Summary. This paper deals with an issue of Mathematical Physics and Compu-
tation. More precisely, the distribution of eigenvalues per unit volume is estimated
for Hamiltonians occurring in quantum models of disordered solids. While rigorous
analytical results had been known for regular single-site distributions the problem
was open for singular ones, especially for the Bernoulli-Anderson model.

Here we present some numerical and analytical results concerning the occurrence
of peaks in the density of states. To rule out such peaks is the major stumbling block
on the way to prove (analytically) that localization occurs at low energies.

The computational challenge in this project comes from the following fact: Very
high precision is needed and large matrices have to be diagonalized to enter the
regime where selfaveraging overrules those peaks in the eigenvalue distribution that
simply come from finite-size effects. Large samples have to be investigated to obtain
results of statistical relevance.

The analytical challenge comes from the fact that all previously known meth-
ods relied on the continuity of the single-site distribution defining the model and
fail completely for the most prominent example with a singular distribution: the
Bernoulli-Anderson model.
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1 Introduction

Disorder is one of the fundamental topics in science today. A very prominent
example is Anderson’s model [1] for the transition from metal to insulator
under the presence of disorder.

Apart from its intrinsic physical value this model has triggered an enor-
mous amount of research in the fields of random operators and numerical
analysis, resp. numerical physics. As we will explain below, the Anderson
model poses extremely hard problems in these fields and so mathematical
rigorous proofs of many well substantiated findings of theoretical physics are
still missing. The very nature of the problem also causes highly nontrivial
challenges for numerical studies.

The transition mentioned above can be reformulated in mathematical
terms in the following way: for a certain random Hamiltonian one has to
prove that its spectral properties change drastically as the energy varies. For
low energies the spectrum is pure point, with eigenfunctions that decay expo-
nentially. This energy regime is called localization.

For energies away from the spectral edges, the spectrum is expected to be
absolutely continuous, providing for extended states that can lead to trans-
port. Sadly enough, more or less nothing has been proven concerning the
second kind of spectral regime, called delocalization. An exception are results
on trees [2, 3], and for magnetic models [4]. Anyway, there are convincing
theoretical arguments and numerical results that support the picture of the
metal-insulator transition (which is, in fact, a dimension-dependent effect and
should take place for dimensions d > 2).

In our research we are dealing with a different circle of questions. The
Anderson model is in fact a whole class of models: an important input is the
measure u that underlies the random onsite couplings. In all proofs of localiza-
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tion (valid for d > 1) one needs regularity of this measure p. This excludes a
prominent and attractive model: the Anderson model of a binary alloy, i.e. two
kinds of atoms randomly placed on the sites of a (hyper)cubic lattice, known
as Bernoulli-Anderson model in the mathematical community. Basically there
are two methods of proof for localization: multiscale analysis [5], and the frac-
tional moment method [6]. In both cases one needs an a-priori bound on the
probability that eigenvalues of certain Hamiltonians cluster around a fixed
energy, i.e., one has to exclude resonances of finite box Hamiltonians. Equiva-
lently, one needs a weak kind of continuity of the integrated density of states.
In multiscale analysis this a-priori estimate comes in a form that is known as
Wegner’s estimate [7]. Here we will present both rigorous analytical results
and numerical studies of these resonances. We will take some time and effort
to describe the underlying concepts and ideas in the next Section. Then we
remark recent progress concerning analytical results. Here one has to mention
a major breakthrough obtained in a recent paper [8] of J. Bourgain and C.
Kenig who prove localization for the continuum Bernoulli~Anderson model in
dimensions d > 2. Finally, we display our numerical studies and comment on
future directions of research.

We conclude this section with an overview over recent contributions in the
physics literature concerning the binary-alloy model. These may be classified
into mainly simulations or mainly theoretical analyses. The former are dis-
cussed in [9], albeit in the restricted setting of a Bethe lattice, providing a de-
tailed analysis of the electronic structure of the binary-alloy and the quantum-
percolation model, which can be derived from the binary alloy replacing one
of the alloy constituents by vacancies. The study is based on a selfconsistent
scheme for the distribution of local Green functions. Detailed results for the
local density of states (DOS) are obtained, from which the phase diagram
of the binary alloy is constructed. The existence of a quantum-percolation
threshold is discussed. Another study [10] of the quantum site-percolation
model on simple cubic lattices focuses on the statistics of the local DOS and
the spatial structure of the single particle wave functions. By using the kernel
polynomial previous studies of the metal-insulator transition are refined and
the nonmonotonic energy dependence of the quantum-percolation threshold
is demonstrated. A study of the three-dimensional binary-alloy model with
additional disorder for the energy levels of the alloy constituents is presented
n [11]. The results are compared with experimental results for amorphous
metallic alloys. By means of the transfer-matrix method, the metal-insulator
transitions are identified and characterized as functions of Fermi-level posi-
tion, band broadening due to disorder and alloy composition. The latter is
also investigated in [12], which discusses the conditions to be put on mean-
field-like theories to be able to describe fundamental physical phenomena in
disordered electron systems. In particular, options for a consistent mean-field
theory of electron localization and for a reliable description of transport prop-
erties are investigated. In [13] the single-site coherent potential approximation
is extended to include the effects of non-local disorder correlations (i.e. alloy
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short-range order) on the electronic structure of random alloy systems. This
is achieved by mapping the original Anderson disorder problem to that of
a selfconsistently embedded cluster. The DOS of the binary-alloy model has
been studied in [14], where also the mobility edge, i.e. the phase boundary
between metallic and insulating behaviour was investigated. The critical be-
haviour, in particular the critical exponent with which the localization length
of the electronic states diverges at the phase transition was analyzed in [15]
in comparison with the standard Anderson model.

2 Resonances and the integrated density of states

2.1 Wegner estimates, IDS, and localization

In this Section we sketch the basic problem and introduce the model we want
to consider. A major point of the rather expository style is to make clear, why
the problem is as difficult as it appears to be. This also sheds some light on
why it is intrinsically hard to study numerically. Let us first write down the
Hamiltonian in an analyst’s notation:

On the Hilbert space £2(Z?%) we consider the random operator

Hw)=-4A+1V,,

where the discrete Laplacian incorporates the constant (nonrandom) off-
diagonal or hopping terms. It is defined, for ¢ € £2(Z?) by

Ap(i)y= > ()

li—jl=1

for i € Z2. This reflects that we are dealing with a nearest neighbor interaction,
where the value of the wave function at site ¢ is only influenced by those
at the 2d neighbors on the integer lattice. The random potential V,, is, in
its simplest form, given by independent identically distributed (short: i.i.d.)
random variables at the different sites. A convenient representation is given
in the following way:

Q2 = IiczaR,P = Icgap, Vo, (1) = w;

where p is a probability measure on the real line. This gives the random
diagonal multiplication operator acting as

For simplicity we assume that the support of the so-called single-site measure
1 is a compact set K C R. Put differently, for every site i we perform a random
experiment that gives the value w; distributed according to p. In physicist’s
notation we get
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H(w) =Y 1)+ D wili)l,
(4,4) i

where |i) denotes the basis functions in site representation.

In principle, one expects that the spectral properties should not depend
too much on the specific distribution p (apart from the very special case that
u reduces to a point mass, in which case there is no disorder present). Let us
take a look at two very different cases. In the Bernoulli-Anderson model we
have the single-site measure p = %50 + %51. In that case the value w; € {0,1}
is determined by a fair coin. We will also consider a coupling parameter W in
the random part, in which case we have either w; = 0 or w; = W each with
probability % The resulting random potential is denoted by V.Z. In the second
case the potential value is determined with respect to the uniform distribution
so that we get p(dx) = x[o,1)(z)dz. We write V.V for this case.

Let us point out one source of the complexity of the problem: The two
operators that sum up to H(w) are of very different nature:

e The discrete Laplacian is a difference operator. It is diagonal in Fourier
space L?(T4), where it is given by multiplication with the function

d
E 2 cosx.
k=1

Therefore, its spectrum is given by the range of this function, so that
o(—A) = [-2d, 2d],

the spectrum being purely absolutely continuous.

e The random multiplication operator V,, is diagonal in the basis {d;|i € Z?}.
The spectrum is hence the closure of the range of V,,, which is just the
support K of the measure for P-a.e.w € {2 (a.e. stands for almost every,
i.e., for all but a set of measure zero). In the aforementioned special cases
we get

o(V.7) ={0,1}

for the Bernoulli-Anderson model and
U(VwU) = [07 1]7

both for a.e. w € 2. Clearly, the spectral type is pure point with perfectly
localized eigenfunctions for every w, the set of eigenvalues being given by
{wi|i S Zd}

One major problem of the analysis as well as the numerics is now obvious:
We add two operators of the same size with completely different spectral type
and there is no natural basis to diagonalize the sum H(w) = —A + V,,, since
one of the two terms is diagonal in position space while the other is diagonal
in momentum space (the Fourier picture).
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Another cause of difficulties is the expected spectral type of H(w). In
the localized regime it has a dense set of eigenvalues. These eigenvalues are
extremely unstable. Rank-one perturbation theory gives the following fact
which illustrates this instability: If we fix all values w; except one, say w; and
vary the latter continuously in an interval, the resulting spectral measures
will be mutually singular and for a dense set of values of w; the spectrum will
contain a singular continuous component, cf. [16].

Moreover, the qualitative difference between the Bernoulli-Anderson model
and the model with uniform distribution is evident: V.V displays the spectral
type we want to prove for H(w): it has a dense set of eigenvalues for a.e. w. If
one can treat —A in some sense as a small perturbation we arrive at the de-
sired conclusion. In view of the preceding paragraph, this cannot be achieved
by standard perturbation arguments. In the Bernoulli-Anderson model V.2
has only eigenvalues 0 and 1, each infinitely degenerate.

In typical proofs of localization an important tool is the study of box
Hamiltonians. To explain this, we consider the cube Ay (i) of side length L
centered at i. We restrict H(w) to the sites in Ay (i) which constitutes a
subspace of dimension |4z (i)| = L. We denote the restriction by Hr (w) and
suppress the boundary condition, since it does not play a role in asymptotic
properties as L — oo.

These box Hamiltonians enter in resolvent expansions and it is important
to estimate the probability that their resolvents have a large norm, i.e., we are
dealing here with small-denominator problems. Since the resolvent has large
norm for energies near the spectrum one needs upper bounds for

P{o(HL(w))N[E—€,E+¢l #0} =p(e L).

In fact, one wants to show that p(e, L) is small for large L and small €. At the
same time, there is a clear limitation to such estimates: In the limit L — oo
the spectra of Hy(w) converge to the spectrum of H(w). This means that for
fixed € > 0 and E € o(H(w)) (and only those energies E are of interest),

p(e,L) — 1 for L — oo.

The famous Wegner estimate [7] states that for absolutely continuous u we
get

ple, L) < CeL?, (1)
where the last factor is the volume of the cube |Af(i)| = L?. This estimate
is sufficient for a proof of localization for energies near the spectral edges.
The proof is not too complicated for the discrete model. To see why it might
be true, let us include a very simple argument in the case that there is no
hopping term.

Then

P{oc(V,)N[E—¢,E+¢e #0} =P{3j € A s.t. V,(j) €E[E— €6, E+¢€]}
< |Ap| - plE — €, E+ €]
SC'|AL|'67
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if o is absolutely continuous. Here we see that the situation is completely
different for the Bernoulli-Anderson model for which u[E — ¢, E + ¢ >
whenever E € {0,1}. Also, it is clear that a Wegner estimate of the type (1)

above cannot hold. Since in
P{o(H(w)N[E—¢, E+¢ #0}

only 2/42! Bernoulli variables are comprised, this probability must at least be
2~ 1ALl unless it vanishes.

The Wegner estimate is intimately related to continuity properties of the
integrated density of states (IDS), a function N : R — [0, 00) that measures
the number of energy levels per unit volume:

1
N(E) = 1l E(T H
Here X(—oo,m)(Hr(w)) is the projection onto the eigenspace spanned by the
eigenvectors with eigenvalue below E and the trace determines the dimension
of this space, i.e., the number of eigenvalues below E counted with their
multiplicity. Since we are dealing with operators of rank at most |Ay|, we get

N(E+¢)—N(E—¢€) ~ |A | E(Trx(g—c,p4q(HL(W)))

<Plo(Hp(w))N[E—¢,E +¢ #0}.

This means that Wegner estimates lead to continuity of the IDS. Although
that is not clear from the above rather crude reasoning, the Wegner estimate
for absolutely continuous p yields differentiability of the IDS.

2.2 Recent rigorous analytical results

In this section we will mainly be dealing with continuum models,
Hw)=-A+1V,,

where —A is now the unbounded Laplacian with domain W?22(R%), the
Sobolev space of square integrable functions with square integrable second
partial derivatives. The random multiplication operator V,, is defined by

x) = Z wiu(x — 1),

€24

with a single-site potential u > 0 bounded and of compact support (for sim-
plicity reasons), and random coupling like above. Some results we mention are
valid under more general assumptions, as can be seen in the original papers.
For results concerning localization of these models we refer to [5] for a survey
of the literature up to 2000. More recent results concerning the IDS and its
continuity properties can be found in [17]. Here we will report on more recent
developments. The first result is partly due to one of us [18].
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Theorem 1. Let H(w) be an alloy-type model and u > kX [_1/2,1/2)4 for some
positive k. Then for each Ey € R there exists a constant Cy such that, for
all E<Eyande <1/2

E{Tr[X(5—c,p4e (HL(W))]} < Cw s(u,e) (log 1)@ |AL], (2)

where
s(u,e) = sup{u([E —¢,E +¢]) | E € R}. 3)

The mentioned alloy-type models include the models we introduced as
well as additional periodic exterior potentials and magnetic vector potentials.
The idea of the proof is to combine methods from [19] with a technique to
control the influence of the kinetic term: the estimate in [19] is quadratic in the
volume of the cube and so it cannot be used to derive continuity of the IDS.
On the other hand, there had been recent progress for models with absolutely
continuous p [20, 21, 22] using the spectral shift function. In [18] we present
an improved estimate of the spectral shift function and apply it to arrive at
the estimate (2). Of course, the latter is not really helpful, unless the measure
1 shares a certain continuity. Still it is interesting in so far that it yields that
N is nearly as continuous as p with a logarithmically small correction. For
more details we refer to [18], where the reader can also find a detailed account
of how our result compares with recent results in this direction.

We now mention a major breakthrough obtained in the recent work [8]
where the continuum Bernoulli-Anderson model is treated. For this model,
the authors set up a multi-scale induction to prove a Wegner estimate of the
following type:

Theorem 2. For the Bernoulli-Anderson model and o, 3 > 0 there exist
C,~ > 0 such that

P{o(Hy(@)) N [E — e B+ #0) < O3

for ,
€ < exp(—yL31P).

This can be found as Lemma 5.1 in [8]. It is important to note that the
proof does not so far extend to the discrete case. The reason is that a major
step in the proof is a quantitative unique continuation result that does not
extend to the discrete setting. Therefore, Wegner estimates for the discrete
Bernoulli-Anderson model are still missing.

3 Numerical studies
Most numerical studies have been performed for the standard Anderson model

of localization with uniform distribution of the potential values. In this model
the DOS changes smoothly with increasing disorder from the DOS of the
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Laplacian with its characteristic van Hove singularities to one featureless band
[23]. If the distribution is chosen as common with mean 0 and width W, then
the theoretical band edges are given by +(2d + W /2). Numerically these val-
ues are of course reached with vanishing probability. If the box distribution is
replaced by an unbounded distribution like the Gaussian or the Lorentzian,
then the band tails in principle extend to infinity, although numerically no
significant change can be observed from the box-distribution case [24]. A dra-
matically different situation occurs in a binary alloy, where with increasing
disorder W the DOS separates into two bands of width 4d each. Choosing
the measure pu = %50 + %5W as discussed in the previous section, the split-
ting of the band into subbands occurs theoretically for W = 4d, although the
again numerically very small DOS in the tails of the subbands leads to the ap-
pearance of separated subbands for smaller disorder values already [14]. This,
however, is not the topic of the current investigation. We rather concentrate
on unexpected structures that we have found near the centre of the subbands.
The DOS is defined as usual

o(E) = <;5<E -£)

where F; are the eigenvalues of the box Hamiltonian discussed in the previous
section, and (- - -) indicates the average over an ensemble of different configu-
rations of the random potential, i.e. the disorder average. For the numerical
diagonalization we use the Lanczos algorithm [25] which is very effective for
sparse matrices. In the present case the matrices are extremely sparse, be-
cause except for the diagonal matrix element with the potential energy there
are only 6 elements in each row and column of the secular matrix due to the
Laplacian. In fact, for the standard model of Anderson localization which is of
course as sparse as the Bernoulli-Anderson Hamiltonian matrix the Lanczos
algorithm has been shown to be most effective also in comparison with more
modern eigenvalue algorithms [26, 27]. One of the reasons for the difficulties
which all eigenvalue algorithms encounter is our use of periodic boundary
conditions in all directions, making a transformation of the secular matrix to
a band matrix impossible. However, a severe problem arises for the Lanczos
algorithm, because numerical inaccuracies due to finite precision arithmetics
yield spurious eigenvalues which show up as incorrectly multiple eigenener-
gies. In principle these can be detected and eliminated in a straightforward
way. The respective procedure, however, becomes ineffective in those parts
of the spectrum where the Hamiltonian itself has multiple eigenvalues or an
unusually large DOS. This happens to be the case in our investigation and
turned out to be more significant for larger disorder and system sizes. As a
consequence we have missed up to .09 % of all eigenvalues in the data pre-
sented below. In general, the performance of the Lanczos algorithm is much
better in the band tails, because the convergence is much faster. Therefore
it turned out to be advantageous to calculate the DOS in the centre of the
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subbands separately with different settings of the parameters which control
the convergence of the algorithm.

Our results are shown in Fig. 1 for various disorders. Here we have chosen a
symmetric binary distribution, i.e. p = %5_W/2—|— %5W/2. The spectrum is thus
symmetric with respect to £ = 0 and only the upper subband is displayed in
Fig. 1. With increasing disorder strength W, the subband moves of course to
larger energies. Already for W = 8 the subbands appear to be separated, as
the DOS is numerically zero around E = 0. We have also calculated the DOS
for the system size L = 15 for disorders between W = 4 and W = 22.6. The
data are not shown in Fig. 1, because they do not significantly differ from the
data for the larger system size L = 30 shown in the plot. Only for W = 2 there
are significant deviations due to finite-size effects: for vanishing disorder the
finite size of the system with its periodic boundaries would yield only very few
but highly multiple eigenvalues. Remnants of such structures can be seen in
the inset of Fig. 1 for the smaller system size as somewhat smeared-out peaks.
For the larger system size L = 30 the DOS in the inset reflects the DOS of
the pure Laplacian with only a weak smearing of the van Hove singularities.

T I T I T I T I T I T I T
0.6 — weim5| %% <4< W=32
| W=2, L=30 7] 0.2 o0—o W=4
8 Jo1s 8 W=5.65
057 - >—0 W=8
04 x—x W=11.31
i — 0.0s a—A W=16
B *—* W=22.62
. <
20

Fig. 1. DOS of the upper half of the spectrum for several disorder strengths W and
system sizes L = 30 averaged over 250 configurations of disorder except for W = 32,
where the system size is L = 15 and 2000 configurations have been used. The inset
shows the DOS for W =2, L = 15 and 30.
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The prominent feature of the spectra is a strong peak in the centre of the
subband accompanied by a distinguished minimum on the low energy site
and a side peak on the right hand shoulder. In order to study the emergence
of these features we have plotted the central region of the subbands in Fig. 2
versus scaled energy thus eliminating the shift of subbands with increasing
disorder. One can clearly see, that the peak and the minimum close to it
approach the centre of the subband.

20 — —

DOS

0
0.4 0.5
E (scaled)

Fig. 2. DOS of the upper subband from Fig.1 with all eigenvalues scaled by W.
The DOS has been normalized after rescaling.

The maximum and minimum values of the DOS can be described by power
laws

pmax & WP 3=1.79+.03
pmin & WP, 5=0.75+.03

as demonstrated in Fig. 3 where the data have been fitted by power laws for
large W. The exponent 8 > 1 implies that in the limit of large disorder the
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DOS diverges. This is not surprising for the scaled DOS, because the scaled
width of the subband shrinks. We note, however, that also in the unscaled plot
the height of the peak increases with disorder W. It turns out that the ap-
proach of the peak and the minimum towards the exact centre of the subband
at E/W = % can also be described by power laws:

E(pmax)/W —1/2 o« W=7, 4 =2.02=+.05
1/2 — E(pmin)/W o W7, 4=1.80+.04

I T T T T T
— B=1.79+.03
- .. B=0.75:.03 .
25— —
é
Q- - -
dé C ]
i I I
5 ]
- ® 4
® ®
1 ® | 1 | 1 1 | 1 1 |
8 16 32 64

Fig. 3. Scaling of pmin and pmax with W for L = 15(0) and L = 30(x). The lines are
least-squares linear fits for L = 15. Error bars are related to the number of missed
eigenvalues.

Both exponents are close to the value 2 and might be explained by perturba-
tion theory [28].

In summary, we have seen that the DOS of the Bernoulli~Anderson model
for sufficiently strong disorder shows two separate subbands with a strong
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0.1 T T T T T T T T -
. T T T 3
- - — y=2.02+.05 -
i -~ y=1.80+.04 i
x
0.01 = - 3
C E % ]
] _
0.001 - ~
00001 I 1 I 1 1 1 I 1 1 1 1 I
' 8 16 32 64

Fig. 4. Distance of the minimum (lower data) and the maximum (upper data) of
the DOS from the centre of the subband. The lines are least-squares linear fits for
L = 15. Error bars are related to the bin size of the histogram.

sharp peak near the centre in a striking contrast to the standard Anderson
model with box distribution or other continuous distributions for the poten-
tial energies. A more detailed analysis of these structures will have to be
performed. It is reasonable to assume that they may be connected with cer-
tain local structures of the configuration like independent dimers and trimers
or other clusters separated from the rest of the system by a neighborhood
of atoms of the other kind. In such a situation where all neighboring atoms
belong to the other subband, the wave function at those sites would approach
zero for large disorder, i.e. the space related to those sites becomes inacces-
sible for the electrons from the other subband. This is exactly what happens
also in the quantum perculation model.

We note that there are other smaller peaks to be seen in the DOS which
might be related to larger separate clusters. A more detailed analysis of these
structures is under investigation. If an additional disorder is applied random-
izing the potential energy as in the standard Anderson model of localization,
then the peaks are quickly smeared out already for small values of this addi-
tional disorder [11].

Recently an efficient preconditioning algorithm has been proposed for the
diagonalization of the Anderson Hamiltonian [29]. Previously respective shift-
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and-invert techniques had been shown to be significantly faster than the stan-
dard implementation of the Lanczos algorithm, but the memory requirements
where prohibitively large for moderate system sizes already, even when only
a very small number of eigenvalues and eigenvectors was calculated. The new
implementation reduces this problem considerably, although the memory re-
quirement is still larger than for the standard implementation [29]. It remains
an open question whether that algorithm is also superior when the calculation
of the complete spectrum is required.
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