

N
|f̂l| r(l)α

)
was deter-

mined using L = 100 000 uniformly random sampling nodes
y` ∈ Td, Y := {y`}L−1

l=0 .

A. Decreasing error Eα for increasing rank-1 lattice size M

In this test case, we uniformly randomly chose the Fourier
coefficients f̂l ∈ (0, 1]/r(l)α, l ∈ IN = Hd

N . All tests were
repeated five times using different Fourier coefficients f̂l and
sampling nodes y`. Then, the average error of these five test
runs was used.

We set the rank-1 lattice size M := σ · 2 |Hd
N | with a factor

σ ≥ 1
2 . Due to Corollary III.2, the error Eα should decrease at

least like ∼ σ−m/d for increasing factor σ. In tests performed
for the cases d = 2, . . . , 5 and m = 2, . . . , 6, this behaviour
could be observed. Figure 1 shows the error E0 for increasing
values of factor σ for refinements N = 10, 20, 40 and m = 3, 6
in the four- and five-dimensional case as well as the lines
∼ σ−m/d.
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Fig. 1. Approximation error E0 for increasing values of factor σ with
rank-1 lattice size M = σ 2|Hd

N | for Taylor expansions sm of degree m− 1,
m = 3, 6, in the cases d = 4, 5.
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Fig. 2. Approximation error Em for increasing hyperbolic cross refinements
N with rank-1 lattice size M ≈ 2|Hd

N | for Taylor expansions sm of
degreem− 1,m = 2, . . . , 6, and theoretical bounds∼ (N logd−1N)−m/d

(solid lines without symbols) in the cases d = 4, 5.

B. Decreasing error Em for increasing refinement N of the
symmetric hyperbolic cross index set IN = Hd

N

In order to obtain a large error Em, the Fourier
coefficients f̂l, l ∈ Hd

N , were set to zero except
f̂(±1,0,...,0)> = 1, f̂(0,±1,0,...,0)> = 1, . . . , f̂(0,...,0,±1)> = 1

and f̂(±N,0,...,0)> = 1/Nm, f̂(0,±N,0,...,0)> = 1/Nm, . . . ,

f̂(0,...,0,±N)> = 1/Nm. We set the rank-1 lattice size
M ≈ 2|Hd

N |. Test cases included Taylor expansion degrees
m− 1, m = 2, . . . , 6, and refinements up to N = 104 for

d = 2, up to N = 103 for d = 3 and up to N = 800 for
d = 4, 5. Remark III.3 states, that the error Em should
decrease at least like ∼ (N logd−1N)−

m
d . In the results of

the performed tests, a decrease of ∼ (N logd−1N)−
m
d could

be observed. Figure 2 shows the results for the cases d = 4, 5.

V. CONCLUSION

Based on rank-1 lattice methods and Taylor expan-
sion, we presented a method for the fast approxi-
mate evaluation of trigonometric polynomials f with fre-
quencies supported on symmetric hyperbolic cross in-
dex sets IN = Hd

N with refinement N at arbitrary sam-
pling nodes y` ∈ Td, ` = 0, . . . , L− 1. We showed con-
ditions which guarantee a decreasing approximation error
|Rm(x)|/

(∑
l∈Hd

N
|f̂l| r(l)α

)
for increasing refinement N .

In particular for smoothness parameter α = m, a rank-1 lattice
Λ(z,M) of size M ∼ |Hd

N | exists, such that the approxima-
tion error decreases at least like ∼ (N logd−1N)−m/d for
increasing refinement N . For such a rank-1 lattice of size
M ∼ |Hd

N |, the total arithmetic complexity of the presented
method is O(mdL+mdN logdN). The results of the numer-
ical tests confirmed the theoretical upper bounds.
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[13] L. Hörmander, The analysis of linear partial differential operators:
Distribution theory and Fourier analysis. Springer-Verlag, 1990.


