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Abstract

This paper considers fast and provably accurate algorithms for approximating smooth func-
tions on the d-dimensional torus, f : Td → C, that are sparse (or compressible) in the mul-
tidimensional Fourier basis. In particular, suppose that the Fourier series coefficients of f ,
{ck(f)}k∈Zd , are concentrated in a given arbitrary finite set I ⊂ Zd so that

min
Ω⊂I s.t. |Ω|=s

∥
∥
∥
∥
∥
f −

∑

k∈Ω

ck(f) e
−2πik·◦

∥
∥
∥
∥
∥
2

< ǫ‖f‖2

holds for s≪ |I| and ǫ ∈ (0, 1) small. In such cases we aim to both identify a near-minimizing
subset Ω ⊂ I and accurately approximate its associated Fourier coefficients {ck(f)}k∈Ω as
rapidly as possible. In this paper we present both deterministic and explicit as well as random-
ized algorithms for solving this problem usingO(s2d logc(|I|))-time/memory andO(sd logc(|I|))-
time/memory, respectively. Most crucially, all of the methods proposed herein achieve these run-
times while simultaneously satisfying theoretical best s-term approximation guarantees which
guarantee their numerical accuracy and robustness to noise for general functions.

These results are achieved by modifying several different one-dimensional Sparse Fourier
Transform (SFT) methods to subsample a function along a reconstructing rank-1 lattice for the
given frequency set I ⊂ Zd in order to rapidly identify a near-minimizing subset Ω ⊂ I as above
without having use anything about the lattice beyond its generating vector. This requires the
development of new fast and low-memory frequency identification techniques capable of rapidly
recovering vector-valued frequencies in Zd as opposed to recovering simple integer frequencies as
required in the univariate setting. Two different multivariate frequency identification strategies
are proposed, analyzed, and shown to lead to their own best s-term approximation methods
herein, each with different accuracy versus computational speed and memory tradeoffs.
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1 Introduction

This paper considers methods for efficiently computing sparse Fourier transforms of multivariate
periodic functions using rank-1 lattices. In particular, for a function f : Td → C (where T := [0, 1]
with the endpoints identified), our goal is to compute the Fourier coefficients of f ,

ck(f) :=

∫

T

d

f(x)e−2πik·x dx,

via samples of f at points in Td. Here, we assume that f is from the Wiener algebra W(Td) :=
{f ∈ L1(Td) : ‖f ||W(Td) :=

∑

k∈Zd |ck(f)| < ∞}, and that f is well approximated by just a few
of the dominant terms in its Fourier expansion (i.e., has an accurate sparse approximation in the
Fourier basis).

One quasi-Monte Carlo approach which is especially popular in the context of Fourier approx-
imations is sampling along rank-1 lattices adapted to frequency spaces of interest [35, 36, 26, 24,
29, 17, 20, 30, 23]. In the standard rank-1 lattice approach, a one-dimensional, length-M discrete
Fourier transform (DFT) is applied to samples of f along a rank-1 lattice Λ(z,M) with generating
vector z ∈ Zd over Td defined by

Λ(z,M) :=

{
j

M
z mod 1 | j ∈ [M ] := {0, 1, . . . ,M − 1}

}

.

Writing any function f ∈ W(Td) in terms of its Fourier series, f =
∑

k∈Zd ck(f)e
2πik·◦, the DFT

of these samples along the lattice is exactly equivalent to the DFT of the univariate function

a(t) :=
∑

k∈Zd

ck(f)e
2πik·z t (1)

using the equispaced samples
(
a(j/M)

)

j∈[M ]
=
(
f(x)

)

x∈Λ(z,M)
. Just as the DFT of equispaced

samples of a can be used to approximate its Fourier coefficients, so then can this DFT be used to help
approximate the original Fourier coefficients ck(f) of f . Though the process of matching the discrete
coefficients to corresponding coefficients of f is nontrivial (see the following paragraph for further
discussion), this multivariate to univariate transformation allows us to carry over many standard
one-dimensional DFT results in a straightforward manner. In particular, under our assumption of
f being Fourier sparse or compressible, one-dimensional sparse Fourier transform (SFT) techniques
[11, 12, 15, 14, 25, 34, 16, 10, 7, 22, 31, 32, 27, 2, 1] become particularly appealing as they can
sidestep runtimes which depend polynomially on the bandwidth, in this case M , instead running
sublinearly in the magnitude of the underlying frequency space under consideration. Additionally,
these techniques often furnish recovery guarantees for Fourier compressible functions in terms of
best s-term approximations in the same vein as compressed sensing results [8, 9].

However, in order for our univariate DFT to be properly related to the original multivariate
Fourier coefficients ck(f), any aliasing must not produce extraneous collisions which perturb the
multivariate to univariate transformation. Specifically, after applying a length-M DFT to the
univariate function a in (1), all one-dimensional frequencies k · z are aliased to their residues
modulo M . Restricting our attention to some finite multivariate frequency set I ⊂ Z

d, we then
consider reconstructing rank-1 lattices for I, that is, lattices where the mapping mz,M : I → [M ]
given by k 7→ k · z mod M is injective. In this case, each coefficient produced by the DFT of a can
be uniquely mapped back to the corresponding multivariate frequency k of f by inverting mz,M .
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In order to know or store this inverse map we require the calculation of mz,M (I). When we
consider a function with a sparse Fourier series however, any benefit in using an SFT to calculate
the DFT of samples along the lattice is lost in comparison to the O(d |I|) size and operation count
of the inverse computation. For potentially large search spaces of multivariate frequencies I such

as a full cube I =
((
−
⌈
N
2

⌉
,
⌊
N
2

⌋]
∩ Z

)d
, both the time and memory complexity of this algorithm

suffers from the curse of dimensionality.
The methods given in this paper instead work to use samples along possible larger lattices

to produce sparse approximations of the Fourier transform of f without directly inverting mz,M .
The two algorithms considered below are able to operate on SFTs of manipulations of a in order
to relate the univariate coefficients to their multivariate counterparts in o(|I|)-time. This will
allow the methods developed herein to run faster and with less memory than it takes to simply
enumerate the frequency set I and/or store mz,M(I) whenever f has a sufficiently accurate sparse
approximation.

1.1 Prior work

Much recent work has considered the problem of quickly recovering both exactly sparse multivariate
trigonometric polynomials as well as approximating more general functions by sparse trigonometric
polynomials using dimension-incremental approaches [37, 33, 5, 6]. These methods recover multi-
variate frequencies adaptively by searching for energetic frequencies on projections of the potential

coefficient space I ⊂
((
−
⌈
N
2

⌉
,
⌊
N
2

⌋]
∩ Z

)d
into lower dimensional spaces. These lower dimensional

candidate sets are then paired together to build up a fully d-dimensional search space smaller than
the original one, which is expected to support the most energetic frequencies (see e.g., [19, Section
3] and the references within for a general overview).

In the context of Fourier methods, lattice-based techniques work well to handle support identi-
fication on the intermediary, lower-dimensional candidate sets, and especially recently, techniques
based on multiple rank-1 lattices have shown success [21, 19]. Though the total complexity in each
of these steps is manageable and can be kept linear in the sparsity, these steps must be repeated in
general to ensure that no potential frequencies have been left out. In particular, this results in at
least O(ds2N) operations (up to logarithmic factors) for functions supported on arbitrary frequency
sets in order to obtain approximations that are guaranteed to be accurate with high probability.
Though from an implementational perspective, this runtime can be mitigated by completing many
of the repetitions and initial one-dimensional searches in parallel, once pairing begins, the results
of previous iterations must be synchronized and communicated to future steps, necessitating serial
interruptions.

Other earlier works include [16] in which previously existing univariate SFT results [15, 34]
were refined and adapted to the multivariate setting. Though the resulting complexity on the
dimension is well above the dimension-incremental approaches, deterministic guarantees are given
for multivariate Fourier approximation in O(d4s2) (up to logarithmic factors) time and memory, as
well as a random variant which dropped to linear scaling in s, leading to a runtime on the order
of O(d4s) with respect to s and d. Additionally, the compressed sensing type guarantees in terms
of Fourier compressibility of the function under consideration carry over from the univariate SFT
analysis. The scheme essentially makes use of a reconstructing rank-1 lattice on a superset of the

full integer cube I =
((
−
⌈
dN
2

⌉
,
⌊
dN
2

⌋]
∩ Z

)d
with certain number theoretic properties that allow

for fast inversion of the resulting one-dimensional coefficients by the Chinese Remainder Theorem.
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We note that this necessarily inflated frequency domain accounts for the suboptimal scaling in d
above.

In [28], another fully deterministic sampling strategy and reconstruction algorithm is given.
Like [16] though, the method can only be applied to Fourier approximations over an ambient
frequency space I that is full d-dimensional cube. Moreover, the vector space structure exploited
to construct the sampling sets necessitates that the side length N of this cube is the power of a
prime. However, the benefits to this construction are among the best considered so far: the method
is entirely deterministic, has noise-robust recovery guarantees in terms of best s-term estimates,
the sampling sets used are on the order of O(d3s2N), and the reconstruction algorithm’s runtime
complexity is on the order of O(d2s2N2) both up to logarithmic factors. On the other hand, this
algorithm still does not scale linearly in s.

Finally, we discuss [4, 3], a pair of papers detailing high-dimensional Fourier recovery algo-
rithms which offer a simplified (and therefore faster) approach to lattice transforms and dimension-
incremental methods. These algorithms make heavy use of a one-dimensional SFT [25, 7] based
on a phase modulation approach to discover energetic frequencies in a fashion similar to our Algo-
rithm 1 below. The main idea is to recover entries of multivariate frequencies by using equispaced
evaluations of the function along a coordinate axis as well as samples of the function at the same
points slightly shifted (the remaining dimensions are generally ignored). This shift in space pro-
duces a modulation in frequency from which frequency data can be recovered (cf. Lemma 4 and
Algorithm 1). By supplementing this approach with simple reconstructing rank-1 lattice analysis
for repetitions of the full integer cube, the runtime and number of samples are given on average as
O(ds) up to logarithmic factors.

However, due to the possibility of collisions of multivariate frequencies under the hashing al-
gorithms employed, these results hold only for random signal models. In particular, theoretical
results are only stated for functions with randomly generated Fourier coefficients on the unit circle
with randomly chosen frequencies from a given frequency set. Additionally, the analysis of these
techniques assumes that the algorithm applied to the randomly generated signal does not encounter
certain low probability (with respect to the random signal model considered therein) energetic fre-
quency configurations. Furthermore, the method is restricted in stability, allowing for spatial shifts
in sampling bounded by at most the reciprocal of the side length of the multivariate frequency
cube under consideration, and only exact recovery is considered (or recovery up to factors related
to sample corruption by gaussian noise in [3]). In addition, no results given are proven concerning
the approximation of more general periodic functions, e.g., compressible functions.

1.2 Main contributions

We begin with a brief summary of the benefits provided by our approach in comparison to the meth-
ods discussed above. Below, we ignore logarithmic factors in our summary of the runtime/sampling
complexities.

• All variants, deterministic and random, of both algorithms presented in this paper have
runtime and sampling complexities linear in d with best s-term estimates for arbitrary
signals. This is in contrast to the complexities of dimension-incremental approaches [6, 5,
21, 19] and the number theoretic approaches [16, 28] while still achieving similarly strong best
s-term guarantees.
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• Both algorithms proposed herein have randomized variants with runtime and sampling com-
plexities linear in s with best s-term estimates on arbitrary signals that hold with high
probability. Thus, the randomized methods proposed in this paper achieve the efficient run-
time complexities of [4, 3] while simultaneously exhibiting best s-term approximation guar-
antees for general periodic functions thereby improving on the non-deterministic dimension
incremental approaches [6, 5, 21, 19].

• Both algorithms proposed herein have a deterministic variant with runtime and sampling
complexities quadratic s with best s-term estimates on arbitrary signals that also hold
deterministically. This is in contrast to all previously discussed methods without deter-
ministic guarantees, [6, 5, 21, 19, 3, 4], as well as improving on prior deterministic results
[16, 28] for functions whose energetic frequency support sets I are smaller than the full cube.

Overview of the methods and related theory

We will build on the structure of the fast and potentially deterministic one-dimensional SFTs from
[16] and its discrete variant from [27] by applying those techniques along rank-1 lattices. As pre-
viously discussed, the primary difficulty in doing so is determining a way to extract the desired
multidimensional frequency information for those most energetic one-dimensional frequencies iden-
tified in an efficient and provably accurate way. We propose and analyze two different methods for
solving this problem herein.

The first frequency identification approach involves modifications of the phase shifting from
[25, 7, 4, 3] in Algorithm 1. By employing the phase shifting process from these works in conjunction
with SFTs over an arbitrary reconstructing rank-1 lattice for our multivariate frequency search
space I, we achieve a new class of fast method with several new benefits. Notably, we are able to
maintain error guarantees for any function (not just random signals) in terms of best Fourier s-term
approximations. Additionally, we factor the instability and potential for collisions from [4, 3] into
these best s-term approximations, suffering only a linear factor of N from the more typical results
produced by our second technique discussed in the next paragraph (cf. Corollaries 1 and 2). Finally,
we are able to maintain quadratic in s/deterministic and linear in s/random runtime and sampling
complexities while reducing the dependence on the dimension of the function’s domain d from [16]
to a linear one (cf. Lemma 5).

Our second technique in Algorithm 2 uses a more novel approach to applying SFTs to modifica-
tions of the multivariate function along a reconstructing rank-1 lattice. By using a potentially larger
rank-1 lattice than one that suffices only for being reconstructing on I, we restrict the function to
only d − 1 dimensions of the lattice at a time, allowing one dimension to remain free. Applying
SFTs along the lattice constrained variables, FFTs in the free dimension, and synchronizing based
on known Fourier coefficients (for example, from simply applying an SFT on the entire function
restricted to the lattice) allows one to reconstruct the full multivariate coefficients with fewer pos-
sibilities for numerical instability. In particular this produces more accurate best Fourier s-term
approximation guarantees (cf. Corollaries 3 and 4). We again maintain the linear in d, quadratic
in s/deterministic, and linear in s/random sampling and runtime complexities, however, we now
additionally incur a penalty of a quadratic factor of N (cf. Lemma 7).

We stress here that by compartmentalizing the translation from multivariate analysis to univari-
ate analysis in Algorithms 1 and 2 into the theory of rank-1 lattices, we additionally abstract our
interaction with the multivariate frequency domain of interest. As such, our techniques are suitable
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for any arbitrary frequency set of interest I constrained only by our necessity for a reconstructing
rank-1 lattice for I (and potentially projections of I in the case of Algorithm 2). This flexibility
allows our methods to supersede the results from [16], primarily with respect to the polynomial
factor of d in our runtime and sampling complexities. We remark that though the existence of the
necessary reconstructing rank-1 lattice is a nontrivial requirement, there exist efficient construction
algorithms for arbitrary frequency sets via deterministic component by component methods, see
e.g., [18, 23, 30].

We also emphasize that the multivariate structures we employ are also entirely modular with
respect to their underlying univariate components. More specifically, they can make use of any
reasonably fast and theoretically sound SFT approach to produce resulting runtime and sampling
estimates which scale well in the complexity of the underlying SFT algorithm (by only a factor of
d in Algorithm 1 and a factor of dN in Algorithm 2). Lemmas 5 and 7 are therefore presented in
a similarly modular fashion. To provide specific recovery results we therefore use the univariate
SFTs from [16, 27]. Notably, we also improve the theoretical approximation guarantees of these
univariate SFTs in their own right and in the process include the addition of a robust variant of
the discrete method in [27].

Finally, the methods we present are trivially parallelizable so that in particular, a large majority
of the additional factors of d or dN respectively in the runtimes of Algorithm 1 or Algorithm 2
discussed above can occur in parallel.

1.3 Organization

The remainder of this paper is presented as follows: in Section 2, we set the notation, the notions
of the Fourier transform, and the various types of manipulations we will be using in the sequel.
Section 3 reviews and further refines the univariate SFTs from [16, 27] to suit our multivariate
analysis. Section 4 presents our main multivariate approximation algorithms and their analysis.
In particular, Section 4.1 discusses the phase-shifting approach, while Section 4.2 discusses the
two-dimensional SFT/DFT combination approach. Finally, we implement these two algorithms
numerically and present the empirical results in Section 5.

2 Notation and assumptions

2.1 Multivariate

We begin by defining a one-dimensional frequency band of lengthN as BN :=
(
−
⌈
N
2

⌉
,
⌊
N
2

⌋]
∩Z. For

a potentially large but finite multivariate frequency set I, which we think of as containing the most
significant frequencies of the function under consideration, we choose N = maxℓ∈[d](maxk∈I kℓ −
min

k̃∈I k̃ℓ) + 1 as the minimal width such that I ⊂ h + BdN for some h ∈ Zd. By appropriately

modulating any multivariate function f : Td → C under consideration, i.e., considering e−2πih·◦f ,
we shift the frequencies of Fourier coefficients of f originally in I to I −h ⊂ BdN . Thus, we assume
without loss of generality that I ⊂ BdN with N as above. Without loss of generality, we will also
assume that for a reconstructing rank-1 lattice Λ(z,M), the generating vector satisfies z ∈ [M ]d.

To avoid confusion with the hat notation which will be reserved for univariate functions below,
we denote the sequence of all Fourier coefficients (i.e., the Fourier transform) of a periodic function
f : Td → C as c(f) = (ck(f))k∈Zd , also writing this as simply c when the function is clear from
context. Its restriction to I is denoted c(f)|I = (ck(f))k∈I , and the best s-term approximation,
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that is, its restriction to the support of the s-largest magnitude entries, is denoted copts or (c|I)opts on
Z

d or I, respectively. We denote multiindexed vectors only defined on finite index sets (which are
not restrictions of infinitely indexed sequences) in boldface, e.g., b = (bk)k∈I , as well as identify this
multivariate vector as a one-dimensional vector b ∈ C|I| via lexicographic ordering when dictated
by context. Again dictated by context, we also extend these multiindexed vectors to larger index
sets by setting them to zero outside of their original domain. For example, if b = (bk)k∈I and
c = (ck)k∈Zd ,

‖b− c‖ℓ1(Zd) =
∑

k∈I
|bk − ck|+

∑

k∈Zd\I
|ck|.

In the multivariate approaches which follow, we will also make use of the shift operator Sℓ,α

for dimension ℓ ∈ [d] and shift α ∈ R defined by its action on the multivariate periodic function
f : Td → C as

Sℓ,α(f)(x1, . . . , xd) := f(x1, . . . , xℓ−1, (xℓ + α) mod 1, xℓ+1, . . . , xd).

When necessary, we will separate out coordinate ℓ of a multivariate point x ∈ Td or frequency
k ∈ Zd, denoting the remaining coordinates as x′

ℓ ∈ Td−1 or k′
ℓ ∈ Zd−1. With a slight abuse of

notation, we can rewrite the original point or frequency as x = (xℓ,x
′
ℓ) or k = (kℓ,k

′
ℓ).

2.2 Univariate

For any univariate periodic function a : T → C, we define the vector a ∈ CM as the vector of M
equispaced samples of a on T, that is, a = (a(j/M))j∈[M ]. As in the multivariate case, we define
the Fourier transform of a : T→ C as the sequence â = (âω)ω∈Z with

âω :=

∫

T

a(t)e−2πiωx dx for all ω ∈ Z.

Additionally, we define the vector â ∈ CM as the restriction of â to BM . If not explicitly stated,
the length of the discretized function a and Fourier transform â will be clear from context. Note
that â is not necessarily the discrete Fourier transform of a, which we define as

(FM a)ω :=
1

M

∑

j∈[M ]

aj e
−2πiωj/M =

1

M

∑

j∈[M ]

a

(
j

M

)

e

−2πiωj/M , where

FM :=
(

e

−2πiωj/M/M
)

j∈[M ], ω∈BM

is the discrete Fourier matrix. Our convention here and in the remainder of the paper is to use
zero-based indexing which is always taken implicitly modulo the length of the dimension, e.g.,
(FM )0,−1 = (FM )0,M−1.

For any vector b ∈ CM , we denote its best s-term approximation bopt
s , where as above, bopt

s

is the restriction of b to its s largest magnitude entries. In the sequel, we always assume that
our sparsity parameters s are at most half the size of the vectors under consideration so that, e.g.,
bopt
2s is well-defined. Additionally as above, vectors can also be compared with other vectors on

larger index sets than they are defined by simply setting the smaller vectors to zero outside of their
original domain.
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As for one-dimensional approximations, we will be considering SFT algorithms which, given
sparsity parameter s and bandwidthM , produce an s-sparse approximation of the Fourier transform
of a function a ∈ C(T) restricted to BM . Note that these are not necessarily discrete algorithms
which take in a as input. We denote these algorithms As,M : C(T) → C

M , which produce
As,Ma =: v ∈ CM as approximations to â ∈ CM using some fixed number of samples of a.

3 One-dimensional sparse Fourier transform results

Below, we summarize some of the previous work on one-dimensional sparse Fourier transforms
which will be used in our multivariate algorithms. Note that we will consider algorithms which
produce 2s-sparse approximations of the Fourier coefficients of a given signal and satisfy error
guarantees in terms of the best 2s and s-term approximations. We first review the sublinear-time
algorithm from [16] which uses fewer than M nonequispaced samples of a function. Below, we will
present slightly improved error bounds which necessitate the following lemma.

Lemma 1. For x ∈ CK and Sτ := {k ∈ [K] | |xk| ≥ τ}, if τ ≥ ‖x−x
opt
s ‖1
s , then |Sτ | ≤ 2s and

‖x− x|Sτ ‖2 ≤ ‖x− xopt
2s ‖2 + τ

√
2s.

Proof. Ordering the entries of x in descending order (with ties broken arbitrarily) as |xk1 | ≥ |xk2 | ≥
. . ., we first note that

‖x− xopt
s ‖1 ≥

2s∑

j=s+1

|xkj | ≥ s|xk2s |.

By assumption then, τ ≥ |xk2s |, and since Sτ contains the |Sτ |-many largest entries of x, we must
have Sτ ⊂ supp(xopt

2s ). Note then that |Sτ | ≤ 2s. Finally, we calculate

‖x− x|Sτ ‖2 ≤ ‖x− xopt
2s ‖2 + ‖x

opt
2s − xSτ ‖2

≤ ‖x− xopt
2s ‖2 +

√ ∑

k∈supp(xopt
2s )\Sτ

x2k

≤ ‖x− xopt
2s ‖2 + τ

√
2s

completing the proof.

Theorem 1 (Robust sublinear-time, nonequispaced SFT: [16], Theorem 7/[27], Lemma 4). For
a signal a ∈ W(T) ∩ C(T) corrupted by some arbitrary noise µ : T → C, Algorithm 3 of [16],
denoted Asub

2s,M , will output a 2s-sparse coefficient vector v ∈ CM which

1. reconstructs every frequency of â ∈ CM , ω ∈ BM , with corresponding Fourier coefficients
meeting the tolerance

|âω| > (4 + 2
√
2)

(

‖â− âopts ‖1
s

+ ‖â− â‖1 + ‖µ‖∞
)

,

2. satisfies the ℓ∞ error estimate for recovered coefficients

‖(â− v)|supp(v)‖∞ ≤
√
2

(

‖â− âopts ‖1
s

+ ‖â− â‖1 + ‖µ‖∞
)

,
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3. satisfies the ℓ2 error estimate

‖â− v‖2 ≤ ‖â− âopt2s ‖2 +
(8
√
2 + 6)‖â− âopts ‖1√

s
+ (8
√
2 + 6)

√
s(‖â− â‖1 + ‖µ‖∞),

4. and the number of required samples of a and the operation count for Asub
2s,M are

O
(
s2 log4 M

log s

)

.

The Monte Carlo variant of Asub
2s,M , denoted Asub,MC

2s,M , referred to by Corollary 4 of [16] satisfies
all of the conditions (1) – (3) simultaneously with probability (1− σ) ∈ [2/3, 1) and has number of
required samples and operation count

O
(

s log3(M) log

(
M

σ

))

.

The samples required by Asub,MC
2s,M are a subset of those required by Asub

2s,M .

Proof. We refer to [16, Theorem 7] and its modification for noise robustness in [27, Lemma 4]
for the proofs of properties (2) and (4). As for (1), [16, Lemma 6] and its modification in [27,
Lemma 4] imply that any ω ∈ BM with |âω| > 4(‖â − âopts ‖1/s + ‖â − â‖1 + ‖µ‖∞) =: 4δ will be
identified in [16, Algorithm 3]. An approximate Fourier coefficient for these and any other recovered
frequencies is stored in the vector x which satisfies the same estimate in property (2) by the proof
of [16, Theorem 7] and [27, Lemma 4]. However, only the 2s largest magnitude values of x will
be returned in v. We therefore analyze what happens when some of the potentially large Fourier
coefficients corresponding to frequencies in S4δ do not have their approximations assigned to v.

For the definition of Sτ in Lemma 1 applied to â, we must have |S4δ| ≤ 2s = | supp(v)|. If
ω ∈ S4δ \ supp(v), there must then exist some other ω′ ∈ supp(v) \ S4δ which was identified and
took the place of ω in supp(v). For this to happen, |âω′ | ≤ 4δ and |xω′ | ≥ |xω|. But by property
(2) (extended to all coefficients in x), we know

4δ +
√
2δ ≥ |âω′ |+

√
2δ ≥ |xω′ | ≥ |xω| ≥ |âω| −

√
2δ.

Thus, any frequency in S4δ not chosen satisfies |âω| ≤ (4 + 2
√
2)δ, and so every frequency in

S(4+2
√
2)δ is in fact identified in v verifying property (1).

As for property (3), we estimate the ℓ2 error using property (2), Lemma 1, and the above
argument as

‖â− v‖2 ≤ ‖â− â|supp(v)‖2 + ‖(â− v)|supp(v)‖2
≤ ‖â− â|S4δ∩supp(v)‖2 +

√
2δ
√
2s

≤ ‖â− â|S4δ
‖2 + ‖â|S4δ\supp(v)‖2 + 2δ

√
s

≤ ‖â− âopt2s ‖2 + 4δ
√
2s+ (4 + 2

√
2)δ
√
2s+ 2δ

√
s

= ‖â− âopt2s ‖2 + (8
√
2 + 6)

√
sδ

as desired.
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Remark 1. In the noiseless case, if the univariate function a is Fourier s-sparse, i.e., is a trigono-
metric polynomial and M is large enough such that supp(â) ⊂ BM , both Asub

2s,M and Asub,MC
2s,M will

exactly recover â (the latter with probability 1 − σ), and therefore â. In particular, note that the
output of either algorithm will then actually be s-sparse.

Using the above SFT algorithm with the discretization process outlined in [27] leads to a fully
discrete sparse Fourier transform, requiring only equispaced samples of a. However, rather than
separately accounting for the truncation to the frequency band BM as above, the equispaced samples
allow us to take advantage of aliasing, which is particularly important when we apply the algorithm
along reconstructing rank-1 lattices. Thus, instead of approximating â ∈ CM , the restriction of â
to BM , as above, we prefer to approximate the discrete Fourier transform of a. We now review how
these notions of restrictions versus aliasing interact.

Lemma 2. Let a ∈ C(T) be bandlimited with supp(â) ⊂ BM . Then â = FM a.

Proof. Writing a(t) =
∑

ω∈BM
âω e

2πiωt, for any ω ∈ BM , we calculate

(FM a)ω =
1

M

∑

j∈BM

a

(
j

M

)

e

−2πiωj/M =
1

M

∑

j∈BM




∑

ω̃∈BM

âω̃ e
2πiω̃j/M




e

−2πiωj/M

=
1

M

∑

j∈BM

∑

ω̃∈BM

âω̃ e
2πi(ω̃−ω)j/M =

∑

ω̃∈BM

âω̃ δ0,(ω̃−ω mod M)

= âω,

as desired.

Lemma 3. For any function a : T → C with Fourier series a(t) =
∑

ω∈Z âω e
2πiωt, define the

aliased polynomial

aalias(t) =
∑

ω∈BM




∑

ω̃≡ω (mod M)

âω̃





︸ ︷︷ ︸

=:(âalias)ω

e

2πiωt.

Then the equispaced samples coincide, giving a = aalias ∈ CM and âalias = FM a.

Proof. We group frequencies in the Fourier series of a by their residues in BM , giving

(a)j =
∑

ω̃∈Z
âω̃ e

2πiω̃j/M =
∑

ω∈BM

∑

n∈Z
âω+nM e

2πi(ω+nM)j/M =
∑

ω∈BM




∑

ω̃≡ω (mod M)

âω̃




e

2πiωj/M

= (aalias)j for all j ∈ [M ].

Now, since supp(âalias) ⊂ BM , Lemma 2 implies âalias = FM aalias = FM a.

Eventually, we will consider techniques for approximation of arbitrary periodic functions rather
than simply polynomials. For this reason, we require noise-robust recovery results for the method in
[27]. The necessary modifications to account for this robustness as well as the improved guarantees
carried over from the previous algorithm are given below.
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Theorem 2 (Robust discrete sublinear-time SFT: see [27], Theorem 5). For a signal a ∈ W(T) ∩
C(T) corrupted by some arbitrary noise µ : T → C, and 1 ≤ r ≤ M

36 Algorithm 1 of [27], denoted
Adisc

2s,M , will output a 2s-sparse coefficient vector v ∈ CM which

1. reconstructs every frequency of FM a ∈ CM , ω ∈ BM , with corresponding aliased Fourier
coefficient meeting the tolerance

|(FM a)ω| > 12(1 +
√
2)

(

‖FM a− (FM a)opts ‖1
2s

+ 2(‖a‖∞M−r + ‖µ‖∞)

)

,

2. satisfies the ℓ∞ error estimate for recovered coefficients

‖(FM a− v)|supp(v)‖∞ ≤ 3
√
2

(

‖FM a− (FM a)opts ‖1
2s

+ 2(‖a‖∞M−r + ‖µ‖∞)

)

,

3. satisfies the ℓ2 error estimate

‖FM a−v‖2 ≤ ‖FM a− (FM a)opt2s ‖2+38
‖FM a− (FM a)opts ‖1√

s
+152

√
s(‖a‖∞M−r+‖µ‖∞),

4. and the number of required samples of a and the operation count for Adisc
2s,M are

O
(

s2r3/2 log11/2 M

log s

)

.

The Monte Carlo variant of Adisc
2s,M , denoted Adisc,MC

2s,M , satisfies the all of the conditions (1) – (3)
simultaneously with probability (1−σ) ∈ [2/3, 1) and has number of required samples and operation
count

O
(

sr3/2 log9/2(M) log

(
M

σ

))

.

Proof. All notation in this proof matches that in [27] (in particular, we use f to denote the one-
dimensional function in place of a in the theorem statement and N = 2M + 1). We begin by
substituting the 2π-periodic gaussian filter given in (3) on page 756 with the 1-periodic gaussian
and associated Fourier transform

g(x) =
1

c1

∞∑

n=−∞
e

− (2π)2(x−n)2

2c2
1 , ĝω =

1√
2π
e

− c21ω
2

2 .

Note then that all results regarding the Fourier transform remain unchanged, and since this 1-
periodic gaussian is a just a rescaling of the 2π-periodic one used in [27], the bound in [27, Lemma
1] holds with a similarly compressed gaussian, that is, for all x ∈

[
−1

2 ,
1
2

]

g(x) ≤
(

3

c1
+

1√
2π

)

e

− (2πx)2

2c2
1 . (2)
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Analogous results up to and including [27, Lemma 10] for 1-periodic functions then hold straight-
forwardly.

Assuming that our signal measurements f = (f(yj))
2M
j=0 = (f( j

N ))2Mj=0 are corrupted by some

discrete noise µ = (µj)
2M
j=0, we consider for any x ∈ T a similar bound to [27, Lemma 10]. Here,

j′ := argminj |x− yj| and κ := ⌈γ lnN⌉+ 1 for some γ ∈ R+ to be determined. Then,
∣
∣
∣
∣
∣
∣

1

N

2M∑

j=0

f(yj)g(x− yj)−
1

N

j′+κ
∑

j=j′−κ

(f(yj) + µj)g(x − yj)

∣
∣
∣
∣
∣
∣

≤ 1

N

∣
∣
∣
∣
∣
∣

2M∑

j=0

f(yj)g(x− yj)−
j′+κ
∑

j=j′−κ

f(yj)g(x − yj)

∣
∣
∣
∣
∣
∣

+
1

N

∣
∣
∣
∣
∣
∣

j′+κ
∑

j=j′−κ

µjg(x− yj)

∣
∣
∣
∣
∣
∣

≤ 1

N

∣
∣
∣
∣
∣
∣

2M∑

j=0

f(yj)g(x− yj)−
j′+κ
∑

j=j′−κ

f(yj)g(x − yj)

∣
∣
∣
∣
∣
∣

+
1

N
‖µ‖∞

κ∑

k=−κ

g(x− yj′+k)

We bound the first term in this sum by a direct application of [27, Lemma 10]; however, we take
this opportunity to reduce the constant in the bound given there. In particular, bounding this
term by the final expression in the proof of [27, Lemma 10] and using our implicit assumption that
36 ≤ N , we have

∣
∣
∣
∣
∣
∣

1

N

2M∑

j=0

f(yj)g(x− yj)−
1

N

j′+κ
∑

j=j′−κ

(f(yj) + µj)g(x − yj)

∣
∣
∣
∣
∣
∣

≤
(

3√
2π

+
1

2π

√

ln 36

36

)

‖f‖∞N−r +
1

N
‖µ‖∞

κ∑

k=−κ

g(x− yj′+k).

(3)

We now work on bounding the second term. First note that for all k ∈ [−κ, κ] ∩ Z,

g(x − yj′±k) = g

(

x− yj′ ±
k

N

)

.

Assuming without loss of generality that 0 ≤ x − yj′, we can bound the nonnegatively indexed
summands by (2) as

g

(

x− yj′ +
k

N

)

≤
(

3

c1
+

2√
2π

)

e

− (2π)2k2

2c2
1
N2

. (4)

For the negatively indexed summands, the definition of j′ = argminj |x− yj| implies that x− yj′ ≤
1
2N . In particular,

x− yj′ −
k

N
≤ 1− 2k

2N
< 0 =⇒

(

x− yj′ −
k

N

)2

≥ 1− 2k

2N

(

x− yj′ −
k

N

)

≥ 2k − 1

2N
· k
N

,

giving

g

(

x− yj′ −
k

N

)

≤
(

3

c1
+

2√
2π

)

e

− (2π)2k2

2c2
1
N2
e

(2π)2k

4c2
1
N2

. (5)
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We now bound the final exponential. We first recall from [27] the choices of parameters

c1 =
β
√
lnN

N
, κ = ⌈γ lnN⌉+ 1, γ =

6r√
2π

=
β
√
r

2
√
π
, β = 6

√
r, where 1 ≤ r ≤ N

36
.

For k ∈ [1, κ] ∩ Z then,

exp

(
(2π)2k

4c21N
2

)

≤ exp

(
(2π)2κ

4c21N
2

)

≤ exp




π2
(
6r lnN√

2π
+ 2
)

36r lnN





≤ exp

(
π

6
√
2
+

π2

18r lnN

)

≤ exp

(
π

6
√
2
+

π2

18 ln 36

)

=: A.

Combining this with our bounds for the nonnegatively indexed summands (4) and the negatively
indexed summands (5), we have

1

N

κ∑

k=−κ

g(x− yj′+k) ≤
(

3

β
√
lnN

+
1

N
√
2π

)(

1 + (1 +A)
κ∑

k=1

e

− (2π)2k2

2β2 lnN

)

Expressing the final sum as a truncated lower Riemann sum and applying a change of variables on
the resulting integral, we have

κ∑

k=1

e

− (2π)2k2

2β2 lnN ≤ β
√
lnN√
2π

∫ ∞

0
e−x2

dx =
β
√
lnN

2
√
2π

.

Making use of our parameter values from [27], and the fact that 1 ≤ r ≤ N
36 ,

1

N

κ∑

k=−κ

g(x− yj′+k) ≤
(

3

β
√
lnN

+
1

N
√
2π

)(

1 +
1 +A

2
√
2π

β
√
lnN

)

≤ 3

6
√
ln 36

+
3(1 +A)

2
√
2π

+
1

36
√
2π

+
1 +A

4π

√

ln 36

36

< 2.

(6)

With our revised bound for (3) above, we reprove [27, Theorem 4] to estimate g ∗ f by the
truncated discrete convolution with noisy samples. In particular, we apply [27, Theorem 3], (3),
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(2), and finally our same assumption that 1 ≤ r ≤ N
36 to obtain

∣
∣
∣
∣
∣
∣
∣
∣

(g ∗ f)(x)− 1

N

j′+
⌈

6r√
2π

lnN
⌉

+1
∑

j=j′−
⌈

6r√
2π

lnN
⌉

−1

(f(yj) + µj)g(x − yj)

∣
∣
∣
∣
∣
∣
∣
∣

≤ N1−r

6
√
r
√
lnN

‖f‖∞N−r +

(

3√
2π

+
1

2π

√

ln 36

36

)

‖f‖∞N−r + 2‖µ‖∞

≤
(

1

6
√
ln 36

+
3√
2π

+
1

2π

√

ln 36

36

)

‖f‖∞
N r

+ 2‖µ‖∞ < 2

(‖f‖∞
N r

+ ‖µ‖∞
)

.

Replacing all references of 3‖f‖∞N−r by 2(‖f‖∞N−r + ‖µ‖∞) in the remainder of the steps up to
proving [27, Theorem 5] gives the desired noise robustness (with a slightly improved constant).

Using the revised error estimates of the nonequispaced algorithm from Theorem 1 and redefining
δ = 3(‖f̂ − f̂opts ‖1/2s+2(‖f‖∞N−r+‖µ‖∞)) as in the proof of [27, Theorem 5] (which also contains
the proof of property (2)), the discretization algorithm [27, Algorithm 1] will produce candidate
Fourier coefficient approximations in lines 9 and 12 corresponding to every |f̂ω| ≥ (4 + 2

√
2)δ in

place of 4δ in Theorem 1. The exact same argument as in the proof of Theorem 1 then applies to
the selection of the 2s-largest entries of this approximation with the revised threshold values and
error bounds to give properties (1) and (3).

In detail, [27, Lemma 13] and the discussion right after its statement gives that property (2)
holds for any approximate coefficient with frequency recovered throughout the algorithm (which, for
the purposes of the following discussion, we will store in x rather than R̂ defined in [27, Algorithm
1]), not just those in the final output v := xopt

s . Additionally, by the same lemma and our revised
bounds from Theorem 1, any frequency ω ∈ [N ] satisfying |fω| > (4+2

√
2)δ will have an associated

coefficient estimate in x.
By Lemma 1, |S(4+2

√
2)δ| ≤ 2s = | supp(v)|, and so if ω ∈ S(4+2

√
2)δ \ supp(v), there exists some

ω′ ∈ supp(v) \ S(4+2
√
2)δ such that vω′ took the place of vω in S. In particular, this means that

|xω′ | ≥ |xω|, |f̂ω′ | ≤ (4 + 2
√
2)δ, and |f̂ω| > (4 + 2

√
2δ). Thus,

(4 + 2
√
2)δ +

√
2δ > |f̂ω′ |+

√
2δ ≥ |xω′ | ≥ |xω| ≥ |f̂ω| −

√
2δ,

implying that |f̂ω| ≤ 4(1 +
√
2)δ and therefore proving (1).

Finally, to prove (3), we use Lemma 1, and consider

‖f̂ − v‖2 ≤ ‖f̂ − f̂ |supp(v)‖2 − ‖(f̂ − v)|supp(v)‖2
≤ ‖f̂ − f̂ |S(4+2

√
2)δ∩supp(v)‖2 +

√
2δ
√
2s

≤ ‖f̂ − f̂ |S(4+2
√

2)δ
‖2 + ‖f̂ |S(4+2

√
2)δ\supp(v)‖2 + 2δ

√
s

≤ ‖f̂ − f̂opt2s ‖2 + (4 + 2
√
2)δ
√
2s+ 4(1 +

√
2)δ
√
2s + 2δ

√
s

≤ ‖f̂ − f̂opt2s ‖2 + (14 + 8
√
2)δ
√
s

which finishes the proof.
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4 Fast multivariate sparse Fourier transforms

Having detailed two sublinear-time, one-dimensional SFT algorithms, we are now prepared to ex-
tend these to the multivariate setting. The general approach will be to apply the one-dimensional
methods to transformations of our multivariate function of interest with samples taken along rank-
1 lattices. The particular approaches for transforming our multivariate function will then allow
for the efficient extraction of multidimensional frequency information for the most energetic coef-
ficients identified by univarate SFTs. In particular, our first approach considered in Section 4.1
successively shifts the function in each dimension, whereas our second approach considered in Sec-
tion 4.2 successively collapses all but one dimension along a rank-1 lattice and samples the resulting
two-dimensional function.

Before continuing, it is important to stress that these two approaches given in Algorithms 1 and
2 below can make use of any univariate SFT algorithm As,M . Thus, the analysis of each algorithm
is presented in a similarly modular fashion. Each algorithm is followed by a lemma (Lemma 5 and
Lemma 7 respectively) which provides associated error guarantees when any sufficiently accurate
univariate SFT As,M is employed. The lemmas are then each followed by two corollaries (Corol-
laries 1 and 2 and Corollaries 3 and 4 respectively) where we apply the lemma to the two example
univariate SFTs reviewed in Section 3 specified by Theorems 2 and 1.

4.1 Phase encoding

We begin with a review of how the shift operator Sℓ,α interacts with the Fourier transform.

Lemma 4. For any dimension ℓ ∈ [d], shift α ∈ R, and function f : Td → C, shifting f with the
operator Sℓ,α modulates the Fourier coefficients as ck(Sℓ,αf) = e

2πikℓα ck(f) for all k ∈ Zd.

Proof. Using the Fourier series of f in the computation of ck(Sℓ,αf) gives

ck(Sℓ,αf) =

∫

T

d

Sℓ,αf(x)e
−2πik·x dx

=

∫

T

d

∑

h∈Zd

ch(f)e
2πi(hℓ(xℓ+α)+h′

ℓ
·x′

ℓ
)
e

−2πik·x dx

=
∑

h∈Zd

e

2πihℓα ch(f)

∫

T

d

e

2πi(h−k)·x dx

= e

2πikℓα ck(f),

as desired.

By performing additional lattice SFTs on shifted versions of our original function, we can then
separate out the components of recovered frequencies in modulations of the function’s Fourier
coefficients. Using the common one-dimensional recovered frequencies between each transform in
the form k · z mod M , we can then reconstruct the multivariate frequencies. This approach of
encoding frequencies in the phase is summarized in Algorithm 1.
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Algorithm 1 Simple Frequency Index Recovery by Phase Encoding

Input: A multivariate periodic function f ∈ W(Td ∩ C(Td) (from which we are able to obtain
potentially noisy samples), a multivariate frequency set I ⊂ BdN , a reconstructing rank-1 lattice
Λ(z,M) for I, and an SFT algorithm As,M .

Output: Sparse coefficient vector b = (bk)k∈Bd
N

(optionally supported on I, see Line (X)), an

approximation to (c|I)opts .
(I) Apply As,M to the univariate restriction of f to the lattice, a(t) = f(tz), to produce v = As,Ma,

a sparse approximation of FM a ∈ CM .
(II) for all ℓ ∈ [d] do
(III) Apply As,M to aℓ(t) = Sℓ,1/Nf(tz) to produce vℓ = As,Maℓ, a sparse approximation of

FM aℓ ∈ CM .
(IV) end for
(V) b← 0
(VI) for all ω ∈ supp(v) ⊂ BM do
(VII) for all ℓ ∈ [d] do
(VIII) (kω)ℓ ← round(N arg(vℓω/vω)/2π)
(IX) end for
(X) if kω · z ≡ ω (mod M) (and optionally kω ∈ I; see Remark 2) then
(XI) bkω

← bkω
+ vω

(XII) end if
(XIII) end for

4.1.1 Analysis of Algorithm 1

Lemma 5 (General recovery result for Algorithm 1). Let As,M in the input to Algorithm 1 be a
noise-robust SFT algorithm which, for a function a ∈ W(T) ∩ C(T) corrupted by some arbitrary
noise µ : T→ C, constructs an s-sparse Fourier approximation As,M(a+ µ) =: v ∈ CM which

1. reconstructs every frequency (up to s many) of FM a ∈ CM , ω ∈ BM , with corresponding
Fourier coefficient meeting the tolerance |(FM a)ω| > τ ,

2. satisfies the ℓ∞ error estimate for recovered coefficients
∥
∥(FM a− v)|supp(v)

∥
∥
∞ ≤ η∞ < τ,

3. satisfies the ℓ2 error estimate
‖FM a− v‖2 ≤ η2,

4. and requires O(P (s,M)) total evaluations of a, operating with computational complexity
O(R(s,M)).

Additionally, assume that the parameters τ and η∞ hold uniformly for each SFT performed in
Algorithm 1.

Let f , I, and Λ(z,M) be as specified in the input to Algorithm 1. Collecting the τ -significant
frequencies of f into the set Sτ := {k ∈ I | |ck(f)| > τ}, assume that | supp(c) ∩ Sτ | ≤ s, and set

β = max

(

τ, η∞

(

1 +
2

sin
(
π
N

)

))

.
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Then Algorithm 1 (ignoring the optional check on Line (X)) will produce an s-sparse approxima-
tion b of the Fourier coefficients of f satisfying the error estimate

‖b− c(f)‖ℓ2(Zd) ≤ η2 + (β + η∞)
√

max(s− |Sβ|, 0)
+ ‖c(f)|I − c(f)|Sβ

‖ℓ2(Zd) + ‖c(f)− c(f)|I‖ℓ2(Zd)

requiring O (d · P (s,M)) total evaluations of f , in O (d · (R(s,M) + s)) total operations.

Proof. We begin by assuming that f is a trigonometric polynomial with supp(c(f)) ⊂ I. Since
Λ(z,M) is a reconstructing rank-1 lattice for I, Lemmas 2 and 3 ensure that for each k ∈ I,
ck(f) = âk·z mod M = (FM a)k·z mod M . Thus, Lines (I) and (III) of Algorithm 1 will produce
coefficient estimates in the lattice DFT for every k ∈ Sτ . We then write these SFT approximations
as vk·z mod M = ck(f)+ ηk and vℓ

k·z mod M = e

2πikℓ/N (ck(f)+ ηℓ
k
) respectively, where we have made

use of Lemma 4. Note that |ηk|, |ηℓk| ≤ η∞. Now, considering the estimate for kℓ, we have

N

2π
arg

(
vℓ
k·z mod M

vk·z mod M

)

=
N

2π
arg

(

e

2πikℓ/N
ck(f) + ηℓ

k

vk·z mod M

)

= kℓ +
N

2π
arg

(
ck(f) + ηℓ

k

vk·z mod M

)

= kℓ +
N

2π
arg

(

1 +
ηℓ
k
− ηk

vk·z mod M

)

.

We now only consider |ck| > β ≥ max(τ, 3η∞), that is k ∈ Sβ ⊂ Sτ , and therefore, the correspond-
ing approximate coefficient satisfies |vk·z mod M | > β − η∞. Thus, the magnitude of the fraction in
the argument must be strictly less than 2η∞

β−η∞
≤ 1. Therefore, we consider the argument of a point

lying in the right half of the complex plane, in the open disc of radius 2η∞
β−η∞

centered at 1. The
maximal absolute argument of a point in this disc will be that of a point lying on a tangent line
passing through the origin. This point, the origin, and 1 then form a right triangle from which we
deduce that ∣

∣
∣
∣
arg

(

1 +
ηℓ
k
− ηk

vk·z mod M

)∣
∣
∣
∣
< arcsin

(
2η∞

β − η∞

)

≤ π

N
.

Our choice of β ≥ η∞(1 + 2/ sin(π/N)) then implies that

∣
∣
∣
∣

N

2π
arg

(
vℓ
k·z mod M

vk·z mod M

)

− kℓ

∣
∣
∣
∣
<

1

2
,

and so after rounding to the nearest integer, Algorithm 1 will recover kℓ for all ℓ ∈ [d] and k ∈ Sβ.
By this mapping constructed in the final loop of Algorithm 1, we set bk := vk·z mod M for each

k ∈ Sβ . Additionally, the max(s − |Sβ |, 0) many coefficients vω for which ω 6= k · z mod M for
any k ∈ Sβ are still available for potential assignment. If any multivariate frequency kω ∈ I is
reconstructed and passes the mandatory check in Line (X) then the approximate Fourier coefficient
vω properly corresponds to (FM a)kω ·z mod M = ckω

(f).
On the other hand, if some error introduced in the SFTs reconstructs a multivariate frequency

kω /∈ I, the reconstructing property does not allow us to conclude anything about a (kω, ω) pair
passing the check in Line (X). Thus, it is possible that vω will contribute to some component of b
not corresponding to any frequency in I. At the least however, since we know that all entries of v
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corresponding to frequencies in Sβ are correctly assigned, the remaining ones satisfy |vω| ≤ β+η∞.
Using these facts allows us to estimate the error as

‖b− c‖ℓ2(Zd) ≤ ‖b|Zd\I‖ℓ2(Zd) + ‖b|I − c|supp(b)∩I‖ℓ2(Zd) + ‖c− c|Sβ
‖ℓ2(Zd)

≤ (β + η∞)
√

max(s− |Sβ |, 0) + η2 + ‖c− c|Sβ
‖ℓ2(I)

(7)

where we have additionally used the accuracy of the initial one-dimensional SFT and the assumption
that c is supported on I.

We now handle the case when f is not necessarily a polynomial with Fourier support contained
in I. Rather than aiming to approximate ck(f) for every k ∈ Zd, we restrict attention to only fre-
quencies in I, instead attempting to approximate the Fourier coefficients of fI =

∑

k∈I ck(f)e
2πik·◦.

We then have that f =: fI + f
Z

d\I and view potentially noisy input f + µ to our algorithm as

f + µ = fI + f
Z

d\I + µ
︸ ︷︷ ︸

µ′

.

Algorithm 1 applied to f +µ is then equivalent to applying it to fI +µ′, where now τ , η∞, and
η2 depend on µ′, and the output is an approximation of c|I . Since µ′ represents noise on the input
to As,M in its applications to fI(tz) and Sℓ,1/NfI(tz) we remark here that

‖µ′‖∞ ≤ ‖f
Z

d\I‖∞ + ‖µ‖∞ ≤ ‖c(f)− c(f)|I‖ℓ1(Zd) + ‖µ‖∞ (8)

so as to help us estimate τ , η∞, and η2 in future applications of the lemma. Accounting for the
truncation to I in the ℓ2 error bound and using (7) applied to c|I , we estimate

‖b− c‖ℓ2(Zd) ≤ ‖b− c|I‖ℓ2(Zd) + ‖c− c|I‖ℓ2(Zd)

≤ (β + η∞)
√

max(s− |Sβ|, 0) + η2 + ‖c|I − c|Sβ
‖ℓ2(Zd) + ‖c− c|I‖ℓ2(Zd).

Since 1+d SFTs are required, the number of f evaluations is O (d · P (s,M)) and the associated
computational complexity is O (d · R(s,M)). The complexity of Lines (VI)–(XIII) is O(sd).

Remark 2. Since the only possible misassigned values of vω contribute to coefficients in b outside
the chosen frequency set I for which Λ(z,M) is reconstructing, if it is possible to quickly (e.g., in
O(d) time) check a multivariate frequency’s inclusion in I (e.g., a hyperbolic cross), entries outside
of I in b can be identified in the optional check on Line (X) and remain (correctly) unassigned.
This has the effect of removing the (β + η∞)

√
max(s− |Sβ |, 0) term in the error bound while not

increasing the computational complexity. Additionally, this outputs an approximation to (c|I)opts

which is supported only on our supplied frequency set I as we may expect or prefer.

We now apply Lemma 5 with the discrete sublinear-time SFT from Theorem 2 to give specific
error bounds in terms of best s-term approximation errors as well as detailed runtime and sampling
complexities.

Corollary 1 (Algorithm 1 with discrete sublinear-time SFT). Let N ≥ 9. For I ⊂ BdN with
reconstructing rank-1 lattice Λ(z,M) and the function f ∈ W(Td) ∩ C(Td), we consider applying
Algorithm 1 where each function sample may be corrupted by noise at most e∞ ≥ 0 in absolute
magnitude. Using the discrete sublinear-time SFT algorithm Adisc

2s,M or Adisc,MC
2s,M with parameter
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1 ≤ r ≤ M
36 , Algorithm 1 will produce b = (bk)k∈Bd

N
a 2s-sparse approximation of c satisfying the

error estimate

‖b− c‖2

≤ ‖c− c|I‖2 + (48 + 4N)
‖c|I − (c|I)opts ‖1√

s
+ (188 + 16N)

√
s(‖f‖∞M−r + ‖c− c|I‖1 + e∞)

albeit with probability 1 − σ ∈ [0, 1) for the Monte Carlo version. The total number of evaluations
of f and computational complexity will be

O
(

ds2r3/2 log11/2 M

log s

)

or O
(

dsr3/2 log9/2 M log

(
dM

σ

))

for Adisc
2s,M or Adisc,MC

2s,M respectively.

Proof. For the definitions of τ and β in Lemma 5 with associated values given by Theorem 2,
Lemma 1 applied with x = c|I implies that Sβ can contain at most 2s elements, and we have the
bound

‖c|I − c|Sβ
‖ℓ2(Zd) ≤ ‖c|I − (c|I)opt2s ‖ℓ2(Zd) + β

√
2s ≤

‖c|I − (c|I)opts ‖ℓ1(Zd)

2
√
s

+ β
√
2s, (9)

where the last inequality follows from [9, Theorem 2.5] applied to c|I−(c|I)opts . Lemma 5 then holds
with s replaced by 2s for the 2s-sparse approximations given by Adisc

2s,M or Adisc
2s,M in Algorithm 1.

Assuming N ≥ 9, the specific values of τ and η∞ from Theorem 2 give

β = max

(

τ, η∞

(

1 +
2

sin
(
π
N

)

))

= η∞

(

1 +
2

sin
(
π
N

)

)

≤ η∞

(

1 +
2

9 sin
(
π
9

)N

)

.

Using our bound (8) from treating the truncation error as measurement noise additionally account-
ing for any noise in our input bounded by e∞ we obtain

β ≤ η∞

(

1 +
2

9 sin
(
π
9

)N

)

≤ 3
√
2

(

‖c|I − (c|I)opts ‖1
2s

+ 2(‖f‖∞M−r + ‖c− c|I‖1 + e∞)

)(

1 +
2

9 sin
(
π
9

)N

)

.

Inserting the estimate for ‖c|I − c|Sβ
‖2 from (9), our bound for β above, and the value for η2 from

Theorem 2 (where again we use [9, Theorem 2.5]) into the recovery bound in Lemma 5 gives the
final error estimate.

In detail, let

A =
‖c|I − (c|I)opts ‖1√

s
, δ =

(
A

2
√
s
+ 2(‖f‖∞M−r + ‖c− c|I‖1 + e∞)

)

.
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Then

β ≤ 3
√
2

(

1 +
2

9 sin
(
π
9

)N

)

δ, η2 ≤
A

2
+ 76
√
sδ, ‖c|I − c|Sβ

‖2 ≤
A

2
+
√
2β
√
s.

Our error bound is then

‖b− c‖2 ≤ η2 + (β + η∞)
√
2s + ‖c|I − c|Sβ

‖2 + ‖c− c|I‖2

≤ A+ 76
√
sδ + 6

(

3 +
4

9 sin
(
π
9

)N

)

√
sδ + ‖c− c|I‖2

= A+

(

94 +
8

3 sin
(
π
9

)N

)

√
sδ + ‖c− c|I‖2

=

(

48 +
4

3 sin
(
π
9

)N

)

A+

(

188 +
16

3 sin
(
π
9

)N

)

√
s(‖f‖∞M−r + ‖c− c|I‖1 + e∞)

+ ‖c− c|I‖2

≤ (48 + 4N)
‖c|I − (c|I)opts ‖1√

s
+ (188 + 16N)

√
s(‖f‖∞M−r + ‖c− c|I‖1 + e∞)

+ ‖c− c|I‖2.

The change to the complexity of the random algorithm arises from distributing the probability
of failure σ over the d+ 1 SFTs in a union bound.

Though the nonequispaced SFTs discussed in Theorem 1 do not approximate the discrete
Fourier transform and therefore do not alias the one-dimensional frequencies k · z into frequen-
cies in BM , slightly modifying Algorithm 1 to use SFTs with a larger bandwidth allows for the
following recovery result.

Corollary 2 (Algorithm 1 with nonequispaced sublinear-time SFT). For I ⊂ BdN with N ≥ 6,
fix the new bandwidth parameter M̃ := 2maxk∈I |k · z| + 1. For Λ(z,M), a reconstructing rank-1
lattice for I with M ≤ M̃ , and the function f ∈ W(Td)∩C(Td), we consider applying Algorithm 1
where each function sample may be corrupted by noise at most e∞ ≥ 0 in absolute magnitude with
the following modifications:

1. use the sublinear-time SFT algorithm Asub
2s,M̃

or Asub,MC

2s,M̃

2. and only check equality against ω in Line (X) (rather than equivalence modulo M),

to produce b = (bk)k∈Bd
N

a 2s-sparse approximation of c satisfying the error estimate

‖b− c‖ℓ2(Zd) ≤ (24 + 3N)

[

‖c|I − (c|I)opts ‖1√
s

+
√
s‖c− c|I‖1 +

√
se∞

]

+ ‖c− c|I‖2.

albeit with probability 1−σ ∈ [0, 1) for the Monte Carlo version. For Asub
2s,M̃

and Asub,MC

2s,M̃
respectively,

the total number of evaluations of f and computational complexity will be

O
(

ds2 log4 M̃

log s

)

or O
(

ds log3(M̃) log

(

dM̃

σ

))

.
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Proof. The bandwidth specified ensures that BM̃ ⊃ {k · z | k ∈ I}. In the case where f is a
trigonometric polynomial with supp(c(f)) ⊂ I, so long as there exists some M such that Λ(z,M)
is reconstructing for I, the one-dimensional Fourier transforms truncated to BM̃ coincide with

length M̃ DFTs. Thus, we can view an approximation from the algorithm in Theorem 1 as one of
a length M̃ DFT. The reasoning in the proofs of Lemma 5 and Corollary 1 then holds with the
SFT algorithms, parameters, numbers of samples, and complexities of Theorem 1.

In detail, we first note that for N ≥ 6, we have

β = η∞

(

1 +
2

sin
(
π
N

)

)

≤ η∞

(

1 +
2

6
(
sin π

6

)N

)

= η∞

(

1 +
2

3
N

)

.

Now let

A =
‖c|I − (c|I)opts ‖1√

s
, δ =

(
A√
s
+ ‖c− c|I‖1 + e∞

)

.

Then

β ≤
√
2

(

1 +
2

3
N

)

δ, η2 ≤
A

2
+ (8
√
2 + 6)

√
sδ, ‖c|I − c|Sβ

‖2 ≤
A

2
+
√
2β
√
s.

Our error bound is then

‖b− c‖2 ≤ η2 + (β + η∞)
√
2s + ‖c|I − c|Sβ

‖2 + ‖c− c|I‖2

≤ A+ (8
√
2 + 6)

√
sδ +

(

6 +
8

3
N

)√
sδ + ‖c− c|I‖2

= A+

(

8
√
2 + 12 +

8

3
N

)√
sδ + ‖c− c|I‖2

=

(

8
√
2 + 13 +

8

3
N

)

A+

(

8
√
2 + 12 +

8

3
N

)√
s(‖c− c|I‖1 + e∞) + ‖c− c|I‖2

≤ (24 + 3N)

(

‖c|I − (c|I)opts ‖1√
s

+
√
s(‖c− c|I‖1 + e∞)

)

+ ‖c− c|I‖2.

Remark 3. As in [13], we can estimate M̃ above with two different techniques:

M̃ = 1 + 2max
k∈I

∣
∣
∣
∣
∣
∣

∑

ℓ∈[d]
kℓzℓ

∣
∣
∣
∣
∣
∣

≤ 1 + 2
∑

ℓ∈[d]
|zℓ|max

k∈I
|kℓ| = O(dNM),

M̃ = 1 + 2max
k∈I

∣
∣
∣
∣
∣
∣

∑

ℓ∈[d]
kℓzℓ

∣
∣
∣
∣
∣
∣

≤ 1 + 2‖z‖∞ max
k∈I
‖k‖1 = O

(

M max
k∈I
‖k‖1

)

.

The latter case is especially useful when I is a subset of a known ℓ1 ball as it will provide a dimension
independent upper bound on M̃ . Either of these upper bounds may then be used in practice to avoid
having to estimate M̃ .
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That being said however, if one is willing to perform the one-time search through the frequency
set I to more accurately calculate M̃ , one can go even further to use the minimal bandwidth M̃ ′ =
maxk∈I(k · z) −mink∈I(k · z) + 1 so long as the function samples are properly modulated to shift

the one-dimensional frequencies into BM̃ ′. For example, running Asub
2s,M̃ ′ or Asub,MC

2s,M̃ ′ on a(t) =

e

2πiφtf(tz) and aℓ(t) = e

2πiφtSℓ,1/Nf(tz) with φ =
⌊
M̃ ′

2

⌋

−maxk∈I(k · z) is acceptable so long as

this shift is accounted for in the frequency check on Line (X). Of course, these improvements will
only have the effect of reducing the logarithmic factors in the computational complexity.

4.2 Two-dimensional DFT technique

Below, we will consider a method for recovering frequencies which, rather than shifting one dimen-
sion of the multivariate periodic function f at a time, leaves one dimension of f out at a time. We
will fix one dimension ℓ ∈ [d] of f at equispaced nodes over T and apply a lattice SFT to the other
d− 1 components. Applying a standard FFT to the results will produce a two-dimensional DFT.
The indices corresponding to the standard FFT will represent frequency components in dimension
ℓ while the indices corresponding to the lattice SFT will be used to synchronize with known one-
dimensional frequencies k · z mod M . The approach is summarized in the following lemma and in
Algorithm 2.

Lemma 6. Fix some finite multivariate frequency set I ⊂ BdN , let Λ(z,M) be a reconstructing
rank-1 lattice for {k − kℓeℓ | k ∈ I}, and assume that f has Fourier support supp(c) ⊂ I. Fixing
one dimension ℓ ∈ [d], and writing the generating vector as z = (zℓ, z

′
ℓ) ∈ Zd, define the polynomials

aℓj(t) := f

(
j

N
, tz′ℓ

)

for all j ∈ [N ],

that is, fix coordinate ℓ at j/N and restrict the remaining coordinates to dimensions [d] \ {ℓ} of the
rank-1 lattice. Then for all one-dimensional frequencies ω ∈ [M ],

(

FM aℓj

)

ω
=







∑

hℓ∈BN s.t.

(hℓ,k
′
ℓ
)∈I

e

2πijhℓ/N c(hℓ,k
′
ℓ
)(f) if there exists k ∈ I with ω ≡ k′

ℓ · z′ℓ (mod M),

0 otherwise.

Moreover, defining the matrix Aℓ =
((

FM aℓj

)

ω

)

j∈[N ],ω∈[M ]
, we have

(

FN Aℓ
)

kℓ mod N,k′
ℓ
·z′

ℓ
mod M

= ck(f) for all k ∈ I,

and the remaining entries of the matrix FN Aℓ ∈ CN×M are zero.

Proof. Using the Fourier series representation of f , we have

aℓj(t) :=
∑

k∈I
ck(f)e

2πi
(

jkℓ
N

+k′
ℓ
·z′

ℓ
t
)

.
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We calculate for ω ∈ [M ]

(

FM aℓj

)

ω
=

1

M

∑

i∈[M ]

∑

h∈I
e

2πijhℓ
N ch(f)e

2πi(h′
ℓ
·z′

ℓ
−ω)i

M

=
∑

h∈I
e

2πijhℓ
N ch(f) δ0,(h′

ℓ
·z′

ℓ
−ω mod M)

=
∑

hℓ∈BN s.t.
(hℓ,k

′
ℓ
)∈I

e

2πijhℓ
N c(hℓ,k

′
ℓ
)(f),

when k ∈ I is such that k′
ℓ · z′ℓ ≡ ω (mod M), and clearly is zero when no such k ∈ I exists. Note

that the final equality uses that Λ(z,M) is a reconstructing rank-1 lattice for {k − kℓeℓ | k ∈ I}.
Applying FN to Aℓ then gives

(

FN Aℓ
)

kℓ mod N,k′
ℓ
·z′

ℓ
mod M

=
1

N

∑

j∈[N ]

∑

hℓ∈BN

c(hℓ,k
′
ℓ
)(f)e

2πi(hℓ−kℓ mod N)j

N = ck(f).

Remark 4. We bring special attention to the fact that Algorithm 2 requires as input a rank-1
lattice Λ(z,M) which is reconstructing for not only I, but also the projections of I of the form
{k − kℓ | k ∈ I} for any ℓ ∈ [d]. For frequency sets I which are downward closed, that is, if
I is such that for any k ∈ I and h ∈ Z

d, |h| ≤ |k| component-wise implies that h ∈ I, any
reconstructing rank-1 lattice for I is necessarily one for the considered projections as well. Thus,
for many frequency spaces of interest, e.g., hyperbolic crosses (cf. Remarks 2 and 3 as well as
Section 5 below), any reconstructing rank-1 lattice for I will suffice as input to Algorithm 2.

4.2.1 Analysis of Algorithm 2

Lemma 7 (General recovery result for Algorithm 2.). Let f , I, and Λ(z,M) be as specified in the
input to Algorithm 2. Additionally, let As,M be a noise-robust SFT algorithm satisfying the same
constraints as in Lemma 5 with parameters τ and η∞ holding uniformly for each SFT performed
in Algorithm 2.

Collect the τ -significant frequencies of f into the set Sτ := {k ∈ I | |ck(f)| > τ} and assume
that | supp(c)∩Sτ | ≤ s. Then Algorithm 2 (ignoring the optional check on Line (XVI)) will produce
an s-sparse approximation of the Fourier coefficients of f satisfying the error estimate

‖b− c‖ℓ2(Zd) ≤ η2 + (4τ + η∞)
√

max(s − |S4τ |, 0) + ‖c|I − c|S4τ ‖ℓ2(Zd) + ‖c− c|I‖ℓ2(Zd),

requiring O (dN · P (s,M)) total evaluations of f , in O (dN(R(s,M) + sN logN)) total operations.

Proof. We begin by assuming that f is a trigonometric polynomial with supp(c(f)) ⊂ I. Since
Λ(z,M) is a reconstructing rank-1 lattice for I, the DFT-aliasing ensures that Line (I) of Algo-
rithm 2 will return approximate coefficients uniquely corresponding to all τ -significant frequencies
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Algorithm 2 Frequency Index Recovery by Two Dimensional DFT

Input: A multivariate periodic function f ∈ W(Td) ∩ C(Td) (from which we are able to obtain
potentially noisy samples), a multivariate frequency set I ⊂ BdN , a rank-1 lattice Λ(z,M) which
is reconstructing for I and {k− kℓeℓ | k ∈ I} for all ℓ ∈ [d], and an SFT algorithm As,M .

Output: Sparse coefficient vector b = (bk)k∈Bd
N

(optionally supported on I, see Line (XVI)), an

approximation to (c|I)opts .
(I) Apply As,M to the univariate restriction of f to the lattice, a(t) := f(tz), to produce v :=
As,Ma, a sparse approximation of FM a ∈ CM .

(II) for all ℓ ∈ [d] do
(III) for all j ∈ [N ] do
(IV) Apply As,M to aℓj(t) := f( j

N , tz′ℓ) to produce vℓ
j := As,Maℓj , a sparse approximation of

FM aℓj .

(V) Row j of Vℓ ← vℓ
j .

(VI) end for
(VII) for all nonzero columns ω of Vℓ do
(VIII) Apply FN to column ω of Vℓ to produce FN Vℓ.
(IX) end for
(X) end for
(XI) b← 0
(XII) for all ω ∈ supp(v) do
(XIII) for all ℓ ∈ [d] do
(XIV) ((kω)ℓ,∼) ← argmin{|vω − (FN Vℓ)h,ω′ | | (h, ω′) ∈ BN × [M ] with hzℓ + ω′ ≡ ω

(mod M)}
(XV) end for
(XVI) if kω · z ≡ ω (mod M) (and optionally kω ∈ I) then
(XVII) bkω

← bkω
+ vω

(XVIII) end if
(XIX) end for
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k ∈ Sτ which we can label vk·z mod M . Additionally, Line (IV) recovers approximations to all τ -
significant frequencies of FM aℓj which have the form given in Lemma 6. In particular, if k ∈ Sτ ,
we have

τ < |ck(f)| =
∣
∣
∣
∣

(

FN Aℓ
)

kℓ mod N,k′
ℓ
·z′

ℓ
mod M

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1

N

∑

j∈[N ]

(

FM aℓj

)

k′
ℓ
·z′

ℓ
mod M

e

−2πijkℓ mod N

N

∣
∣
∣
∣
∣
∣

≤ 1

N

∑

j∈[N ]

∣
∣
∣
∣

(

FM aℓj

)

k′
ℓ
·z′

ℓ
mod M

∣
∣
∣
∣

≤ max
j∈[N ]

∣
∣
∣(FM aℓj)k′

ℓ
·z′

ℓ
mod M

∣
∣
∣ .

Thus, there exists at least one FM aℓj with k′
ℓ · z′ℓ mod M recovered as a τ -significant frequency in

the SFT of Line (IV), and k′
ℓ · z′ℓ mod M will be a nonzero column in Vℓ for all k ∈ Sτ .

Analyzing these SFTs in more detail for any k ∈ I such that k′
ℓ ·z′ℓ mod M is a nonzero column

of Vℓ, we write (

vℓ
j

)

k′
ℓ
·z′

ℓ
mod M

=
(

FM aℓj

)

k′
ℓ
·z′

ℓ
mod M

+
(

ηℓj

)

k′
ℓ
·z′

ℓ
mod M

where, by the ℓ∞ and recovery guarantees for As,M , the error satisfies

∣
∣
∣
∣

(

ηℓj

)

k′
ℓ
·z′

ℓ
mod M

∣
∣
∣
∣
≤







η∞ if
(

vℓ
j

)

k′
ℓ
·z′

ℓ
mod M

6= 0

τ if
(

vℓ
j

)

k′
ℓ
·z′

ℓ
mod M

= 0
≤ τ.

Thus, in the application of FN to column k′
ℓ · z′ℓ mod M of Vℓ, we have

(

FN Vℓ
)

kℓ mod N,k′
ℓ
·z′

ℓ
mod M

=
(

FN Aℓ
)

kℓ mod N,k′
ℓ
·z′

ℓ
mod M

+

(

FN

((

ηℓj

)

k′
ℓ
·z′

ℓ
mod M

)

j∈[N ]

)

kℓ mod N

=: ck(f) + ηℓ
k

with

|ηℓk| =

∣
∣
∣
∣
∣
∣

1

N

∑

j∈[N ]

(

ηℓj

)

k′
ℓ
·z′

ℓ
mod M

e

−2πijkℓ mod N

N

∣
∣
∣
∣
∣
∣

≤ max
j∈[N ]

∣
∣
∣
∣

(

ηℓj

)

k′
ℓ
·z′

ℓ
mod M

∣
∣
∣
∣
≤ τ.

These same calculations apply to the computed columns of FN Vℓ which do not correspond to
values of k′

ℓ · z′ℓ mod M for some k ∈ I since we assume supp(c(f)) ⊂ I, and so at worst, these
columns are filled with noise bounded in magnitude by τ .

Restricting our attention to k ∈ S4τ ⊂ Sτ , we know that Line (XIV) will be run with ω =
k · z mod M and (kℓ mod N,k′

ℓ · z′ℓ mod M) as an admissible index in the minimization. By the
reconstructing property of Λ(z,M), no other h ∈ I will correspond to an admissible index (hℓ mod
N,h′

ℓ ·z′ℓ mod M), and so the only remaining values of (FN Vℓ)h,ω′ in the minimization correspond
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to pure noise η bounded in magnitude by τ . Analyzing the objective at (kℓ mod N,k′
ℓ ·z′ℓ mod M),

we find

|vk·z mod M − (FN Vℓ)kℓ mod N,k′
ℓ
·z′

ℓ
mod M | ≤ 2τ < |ck(f)| − 2τ ≤ |vk·z mod M − η|,

and so the value for (kω)ℓ will in fact be assigned kℓ. Thus, after all d components of kω = k have
been recovered, bk will be assigned vk·z mod M .

The remaining max(s− |S4τ |, 0) nonzero entries of v can be distributed to entries of b possibly
correctly but with no guarantee; at the very least however, these values must be at most 4τ + η∞
in magnitude. We split b as b = bcorrect + bincorrect to account for the values of v respectively
assigned correctly and incorrectly and note that supp(bcorrect) ⊃ S4τ . We then estimate the error
as

‖b− c‖ℓ2(Zd) ≤ ‖bcorrect − c|supp(bcorrect)‖ℓ2(Zd) + ‖bincorrect‖ℓ2(Zd) + ‖c− c|supp(bcorrect)‖ℓ2(Zd)

≤ η2 + (4τ + η∞)
√

max(s− |S4τ |, 0) + ‖c− c|S4τ ‖ℓ2(Zd).

As in the proof of Lemma 5, we note that the mandatory check in Line (XVI) helps ensure that
all misassigned values vω which contribute to bincorrect correspond to reconstructed kω outside of
I, with the optional check in this line (see Remark 2) eliminating bincorrect and the corresponding
term in the error estimate entirely.

Now, supposing that the Fourier support of f is not limited to only I, just as in the analysis
for Algorithm 1, we treat f as a perturbation of fI , and use the robust SFT algorithm and the
previous argument to approximate c|I . Note again that in each SFT, the noise added when using
measurements of f as proxies for those of fI is compounded by ‖f

Z

d\I‖∞ and is bounded by
‖c− c|I‖ℓ1(Zd). Applying the guarantees above gives

‖b− c‖ℓ2(Zd) ≤ ‖b− c|I‖ℓ2(Zd) + ‖c− c|I‖ℓ2(Zd)

≤ η2 + (4τ + η∞)
√

max(s − |S4τ |, 0) + ‖c|I − c|S4τ ‖ℓ2(Zd) + ‖c− c|I‖ℓ2(Zd).

Employing fast Fourier transforms for the at most dsN DFTs, the computational complexity of
Lines (II)–(X) is O

(
d(N · R(s,M) + sN2 logN)

)
(which dominates the complexity of the remainder

of the algorithm). Since 1+dN SFTs are required, the number of f evaluations is O(dN ·P (s,M)).

Remark 5. Though the number of nonzero columns of Vℓ can be theoretically at most sN , in prac-
tice with a high quality algorithm, each of the N SFTs should recover nearly the same frequencies,
meaning that there are actually O(s) columns. This would remove a power of N in the second term
of the runtime estimate.

Note however, that even with near exact SFT algorithms, recovering exactly s total frequencies
is not a certainty. There can be cancellations for certain terms in FM aℓj depending interactions
between the coefficients sharing the same values on their [d] \ {ℓ} entries, which makes it possible
that an SFT on FM aℓj will miss coefficients. If required to output s-entries, an SFT algorithm
could favor some noisy value corresponding to a frequency outside the support.

Remark 6. Though we perform an exact FFT of the nonzero columns of Vℓ in Line (VIII) of
Algorithm 2, Lemma 6 implies that the resulting matrix will be as sparse as the original function’s
Fourier transform. Thus, for a truly compressible function, an SFT down the columns of Vℓ
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would be feasible as well. However, in especially higher dimensions, even small N can support
large frequency spaces I. In these large frequency spaces, what is perceived as relatively sparse can
therefore quickly surpass N , rendering an s-sparse, length N SFT useless.

Applying the discrete sublinear-time SFT from Theorem 2 to Lemma 7 analogously to the
derivation of Corollary 1 from Lemma 5 allows for the following recovery bound for Algorithm 2.
In particular, we observe asymptotically improved error guarantees over Corollary 1 at the cost of
a slight increase in runtime.

Corollary 3 (Algorithm 2 with discrete sublinear-time SFT). For I ⊂ Z

d with reconstructing
rank-1 lattice Λ(z,M) and the function f ∈ W(Td) ∩ C(Td), we consider applying Algorithm 2
where each function sample may be corrupted by noise at most e∞ ≥ 0 in absolute magnitude.
Using the discrete sublinear-time SFT algorithm Adisc

2s,M or Adisc,MC
2s,M with parameter 1 ≤ r ≤ M

36 will
produce b = (bk)k∈Bd

N
a 2s-sparse approximation of c satisfying the error estimate

‖b− c‖ℓ2(Zd) ≤ 206
‖c|I − (c|I)opts ‖1√

s
+ 820

√
s(‖f‖∞M−r + ‖c− c|I‖1 + e∞)

+ ‖c− c|I‖2
albeit with probability 1− σ ∈ [0, 1) for the Monte Carlo version.

The total number of evaluations of f and the computational complexity will be

O
(

dsN

(

sr3/2 log11/2 M

log s
+N logN

))

or O
(

dsN

(

r3/2 log9/2(M) log

(
dNM

σ

)

+N logN

))

for Adisc
2s,M or Adisc,MC

2s,M respectively.

Proof. In detail, let

A =
‖c|I − (c|I)opts ‖1√

s
, B =

(

274 + 96
√
2
)

δ =

(
A

2
√
s
+ 2(‖f‖∞M−r + ‖c− c|I‖1 + e∞)

)

.

Then

τ ≤ 12(1 +
√
2)δ, η∞ ≤ 3

√
2δ

η2 ≤
A

2
+ 76
√
sδ,

‖c|I − c|S4τ ‖2 ≤
A

2
+ 4
√
2τ
√
s =

A

2
+ 48(2 +

√
2)δ
√
s.

Our error bound is then

‖b− c‖ℓ2(Zd) ≤ η2 + (4τ + η∞)
√
2s + ‖c|I − c|S4τ ‖ℓ2(Zd) + ‖c− c|I‖ℓ2(Zd)

≤ A+B
√
sδ + ‖c− c|I‖2

=

(

1 +
B

2

)

A+ 2B
√
s(‖f‖∞M−r + ‖c− c|I‖1 + e∞) + ‖c− c|I‖2

≤ 206
‖c|I − (c|I)opts ‖1√

s
+ 820

√
s(‖f‖∞M−r + ‖c− c|I‖1 + e∞)

+ ‖c− c|I‖2.
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Again, the same strategy from Corollary 2 of widening the frequency band and shifting the
one-dimensional transforms accordingly allows us to use the nonequispaced SFT algorithm from
Theorem 1 in Algorithm 2. Note here that the widening and shifting occurs on a dimension by
dimension basis so as to account for the differing one-dimensional frequencies of the form k′

ℓ ·z′ℓ for
k ∈ I.
Corollary 4 (Algorithm 2 with nonequispaced sublinear-time SFT). For I ⊂ BdN , let M̃ be
the larger one-dimensional bandwidth parameter from Corollary 2, and additionally define M̃ ℓ :=
2maxk∈I |k′

ℓ·z′ℓ|+1. For Λ(z,M), a reconstructing rank-1 lattice for I with M ≤ min{M̃,minℓ∈[d] M̃
ℓ},

and the function f ∈ W(Td)∩C(Td), we consider applying Algorithm 2 where each function sample
may be corrupted by noise at most e∞ ≥ 0 in absolute magnitude with the following modifications:

1. use the sublinear-time SFT algorithm Asub
2s,M̃

or Asub,MC

2s,M̃
in Line (I) and Asub

2s,M̃ℓ
or Asub,MC

2s,M̃ℓ

in Line (IV)

2. and only check equality against ω in Line (XIV) (rather than equivalence modulo M),

to produce b = (bk)k∈Bd
N

a 2s-sparse approximation of c satisfying the error estimate

‖b− c‖ℓ2(Zd) = 98

(

‖c|I − (c|I)opts ‖1√
s

+
√
s‖c− c|I‖1 +

√
se∞

)

+ ‖c− c|I‖2

albeit with probability 1− σ ∈ [0, 1) for the Monte Carlo version.
Letting M̄ = max(M̃,maxℓ∈[d] M̃

ℓ), the total number of evaluations of f will be

O
(
dNs2 log4 M̄

log s

)

or O
(

dNs log3 M̄ log

(
dNM̄

σ

))

with associated computational complexities

O
(

dNs

(
s log4 M̄

log s
+N logN

))

or O
(

dNs

(

log3 M̄ log

(
dNM̄

σ

)

+N logN

))

for Asub
2s,· and A

sub,MC
2s,· respectively.

Proof. In detail, let

A =
‖c|I − (c|I)opts ‖1√

s
, B = 40(1 +

√
2)

δ =

(
A√
s
+ ‖c− c|I‖1 + e∞

)

.

Then

τ ≤ (4 + 2
√
2)δ, η∞ ≤

√
2δ

η2 ≤
A

2
+ (8
√
2 + 6)

√
sδ,

‖c|I − c|S4τ ‖2 ≤
A

2
+ 4
√
2τ
√
s =

A

2
+ 16(1 +

√
2)δ
√
s.
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Our error bound is then

‖b− c‖2 ≤ η2 + (4τ + η∞)
√
2s+ ‖c|I − c|S4τ ‖ℓ2(Zd) + ‖c− c|I‖ℓ2(Zd)

= A+B
√
sδ + ‖c− c|I‖2

= (1 +B)
‖c|I − (c|I)opts ‖1√

s
+B
√
s‖c− c|I‖1 +B

√
se∞ + ‖c− c|I‖2

= 98

(

‖c|I − (c|I)opts ‖1√
s

+
√
s‖c− c|I‖1 +

√
se∞

)

+ ‖c− c|I‖2

Remark 7. The bounds in Remark 3 will still hold for M̃ ℓ as well; thus one of these upper bounds
can be used as the effective bandwidth parameter for every SFT without having to calculate the
d+1 bandwidths by scanning I. Again however, if this scan is tolerable, one can reduce the overall
complexity by using analogous minimal bandwidths discussed in Remark 3 along with corresponding
frequency shifts.

5 Numerics

We now demonstrate the effectiveness of our phase encoding and two-dimensional DFT algorithms
for computing Fourier coefficients of multivariate functions in a series of empirical tests. The
two techniques are implemented in MATLAB, with the code for the algorithms and tests in this
section publicly available1. The results below use a MATLAB implementation2 of the randomized
univariate sublinear-time nonequispaced algorithm Asub,MC

2s,M (cf. Theorem 1) as the underlying SFT
for both multivariate approaches as this allows for the fastest runtime and most sample efficient
implementations.

In the univariate code, all parameters but one are qualitatively tuned below theoretical upper
bounds to increase efficiency while maintaining accuracy and are kept constant between tests below.
In particular, we fix the values C := 1, sigma := 2/3, and primeShift := 0 (see the documentation
and the original paper [16] for more detail). The only parameter we vary is randomScale which
affects the rate at which the deterministic algorithm Asub

2s,M is randomly sampled to produce the

Monte Carlo version Asub,MC
2s,M . This parameter represents a multiplicative scaling on logarithmic

factors of the bandwidth which determines how many prime numbers are randomly selected from
those used in the deterministic SFT implementation. Therefore, lower values of randomScale will
result in using fewer prime numbers, decreasing the number of function samples and overall runtime
at the risk of a higher probability of failure. We consider values well below the code default and
theoretical upper bound of 21 given in [16].

5.1 Exactly sparse case

In the beginning, we consider the case of multivariate trigonometric polynomials with frequen-
cies supported within hyperbolic cross index sets. We define the d-dimensional hyperbolic cross

1available at https://gitlab.com/grosscra/Rank1LatticeSparseFourier
2available at https://gitlab.com/grosscra/SublinearSparseFourierMATLAB
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frequency set

Hd
N :=

{

k ∈ Zd :
d∏

ℓ=1

max(1, |kℓ|) ≤
N

2
and max

ℓ=1,...,d
kℓ <

N

2

}

⊂ BdN

of expansion N ∈ N. For a given sparsity s, we choose s many frequencies uniformly at random
from Hd

N , and we randomly draw corresponding Fourier coefficients ck from [−1, 1] + i [−1, 1],
|ck| ≥ 10−3. For each parameter setting, we perform the tests 100 times and determine the success
rate, i.e., the relative number of cases (out of the 100) where all frequencies were correctly detected,
as well as the average number of samples.

5.1.1 Random frequency sets within 10-dimensional hyperbolic cross and high-dimensional
full cuboids

We set the spatial dimension d := 10, the expansion N := 33, and use I := H10
33 as set of possible

frequencies with cardinality |I| = 45548 649. Then, the rank-1 lattice with generating vector

z := (1, 33, 579, 3 628, 21 944, 169 230, 1 105 193, 7 798 320, 49 768 670, 320 144 128)⊤ (10)

and lattice size M := 2 040 484 044 is a reconstructing one. We apply Algorithm 1 and Algorithm 2
with the SFT algorithm Asub,MC

2s,M̃
.

In Figure 1a, the average numbers of samples (over 100 test runs) are plotted against the
used sparsities s ∈ {10, 20, 50, 100, 200, 500, 1000} for Algorithm 1 and s ∈ {10, 20, 50, 100} for
Algorithm 2. The magenta line with circles corresponds to Algorithm 1 with bandwidth parameter
M̃ = dNM ≈ 6.7 · 1011 and randomScale := 0.3. We observe that the number of samples grow
nearly linearly with respect to the sparsity s. Moreover, the success rate is at least 0.99 (99 out of
100 test runs), where we define success such that the support of output (sparse coefficient vector)
contains the true frequencies. Next, we reduce the bandwidth M̃ to 1 + 2‖z‖∞ maxk∈I ‖k‖1 ≈
1.6 · 1010, see also Remark 3, and visualize this as solid blue line with squares. This smaller
bandwidth causes a decrease in the number of samples of up to 50 percent while only mildly
decreasing the success rates to values not below 0.90. Increasing the randomScale parameter to
0.5, denoted by dashed blue line with squares, raises the success rate to 1.00 while achieving still
fewer samples than bandwidth parameter M̃ = dNM ≈ 6.7 · 1011 and randomScale = 0.3 (solid
magenta line with circles). The numbers of samples for Algorithm 2 are plotted as solid and dashed
red lines with triangles for randomScale := 0.3 and 0.5, respectively, choosing the bandwidth
M̃ := 1 + 2‖z‖∞ maxk∈I ‖k‖1 ≈ 1.6 · 1010. We observe that Algorithm 2 requires much more
samples, more than one order of magnitude, compared to Algorithm 1, while achieving similar
success rates. For comparison, in case of sparsity s = 100 and randomScale = 0.5, Algorithm 2
takes almost M = 2040 484 044 samples, where the latter would be required by a non-SFT approach
which uses all rank-1 lattice nodes.

In Figure 1b, we investigate the dependence of the required number of samples of Algorithm 1
and 2 on the spatial dimension d, where we consider the values d ∈ {10, 11, . . . , 20}. For this, we
use a slightly different setting, where we choose s = 100 random frequencies from a full cuboid of
cardinality ≈ 1012. For instance, we utilize the cuboid I := {−8,−7, . . . , 7}9 × {−7,−6, . . . , 7},
|I| ≈ 1.03 · 1012, in the case d = 10 and I := {−2,−1, . . . , 2} × {−2,−1, 0, 1}18 × {−1, 0, 1},
|I| ≈ 1.03 · 1012, for d = 20. The rank-1 lattice size and the bandwidth parameter are chosen
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(a) Samples vs. sparsity s. Random frequen-
cies are chosen from hyperbolic cross I := H10

33.
“bwℓ∞” and “bwℓ1” correspond to bandwidth pa-
rameters M̃ = dNM ≈ 6.7 · 1011 and M̃ = 1 +
2‖z‖∞maxk∈I ‖k‖1 ≈ 1.6 · 1010, respectively.
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(b) Samples vs. spatial dimension d. Random fre-
quencies are chosen from full cuboid I of cardi-
nality |I| ≈ 1012 with corresponding lattice of size
M = |I| and bandwidth parameter M̃ = M .

Figure 1: Average number of samples over 100 test runs for Algorithm 1 with Asub,MC

2s,M̃
, denoted by

“phase”, and Algorithm 2 with Asub,MC

2s,M̃
, denoted by “2dim”, on random multivariate trigonometric

polynomials, setting randomScale := rs.

to be M = M̃ = |I|. The generating vector z follows from the edge lengths of the cube, e.g.,
z := (1, 16, 16·15, 16·152 , 16·153, . . . , 16·158)⊤ for d = 10 and z := (1, 5, 5·4, 5·42 , 5·43, . . . , 5·418)⊤
for d = 20. Since the expansion N is a factor in the number of samples of Algorithm 2, cf.
Corollary 4, and we want to concentrate on the dependence on the spatial dimension d, we now
fix this parameter to N := 16 independent of d. Moreover, the randomScale parameter is set to
0.3. The plots indicate that the numbers of samples grow approximately linearly with respect to
the dimension d as stated by Corollaries 2 and 4 for Algorithms 1 and 2, respectively. The success
rates are slightly better compared to the tests from Figure 1a.

5.1.2 Random frequency sets within 10-dimensional hyperbolic cross and noisy sam-
ples

In this section, we again consider random multivariate trigonometric polynomials with frequencies
supported within the hyperbolic cross index setH10

33 of expansion N = 33 and use the reconstructing
rank-1 lattice with generating vector z as stated in (10) and size M := 2 040 484 044. Similarly as
in [21, Section 5.2], we perturb the samples of the trigonometric polynomial by additive complex
(white) Gaussian noise εj ∈ C with zero mean and standard deviation σ. The noise is generated
by εj := σ/

√
2 (ε1,j + iε2,j) where ε1,j , ε2,j are independent standard normal distributed. Since the

31



signal-to-noise ratio (SNR) can be approximately computed by

SNR ≈
∑M−1

j=0 |f(xj)|2/M
∑M−1

j=0 |εj |2/M
≈
∑

k∈supp(c) |ck(f)|2

σ2
,

this leads to the choice σ :=
√∑

k∈supp(c) |ck(f)|2/
√
SNR for a targeted SNR value. The SNR is of-

ten expressed in the logarithmic decibel scale (dB), SNRdB = 10 log10 SNR and SNR = 10SNRdB/10,
i.e., a linear SNR = 102 corresponds to a logarithmic SNRdB = 20 and SNR = 103 corre-
sponds to SNRdB = 30. Here, we perform tests with sparsity s = 100 and signal-to-noise ra-
tios SNRdB ∈ {0, 5, 10, 15, 20, 25, 30}. Moreover, we only use the bandwidth parameter M̃ =
1 + 2‖z‖∞ maxk∈I ‖k‖1 ≈ 1.6 · 1010. Besides that, we choose the algorithm parameters as in
Figure 1a.
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(a) success rates vs. noise level for s = 100
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Figure 2: Average success rates (all frequencies detected) and relative ℓ2 errors over 100 test

runs for Algorithm 1 with Asub,MC

2s,M̃
, denoted by “phase”, and Algorithm 2 with Asub,MC

2s,M̃
, denoted

by “2dim”, on random multivariate trigonometric polynomials within hyperbolic cross I := H10
33,

setting randomScale := rs ∈ {0.3, 0.5} and bandwidth parameter M̃ = 1 + 2‖z‖∞ maxk∈I ‖k‖1 ≈
1.6 · 1010.

In Figure 2a, we visualize the success rates in dependence on the noise level. For randomScale ∈
{0.3, 0.5} and both algorithms, the success rates start at less than 0.12 for SNRdB = 0 and grow
for increasing signal-to-noise ratios until at least 0.90 for SNRdB = 30. The success rates of
Algorithm 2 with Asub,MC

2s,M̃
(“2dim”) are often higher than for Algorithm 1 with Asub,MC

2s,M̃
(“phase”),

which may be caused by the larger numbers of samples for Algorithm 2 and the noise model used.
Note that the numbers of samples correspond to those in Figure 1a for s = 100 independent of
the noise level. For Algorithm 2 with randomScale = 0.3, the increase of the success rate seems
to stagnate at SNRdB = 20, while this does not seem to be the case for randomScale = 0.5
or Algorithm 1. In particular, this behavior can also be observed in Figure 2b, where we plot
the average relative ℓ2 error of the Fourier coefficients against the signal-to-noise ratio. Here, we
observe that for randomScale = 0.3, the decrease of the errors for increasing SNRdB values almost
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stops once reaching SNRdB = 20 for both algorithms. Initially, the average error of Algorithm 2
is smaller, but at SNRdB = 15 and higher, the average error of Algorithm 1 is smaller. In case
of randomScale = 0.5, we observe a distinct decrease for growing signal-to-noise ratios for both
algorithms.

5.1.3 Deterministic frequency set within 10-dimensional hyperbolic cross and noisy
samples

Next, instead of randomly chosen frequencies, we consider frequencies on a d-dimensional weighted
hyperbolic cross

Hd,α
N :=

{

k ∈ Zd :
d∏

ℓ=1

max(1, ℓα |kℓ|) ≤
N

2
and

d
max
ℓ=1

kℓ <
N

2

}

.

Here, we use d = 10, N = 33, I := H10
33, and α = 1.7, which yields s = |H10,1.7

33 | = 101. As before,
the Fourier coefficients ck are randomly chosen from [−1, 1] + i [−1, 1], |ck| ≥ 10−3. We use the
same lattice and bandwidth parameter as in the last subsection as well as the same noise model
and parameters.
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Figure 3: Average success rates (all frequencies detected) and relative ℓ2 errors over 100 test runs

for Algorithm 1 with Asub,MC

2s,M̃
, denoted by “phase”, and Algorithm 2 with Asub,MC

2s,M̃
, denoted by

“2dim”, on multivariate trigonometric polynomials with (deterministic) frequencies on weighted
hyperbolic cross within hyperbolic cross I := H10

33, setting randomScale := rs ∈ {0.3, 0.5} and
bandwidth parameter M̃ = 1 + 2‖z‖∞ maxk∈I ‖k‖1 ≈ 1.6 · 1010.

In Figure 3, we depict the obtained results. In particular, the results in Figure 3a are very
similar to the ones for randomly chosen frequencies in Figure 2a. For the case of deterministic
frequencies in Figure 3a, the success rates are slightly better. Moreover, we do not observe the
“stagnation” of the success rates for Algorithm 2 with randomScale = 0.3. Correspondingly, the
relative ℓ2 errors, as shown in Figure 3b, decrease distinctly for growing signal-to-noise ratios.
Algorithm 2 performs slightly better than Algorithm 1, but also requires more than one order of
magnitude more samples, similar to the results shown in Figure 1a for s = 100.
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5.2 Compressible case in 10 dimensions

In this section, we apply the methods on a test function which is not exactly sparse but compressible.
In addition, we also consider noisy samples as in Section 5.1.2. We use the 10-variate periodic test
function f : T10 → R,

f(x) :=
∏

ℓ∈{0,2,7}
N2(xℓ) +

∏

ℓ∈{1,4,5,9}
N4(xℓ) +

∏

ℓ∈{3,6,8}
N6(xℓ), (11)

from [33, Section 3.3] and [21, Section 5.3] with infinitely many non-zero Fourier coefficients ck(f),
where Nm : T→ R is the B-Spline of order m ∈ N,

Nm(x) := Cm

∑

k∈Z
sinc

( π

m
k
)m

(−1)k e2πikx,

with a constant Cm > 0 such that ‖Nm‖L2(T) = 1. We remark that each B-Spline Nm of or-

der m ∈ N is a piece-wise polynomial of degree m − 1. We apply Algorithm 1 with Asub,MC

2s,M̃

and use the sparsity parameters s ∈ {50, 100, 250, 500, 1000, 2000}, which corresponds to 2s ∈
{100, 200, 500, 1000, 2000, 4000} frequencies and Fourier coefficients for the output of Algorithm 1.
We use the frequency set I := H10

33 and randomScale := rs ∈ {0.05, 0.1}. Moreover, we work with
the same rank-1 lattice as in Section 5.1.2.

The obtained basis index sets supp(b) should “consist of” the union of three lower dimensional
manifolds, a three-dimensional hyperbolic cross in the dimensions 1, 3, 8; a four-dimensional hyper-
bolic cross in the dimensions 2, 5, 6, 10; and a three-dimensional hyperbolic cross in the dimensions
4, 7, 9. All tests are performed 100 times and the relative L2 approximation error

‖f −∑
k∈supp(b) bk e

2πik·◦‖L2

‖f‖L2

=

√

‖f‖2
L2 −

∑

k∈supp(b) |ck(f)|2 +
∑

k∈supp(b) |bk − ck(f)|2

‖f‖L2

is computed each time.
In Figure 4a, we visualize the average number of samples against the sparsity 2s of the approxi-

mation. We observe an almost linear increase with respect to 2s. In Figure 4b, we show the average
relative errors for randomScale ∈ {0.05, 0.1} in the noiseless case as well as randomScale = 0.1
for SNRdb ∈ {10, 20, 30}. In general, for increasing sparsity, the errors become smaller. For
randomScale = 0.05 in the noiseless case and randomScale = 0.1 with SNRdb = 10, the average
error are similar and stay above 3 · 10−2 even for sparsity 2s = 4000. For higher signal-to-noise
ratio, the error decreases further. For SNRdb = 30, the obtained average error is 6.1 · 10−3 for
2s = 4000, which is only approximately twice as high as the best possible error when using the 2s
largest (by magnitude) Fourier coefficients ck(f) with the restriction k ∈ I := H10

33. The latter is
plotted in Figure 4b as dashed line without markers.
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