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We investigate a family of Dirichlet Laplacians on randomly dented or bulged strips in
RQ; for this random quantum waveguide model, dense point spectrum with exponentially
localized eigenfunctions near its fluctuation boundary at the bottom of the spectrum and
Lifshitz asymptotics of the integrated density of states are established. For this purpose,
multi-scale analysis in the quite abstract form of [21] is applied, and domain perturbations
of the Laplacian are studied.
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1. Introduction

The notion of “quantum waveguide” has been coined for the investigation of two
or three-dimensional motion of electrons in small channels, tubes or layers of crys-
talline matter of high purity; one should think of possibly several thin films or lines
of semiconductor materials deposited on a wafer of insulating substance by epitaxial
techniques. Experiments with such mesoscopic structures, i.e. structures shapeable
by an experimentalist, but open for quantum effects, reveal a dependence of their
conductivity properties on their form, on bendings or varying cross sections. For
references, see the physical literature cited in [5]. On the other hand, from a purely
mathematical point of view, a rigorous analysis of effects of this kind appears at-
tractive: the influence of changes of the geometry of the semiconductor structures
on the spectral properties of the model, which represent conductivity properties, is
to be inquired into, an intuitively clear and challenging task.

The models to be considered for this purpose are usually constituted by (minus)
the Laplacian operator with Dirichlet boundary conditions on a domain of R? or R3,
for example a curved or bulged strip or tube or two parallel strips or layers coupled
through a window [1, 5 8]. Now, a common feature observed in all mentioned
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geometries is the occurrence of bound states with eigenvalues below the essential
spectrum, which appear successively, if the originally straight strip or layer is slowly
deformed respectively a window between two of them is opened in a finite region.
However, up to now, serious deformations of the given region on its full length have
not been investigated, although one might readily conjecture that a deformation in
infinitely many places will cause infinitely many eigenvalues or dense point spectrum
with exponentially localized eigenfunctions at the bottom of the spectrum. It is a
major goal of the present article to establish this conjecture for almost all elements
of a family of strips in R? bulged or dented randomly all over their (infinite) length.
As a second point, we regard the coupling of quantum waveguide theory with the
theory of random operators, which is necessary for achieving this aim, as a desirable
extension of quantum waveguide theory, because our random model can be looked
at as representing an epitaxial line of semiconducting material with an irregularly
rough boundary. Thus, in the framework of quantum waveguide theory, we are
naturally invited to the analysis of the spectral properties of such a model.
Let us now present our model in detail:

It consists of a collection of randomly dented versions of a parallel strip R x
(0,dmax) = Dmax- More precisely, let dpax > 0, 0 < d < dpax, and consider
Q = [0,d]%. The ith coordinate w(i) of w € Q gives the deviation of the width of
the random strip from dpax, i.e.

dz(W) = dmax - w(l) ’

which lies between dyin = dimax — d and dyax. Define y(w) : R — [diin, dmax] as the
polygon in R? joining the points {(i,d;(w))}iez and

D(w) = {(z1,72) € R*0 < 29 < y(w)(z1)} .

The following picture will help in visualizing this domain:

min

1—1 7 1+1 Ty
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We fix a probability measure p on [0, d] with 0 € supp u # {0} and introduce
P = 4%, a probability measure on Q. Consider H(w) = —A D(w)» the Laplacian
on D(w) with Dirichlet boundary conditions, which is a self-adjoint operator in
L?(D(w)). Although the operators of the family (H (w))weq act in different Hilbert-
spaces, we can pull them back to L?(Dyax) by a family of piecewise differentiable
maps ®, : Dpax — D(w), proceeding as in the proof of Proposition 3.2 then the
resulting family of operators is ergodic, which implies that their spectra and spectral
parts are deterministic in the sense that they coincide on a set of full measure in €.
Thus, the same is true for (H(w))yeq-

For further reference, let us record two assumptions which will be needed in the

sequel:
For the proof of Lifshitz asymptotics we need:

(M1) There exist a,d > 0 such that u[0,¢] > a- €.
In our proof of localization (more precisely for the Wegner estimate) we use

(M2) p is Holder continuous, i.e. there exist b, > 0 such that p(I) < b|I|* for
every interval I C [0,d]; here |I| denotes the length of I.

From 0 € supp p we immediately conclude that D(w) contains rectangular boxes
of length (z1-direction) L and width dyax — € for small € > 0 and L arbitrarily large
P-almost surely. As info(H(w)) lies below the first eigenvalue of the Dirichlet
Laplacian of such a box, this implies

2

inf o(H(w)) = Eo = dj—

max

for P-almost every w € Q.

In case supp p = [0, d] one could even deduce o(H (w)) = [Eg, o0) for P-a.e. w € Q.
As this does not matter in the sequel, we shall not go into details.
Our main results read as follows:

Theorem 1.1. (Lifshitz tales) Assume (M1). Then the integrated density of
states N(t) for H(w) satisfies
log(—log N(Eq +t)) 1

li =—=. 1.1
t{r(l) logt 2 (1.1)

Roughly speaking the preceeding result says that the number of electrons per unit
volume (which is given by the integrated density of states) decreases very rapidly, as
the bottom energy is approached. In Theorem 4.1 below we show a little bit more.
Namely, the upper estimate holds without the requirement that (M1) is satisfied.
The number f% appearing on the rhs of inequality (1.1) is the Lifshitz exponent.

Usually such an exponent is of the form —%

27
medium in question. That fits perfectly well with our model, which is essentially
one-dimensional (at least as far as the randomness is concerned). The next result
contributes to one of the central topics in disordered systems, the occurence of
pure point spectrum with exponentially decreasing eigenfunctions, usually called

localization. According to the general philosophy this should happen near so-called

where v is the dimension of the random
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fluctuation boundaries. Our model has Ey as fluctuation boundary, and we can in
fact prove:

Theorem 1.2. Assume (M2). Then there exists 6 > 0 such that P-a.s. the
spectrum of H(w) in [Eo, Eo + 0] is pure point with exponentially decreasing
etgenfunctions.

By exponential decay of eigenfunctions we mean exponential decay in xi-
direction as stated explicitly in Theorem 2.1.

Let us now briefly describe the organization of the paper and comment on the
techniques we use. In Sec. 2 we outline multi-scale analysis, by which the proof
of Theorem 1.2 is reduced to two basic inequalities: the Wegner estimate and the
initial length scale estimate. We take advantage of the abstract multi-scale analysis
presented in [21], which is based on the variable energy method of von Dreifus and
Klein [4]. In Sec. 3 we provide the necessary prerequisites for the proofs of the
Wegner and initial length scale estimates in form of a thorough study of domain
perturbations. In particular, in the framework of analytic perturbation theory,
estimates on derivatives of eigenvalues will be given. Section 4 is devoted to the
proof of the initial length scale and Lifshitz tail estimates. There we combine a new
technique from [21] to deduce low probability for low lying eigenvalues from large
deviation results with the results from Sec. 3: in particular, the derivative of the first
eigenvalue, calculated in the “Hadamard-Rayleigh formula”, Proposition 3.2, will
play an important role. The major technical step is contained in Proposition 4.1,
which is the key to the upper estimate for the integrated density of states as well
as for the initial length scale estimate. The Wegner estimate is deduced in Sec. 5,
where we combine the technique from [20] with estimates from Sec. 3 to prove
“spreading of eigenvalues” for different w. In the last section we comment on some
possible extensions and modifications of the model presented here.

2. Outline of Multi-Scale Analysis

In this section we briefly present the variable energy multi-scale analysis, which can
be used to prove localization for our random quantum wave guide model H (w). It
is based on the method developed by von Dreifus and Klein [4]. In the abstract
form needed here it is taken from [21].

Starting point is the observation that the nature of the spectrum of H(w) is de-
termined by the behaviour of generalized eigenfunctions (in the sense of [19]), which
are polynomially bounded in x;-direction; this can be seen by Hilbert—Schmidt es-
timates for sandwiched resolvent powers as in the case of Schréodinger operators.

Assume that we can prove that for some fixed energy interval Iy = [Ey, Eg + 9]
with § > 0 (Ep is the bottom of the spectrum as defined in the introduction) there
is a subset Qo C Q of full measure such that for all w € Q¢ and E € o(H(w)) N Iy
every generalized eigenfunction u of H(w) is in L2. Then it readily follows that the
spectrum of H(w) in Iy is pure point. In principle, this is the strategy of the variable
energy method. The necessary decay estimates for u will follow from exponential
decay of the resolvents. To put this in precise terms, we introduce some notation.
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Let A = Ay(i) = (i — £,i+ L) be an interval centered at i € Z with sidelength
l € 2N 4+ 1. We consider

Dp(w) := D(w) N (A x R)

for w € 2 and denote by Hj(w) the Laplacian —A on Dy (w) with Dirichlet bound-
ary conditions. See the next figure.

T2

dmax__

—

dmin 7

Aout Ainn Aout X

We let A2 = A (i), A°Ut i= Ay(i) \ Aj—2(i) and denote by X%, X't the
characteristic functions of A" x R, A°** x R or their restrictions to D(w). Thus,
multiplication by x'® and x3"* localize to the “inner third” respectively a region
“near the boundary” of Dj(w). (Notice that “inner” and “outer” only refer to the
x1-direction.) The connection between decay estimates for resolvents and decay

estimates for eigenfunctions is achieved in the following lemma:

Lemma 2.1. (eigenfunction decay inequality) There is a constant C = C
(dmax; dmin) such that for every w € Q and every generalized eigenfunction u of
H(w) to E € [Ey, Eg + 1] N p(Hp(w)) we have

IRl < € IR RACE)XR™ | IR ull, (2.1)
where Ry(F) = (Hp(w) — E) ™%

This is proven by standard commutator estimates and estimates for weak solu-
tions of second order pde in the fashion of [9], Lemma 26, Lemma 27. By inequal-
ity (2.1) it is quite clear that exponential estimates for ||[x3"'Ra(E)x2®| can be
turned into exponential estimates (in x;-direction) for generalized eigenfunctions.
The workhorse result is the following Theorem, which follows from the more ab-
stract and general results of [21]. We denote by x, the characteristic function of
(z—L1z+1) xR

Theorem 2.1. Let H(w) be as in the introduction. Assume

(i) the Wegner estimate: there exist o > 0, C' > 0 such that for all intervals
IC [Eo,Eo + l], A= Al(l) :

P{o(Ha()) N1 #0} < C-|AP- |1



Rev. Math. Phys. 2000.12:1345-1365. Downloaded from www.worldscientific.com
by CHEMNITZ UNIVERSITY OF on 02/19/13. For persona use only

1350 F. KLEESPIES and P. STOLLMANN

and
(i) the initial length scale estimate: there exist 3 € (0,1), &€ > 0 such that for all
A=N(i):
P{E\(Ha(w)) < Eo +1°71} <17¢.

Then there exists & > 0 such that P-a.s. the spectrum of H(w) is pure point in
Iy := [Eo, Eg + 8]. Moreover, there exists v > 0 such that for P-a.e. w and every
E € Iyno(H(w)) there is a C = C(w, E) with

[uxall < C-exp(—v - |z]) (2.2)
for every generalized eigenfunction u of H(w) to E.

Let us add a few words concerning the proof: in [21], Sec. 11, it is shown how
to construct Iy, a sequence (I) of rapidly increasing length scales and v such that
for all z,y € Z with dist(Ay, (x), Ag, (y)) > 2

P{w|for all E € Iy either Ay, (z) or Ay, (y) is (v, E)-good for w} > 1—1;25. (2.3)
Here A is called (v, E)-good for w provided
IXR™ (Ha (@) = B)" Q) < exp(— - A]) -

Apart from the Wegner estimate and the initial length scale estimate one only
needs to know some basic properties, which are obviously satisfied for Hx (w):

e A Weyl type estimate for the number of eigenvalues below a fixed energy; in our
case, it can be calculated directly.

e Independence of Hy,, Hp, for dist(Ag, Az) > 2.

e A geometric resolvent identity relating (Hyr — E)™! to (Hy — E)~! for different
cubes of the following form: there exists C' such that for cubes A € A/, A C
Ainn xR B C (A\A) x R and E € [Eq, Eo + 1]

x5 (Har (@) = E) " xall < Clixs(Ha(w) = B) X3 Q" (Ha(w) — B) " xall-

From (2.3) and (2.1) one can then deduce (2.2), which in turn implies that all
polynomially bounded generalized eigenfunctions corresponding to energies near Fjy
are in L?. This is carried out in Sec. 11 of [21]. See also [4] for the case of discrete
Schrodinger operators as well as [14], Secs. 4 and 5, for a discussion of these steps
in the context of continuum Schrédinger operators.

The proof of our main result will thus be complete once we have established a
Wegner estimate and an initial length scale estimate, i.e. verified assumptions (i)
and (ii) of Theorem 2.1. This will be done in Secs. 3 and 4, after having treated
some preparatory results concerning domain perturbations in the following section.

3. Domain Perturbations

In this section, the necessary domain perturbation theory is developed, quite in the
spirit of [11, 10, 18] and [12], VIL.§6. As this theory is not too widely known, we
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will give the proofs in some detail, yet adapted to the cases which we are interested
in.
For [ € 2N+1, a measurable function b : A = A(i) = (i—L,i+1) — [duin, dmax),
1 € 7,0 < dpin < dmax, and 0 < 8 < ming, ca b(z1) we consider the bounded domain
Dy :={(x1,72) |21 € A,0 < 29 < b(21) — 5} C R?

and the Dirichlet Laplacian —Ap_ in L?(Dy), the self-adjoint operator associated
with the closure hg of the form

ho[f, g] = / V fVgdr with domain C°(Dy).
D,

Amax—+ b(xl)
dmin 1 ~L \_/_\_/

D, C Dy

Z1

It is well known that —Ap, has purely discrete spectrum, and
<> En(s) > Ep_1(s) = -+ > F1(s) > Ep(s) > 0

will denote its eigenvalues. As C3°(Ds) C € (Do) and therefore hs > hg as forms
in L2(Dy), Eyn(s) > E,(0) is clear for all n € NU {0} and s. We can turn this into
a quantitative statement:

Proposition 3.1.

En(s) — Ex(0) > 2

max

Proof. Instead of tackling the eigenvalue problems on the domains D; directly, we
will pass to a family (D;)|¢<1 of domains arising from Dy by dilations in direction
of x5, on which the problem can be handled more easily. So for [t| < 1, let us

introduce the family ®; : Dy — D;, where
Dy = {(z1,22) |21 € A,0 < 25 < (1 — t)b(z1)},

of dilations, ®;(x1,x2) = (x1, (1 — t)z3); now pull back the eigenvalue problem for
the Dirichlet Laplacian in L?(D;)

~ ~o - 1/
fAf)tun’t =FEptnt, Unt € Hy(Dy),
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to L?(Dy); the form
allf,g) = [ (@ (2))g(Py " (2))da

= [ f@ga)1 - Hde

Do

= (1 —t)(flg) with domain L?*(Dg)

corresponds to the scalar product in L?(D;), while

hilf.9) = 5 V(f o @ )(@)V(go @) (z)da

_ /D (81 Fong(x) + ﬁ(% f62§(x)) (1 - #)da with domain H2(Do)
0
corresponds to the form of —Ap . The operators defined by these forms are A; =
M, _; with L?(Dg) as domain of definition and H, = —(1 — t)(d? + ﬁ@g) with
the same domain of definition as —Ap,; thus, the eigenvalue problem has been
transformed into
I:Itun’t = En(t)Atun,t

or explicitly

1 -
~1-0) (2 + 2508 ) e = B3 = O,
an eigenvalue problem in generalized form, which, however, at once reduces to an
ordinary one:

1 ~
— <8f + WBS) Un,t = En(t)unyt .

This means that we have to deal with the holomorphic family of operators

y - 2 | A2 1 2
thlth:_(al+62)+((1_t)2_1>625 |t‘<1’
with the same domain of definition as —Ap,.
According to perturbation theory, derivatives of eigenvalues with respect to ¢
can be calculated as

E’II‘L(t) = (Hé un,t|un,t)

2
TEnE

8§un7t|un7t)

2
= Wl\azun,tllz,
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=1 for

if uy,,+ is chosen continuous and piecewise holomorphic in ¢ and fulfils ||y, 4|
real t. But for any f € Ha(Dy)

2
02112 = [ ourPiszdn > 2 [ |sPdrdey
Do Do

max

by the one-dimensional Poincaré inequality ([3], IV.§7), applied in direction of x2,

SO
- 4
E{#t)>—— forlt] < 1.
n()—dg (1_t)3 OI“|<

max

NowDSCf) s

dmax

, and consequently

[N}

Z 5

max

Our next goal will be the calculation of the derivative of the lowest eigenvalue
of the Laplacian on a rectangle, if one of its sides is dented. For this purpose, an
appropriate Hadamard Rayleigh formula is established.

So this time, for a twice continuously differentiable function p : A — [0,d],
d = dmax — dmin With suppp C A and ¢ € [0, 1], consider

Di’ = (;1’,'171'2);$1 € AN,0 < 23 < dmax _tp(xl)}

where A = A;(7) is an open interval centered at ¢ with sidelength I. We consider
HP = —A on D?, with Neumann boundary conditions on the vertical part A x
[0, dmax] and Dirichlet boundary conditions on the rest of the boundary of DY. In
the following we will often suppress the superscript p, considering this function as
fixed. Pulling back everything to Do = A x (0, dmax) We get a family of operators
in L?(Dy) with purely discrete spectra, for whose lowest eigenvalue Ej(t) we prove

Proposition 3.2. (“Hadamard-Rayleigh formula”)

2?1
(EY0) = i [ plender.
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Proof. There is, of course, some freedom in choosing a family of maps ®; : Dy —

D,. We choose
Amax — t
Dy (w1, 22) = (951, S St p(xl)m) .

dmax

Pulling back the scalar products of the spaces L?(D;) to L?(Dg) yields the forms
allf,g] = [ f(®7(2))g(27 " (2))dx
D,

= [ pygta) o P g,
Dg max

on L?(Dy), and pulling back the forms of the Laplacians yields

helf.q] = : V(fo®, ) (x)V(go®, ") (x)dx

= /DO (51f61§(.73) + %(01f@2§+82f619)(m)

+

2 / 2 _
d?sx + (—tpt]g(qu;fl)v)é) 82f32§(x)> 7dmaxd tp(1) dx

max

with domain H'(A) ® H} (0, dyayx)- The associated operator H; has compact resol-
vent and a unique ground state ;, which satisfies

Hyiiy = By (t) Agiy

where A; is the operator associated with the pullback a; of the scalar product in
L%(D;) above. Hence A; is simply multiplication by (dmax — tp(71))/dmax- To
reduce the above problem to an ordinary eigenvalue problem, we have to perform
the substitution
o41/2-
Uy = At Ut
and get
At_l/gHtAt_l/Qut = Er(t)us,

which is the eigenvalue problem for H, = A, Y Qlf[tA; 2 The latter operator is

associated with the form
half.g) = ha(A; P 1 A7 ),

which can be calculated as

hilf, 9] = /Do (81‘)”(‘31.(](1:) + %(.ﬁalg + 01f9)(z)

tp'(z1) tp' (1) 2

* (2(dmax — tp(wl))> g(r) + m(&ﬂ%y + 8, f019)(x)
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tp'(z1) n -
+ e (1)) (fO29 + 02f7)(x)

n Ao + (9 (1) 72)?
(dmax - tp(xl))Q

According to first order perturbation theory one gets

azfagg(l')> dx . (31)

E;(0) = (ho)'[u, u],

where (hg)’ is the derivative of hy with respect to ¢ at ¢ = 0 (which can be read off
3.1), and w is the unique normalized ground state of hy. The latter is just the form
associated with the Laplacian on the rectangular box Dg, so u is given by

( ) = 2 . T
YL 2) = d[nax‘A‘ S dmax 2 ’

B(0) = /D (p/(xl)ualu(x)—i—72]9/(%)?[;2 (Drudu) ()

Thus we can proceed

dmax

2p(z1)

dmax

Pl g

dmax

_ 1 /D (2p(21)(Oru)2(z))dx

+ hu(z) + (Ggu)2(w)> dx

dma‘x

or? 1
= AT p(Il)dIl,
Ao [A] S

where we used partial integration with respect to z; in the third summand, p(z1) =
0 near OA and O;u = 0. O

In the above proof the calculation was extraordinarily simple, as the domain is a
rectangle, u is known explicitly and x;-independent. It is quite reasonable that the
derivative should be a boundary integral in general, too, because the result should
be independent of the choice of ®; as long as the boundary is transformed in the
desired way. For a somewhat different context, this is stated in [18], p. 88, where,
however, the tricky part of the calculation (a clever application of Stokes’ theorem)
is missing. This can be found in [10].

We will later on consider the situation, where p takes the form

pla) =Y wli)p(x —i).
i€EA
The Hadamard—Rayleigh formula will then enable us to relate questions about the
bottom eigenvalue to the mean
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which is a particularly well studied object in probability theory. In this connection
we will need an estimate for the error of the linear approximation to Ej(¢).

Proposition 3.3. In the situation above there exists a constant T = T(dmax,
Plocs [P]oo) such that for all A = Ay with | > dyax/V3 and 0 < t < 7172 we

have
2

[BY(t) — Bo — (B} (0)] < 7 - 1.

Proof. The unperturbed operator is the Laplacian on the rectangular box Dy with
Dirichlet boundary conditions on A x {0, dmax}, Neumann boundary conditions on
OA X [0, dmax] and ground state energy E1(0) = Eg = n2/d?,,. To estimate the
remainder term in the Taylor expansion we want to use [12], formula I1.(3.6), applied
to the forms h; defined in the preceding proof. The isolation distance 1, defined as

the distance of Ey to the rest of the spectrum of Hy, is given by

32 72 } w2

2
Z. AP (3-2)

As T we choose a circle around Fy with radius 9/2. We need an estimate for the
ro appearing in [12], I1.(3.3). To this end we appeal to [12], VII.(4.47) and are thus
left to estimate the kth Taylor coefficient (o)) of hy at t = 0. To do so, we have to
look at (3.1) above. Since the t-dependent coefficients can be expanded into series
directly, we can easily deduce

(o171 = | (wuwmmu)

Dy 2dllfnax
/ 2 k—2 _
# T - 1) )

/ k—
) 0,15, g

max

/ T k—1 x1 B -
P ) o, 7 1 0017 ) a)

max

_|_

2,.2, k-2

k 1 / 1 x5 T £
. (pdlg )k 1)+ @ ))dk r )(k1)> 82f82f(fv)> da

max max

k—1
2 / /12
< |p|oo |p ‘oo + ‘p |oo ”fHQ
dmax dmax 4dmax|p|oo

Ploe o 2Pl Ip’liodmax)/ 2
+l o+ P e+ + Vfl|*(x)dz
<2dmax ‘ ‘ dmax |p|oo Do | | ( )

for k > 1. Now [12], VII.(4.47) yields rq > ¢ - ¢, where ¢ only depends upon the
relative bounds above, which in turn only depend upon dmax, [P|oc, [P'|cc. Define
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7 =cn?/2. Then for 0 < ¢ < 7172 the estimate [12], I1.(4.47) gives

9/2

EP(t) — Eq — t(E})'(0)| < —L—¢%.

B2 - B - (BDY0) < 22

With 7 as above and ¢ from (3.2) we get the assertion. O

4. Lifshitz Tails and Initial Length Scale Estimates

As the title suggests, the purpose of this section is twofold: in Corollary 4.1 we
give an initial length scale estimate, which is one of the main ingredients of the
multi-scale analysis we outlined in Sec. 2. In Theorem 4.1 we prove that our model
exhibits Lifshitz asymptotics of the integrated density of states. Both results are
based essentially upon the following Proposition. Our strategy of proof follows the
ideas of [21] and is remarkably easy even in the case of Schrodinger operators with
an Anderson potential (see [13, 2] for earlier results in this case). The other new,
equally important point, which enters here, is the Hadamard Rayleigh formula and
the estimate on the remainder obtained in Propositions 3.2 and 3.3 above.

Recall that Hj(w) was defined as the Dirichlet Laplacian on Dj(w) = D(w) N
(A % (0,dmax)) in Sec. 1. To define and control the integrated density of states, we
introduce HY' (w) as the Laplacian on the same domain with Neumann boundary
conditions on the vertical parts D(w) N (OA X (0,dmax)) and Dirichlet boundary
conditions elsewhere on 0Dy (w). By stationarity, most statistical properties do not
depend upon the center of A, but only on the sidelength [, so we will often write
H}N(w) instead of HY (w). Note that this operator is dominated by Hj(w), a fact
we shall use in order to compare the eigenvalues. Here comes the main technical
result of this section:

Proposition 4.1. Let m = E{w(0)} = [zdu(z), v = E{w?(0)} = [2?du(z).

Then there exist a universal constant K > 0 and a constant a = a(dmax; dmin) > 0,
such that for alll € 2N+ 1 and every

2 m?
b<min{q —, —
_m1n{4,a2}

P{E1(H] (w)) < Eg +b-17%}

we have

m_a\/glo " (m—a\/l;)dmax

< K-exp| -l d g ”
max

(4.1)

Proof. The main idea is to define a deformation D(w,t) of the maximal rectangle

A X (0, dmax), which satisfies D(w,t) D Da(w), and to analyze the bottom eigenvalue

by means of Propositions 3.2 and 3.3. To do so, we have to smoothen out the corners
11

appearing in Dj(w). So let ¢ € C2(—3, 5) be a bump function satisfying

0<p(xr)<1l—|z| forallz. (4.2)
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Define
p(waml) = Zw(7)(ta(z - Z) 3
i€EA
D(w,t) = {(z1,22) |21 € A,0 < 23 < dimax — tp(w,z1)} .
T2

i—1 ¢ 1+1 T1

Note that D(w,t) = Df(“}) in the notation of Sec. 3. There we defined Hf(w)
as the Laplacian with Neumann boundary conditions on the vertical part of the
boundary and Dirichlet boundary conditions elsewhere. We write Hy(w) for this
operator and Fj(w,t) for its bottom eigenvalue. By construction,

Ey(HY () = Ey(w,1)

for all t € (0,1). Now by Proposition 3.2 we see that the rhs can not be too small
for many w, as the derivative obeys

& BBl = c- <|T1| Zwu)) , (4.3)

i€EA
where

273 (73
c= d3—/ p(x)dx

1
max 2
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only depends upon d,.x. The basic idea of the proof is that the sum on the rhs
takes values near m := E{w(0)} > 0 with overwhelming probability. This will imply
that Fj(w,t) is shifted away from Ey = Ej(w,0) with very high probability.

More precisely, from the remainder estimate in Proposition 3.3 we have

2
EL() = Bo —t(BY) (0)| < 1 - P (0<t<rl™?),
-

where T depends upon |p(w, *)|eos |P'(w, *)|oo, Which in turn only depend upon dyax.
Assume that

Ey(w)<Ey+b-172
for b < 2 /4. Then the above inequality yields

2

t- B (w,0) < 22417 forall0<t <7172,

7r
~ 472
Inserting t = s71~2 we get

2 b
Ei(w,O)SW—S—i—— forall0 <s<1.
4t Ts

Optimizing w.r.t. s we get s = % b and
which implies

Define a = . Now, if 0 < b < 27 it follows that

P{Ei(w) < Eo+b-17?} < ]P’{ﬁ Zvu(z) < a\/l_)}

i€A
<#{

By [22], Theorem 1.4, this latter probability can be estimated by

1 .
me(z) —m

i€EA

zma\/l_)}.

_ b (m - a\/Z;) dmax
K -exp —ln;(ia\/_log 1+ ,

dmax v

the assertion. O
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Let us now proceed to determine the asymptotics of the integrated density of
states for our model as the energy approaches Ey. To begin with, let us recall the
relevant notions. By N(H,t) = #{n; E,,(H) <t} we denote the spectral counting
function for a given semibounded operator H with compact resolvent.

For the operators Ha(w) and HY (w) it is clear by usual min-max and Dirichlet—
Neumann bracketing arguments that

N(Ha(w),t) < N(HY (w),t)

and that N(H{ (w)) is subadditive with respect to A. By the subadditive ergodic
theorem,

N(1) = inf ﬁE{N(Hf\V (@), 1)}

exists, and the convergence
1
lim =~ N(H}Y (w),t) = N(t)
l—oo [

holds P-a.s. This means that N(¢) gives the number of energy levels per unit volume
for the operator H(w). For further reference we note that

1 1

TRTEOV (W), 1)) < N() < BN (HY (). 1) (4.4)
The asymptotic behavior of N(t) as t \, Ey contained in the following Theorem
is usually referred to as Lifshitz asymptotics. It is a central feature of disordered
systems and has been established for various types of random Schrédinger operators.
We refer to [2, 16], where one can also find more details of the definition of the

integrated density of states than sketched above.

Theorem 4.1. Let H(w), Eg,m and N(t) be as above. Then we have:
(1) There exists C = C(dmax; dmin, M, v) > 0 such that

) log N(FEq +t)
limsup —————=

3 <-C.
t\0 t72

(2) Assume (M1). Then

L inf log(—log N(Eo +1)) > 1

N0 logt = 2
consequently,

lim log(—log N(Ep + t)) _ 1 .

t\.0 logt 2

Proof. (1) Let t > 0. Then

N(By +1) < JE(N(H} (@), o +1)}

<

1
/ dP(w) =N (H{¥ (), Eo + 1)
{w] B1(HN (w))<Eo+t} l

< A-P{E,(H}(w)) < By +t},
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where in the last inequality we have used a Weyl type estimate, which follows by
comparing H}¥ (w) with the Laplacian on the rectangle A x (0, dmax), see Sec. 5.
Now let

t=b-1"72.

By Proposition 4.1 we get that
N(Ey+t) < N(Ey+b-172)
m — av'b (mfa\/g)dmax

< AK - —l————log |1
= €xp Koo og |1+ -
Hence
. log N(Ep +t) . logN(Ep+b-172)
limsup ————7-—— = limsup —i73
N0 t=1/ |—o0 b=1/2]

< ——(m ;(Z::i) \/E log | 1+ (m _ a:)/E> max

for every b < Z’—; Inserting an appropriate b gives the asserted estimate.

(2) In pretty much the same way as in [2] (for the case of discrete random
Schrodinger operators), the lower estimate follows from loglog calculations and the
following Proposition. 0

Proposition 4.2. Assume that u satisfies (M1). Then there exist Cq1,Cs > 0 such
that
P{E;(H;(w) < Eq + C1l72} > (Cy)!F2(172)0(+2) |

Proof. Forl € 2N+1 large enough let € > 0, € < dpax. We know that Ey = n2/d2,,.
equals inf o(H;(w)), if all w(i) = 0 for i € (—% — 1,4 + 1) N Z; the extra F1 are
needed, as D, depends upon w(:F(% +1)) by construction. Note that we are dealing
with A = A,(0).

If w(i) € [0,¢] for alli € (=L — 1, % + 1) NZ, then

1
D((/J) D (—5, 5) X <O,dmax — 6) =:D,.

The ground state energy of the Dirichlet Laplacian on D, is explicitly given by

Setting € = I~2 we see that

Ey(Hp\) < E. < Eg+Cyl 2
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for )
8
Cl = dSL + 71'2 s
whenever € < diax/2. Since the probability that w(i) € [0, €] foralli € (=5 —1, 5+
1) NZ is estimated below by
(N[075])l+2 2 Cl+2(l—2)6(l+2) 7
we arrive at the asserted estimate. O

As was pointed out by Klopp in [15], Remark, p. 558f, the above Lifshitz tail
estimate implies
lim N(Eo+t)-t " =0
N0

for every n > 0, so that
P{E) (Hx(w)) < Eo+t} < [A]- N(Eo +1)
immediately gives the following result:

Corollary 4.1. (initial length scale estimate) For 8 € (0,1) and & > 0 there
exists lg = lo(8, &) such that for all | > lg, A = A(i) we have

P{E)(Hp(w)) < Eg + 1771y <17¢.

5. Wegner Estimates

Two ingredients are needed for the proof of a Wegner estimate: the possible number
of eigenvalues in the interval in question has to be bounded, which may be achieved
in great generality using Weyl’s asymptotic law or, as possible in our case, by an
explicit calculation. Secondly, a certain spreading of the eigenvalues has to be
established, which is a consequence of Proposition 3.1 for our model.

Proposition 5.1. (Wegner estimate) There exist a > 0, C > 0 such that for
all intervals I C [Eo, Fo + 1]

P{o(Haw)) N1 #0} < C- AP |1]*

Proof. If E,,(Hx(w)) denotes the nth eigenvalue of Hy(w), obviously

P{o(Hx(w)) NI #0} <Y P{E,(Ha(w)) € I};

now Ha(w) > —Apx(0,dumay)» Which has eigenvalues

max)

n2 m2
{Emm:ﬂ <d2—+A—|2) ’neN,meNU{O}},

max
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SO
d? A
n<iy/l+ m;x and mgu
T s

is a necessary condition on n,m for E, ,, to fall into [Ey, Eg+1]. Thus, the number
of such eigenvalues is limited by a bound proportional to |A|, and we still have to

prove
P{E,(Hx(w)) € I} < C'A[|I]*,

which follows from Proposition 3.1 for the case Dy = D(w), i.e. b(z1) = v(w)(x1),
in the same way as in [20]. O

6. Concluding Remarks

The introduced model admits some modifications and extensions, for which the same
results, localization and Lifshitz tails, can be proven with only minor modifications:

e [t is possible to dent or bulge the strip on both sides, so that an element of the
random family of domains might look as follows:

eyt

- dmax

We only have to “double” the number of coordinates of the probability space,
i.e. introduce for i € Z d (w), which take the part of the d;(w) above, and d; (w),
which are the vertices of a second polygon in the lower half plane of R?, the lower
boundary of the random domain.

e It is not necessary to join the points (i,d;(w)) by straight line segments, but
one could use dilated (in za-direction) versions of an arbitrarily smooth curve
joining (0, 0) and (1, 1), at best a monotone one, which is constant near its
endpoints:
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In this way, we could smoothen the boundary of D(w):

T2

dmax T

it

X1

e In order to obtain a 3- or n-dimensional model, one could rotate D(w) about the
x1-axis resp. substitute (n — 1)-spheres with radii d;(w) around (3,0, ...,0) in R”
for the points (i,d;(w)) and join them. However, the model obtained in this way
is still essentially one-dimensional.

e To obtain a 3-dimensional model in the form of a thin layer, one could use a
triangulation of R? by equilateral triangles, prescribe the height of the layer at
the vertices v; of the triangulation by d,,(w) and fill in the surface of the layer
with flat triangles, whose vertices are the (v;, d,, (w)).

e [t is possible to choose slightly different probability measures p; for i € Z, ac-
cording to which the d;(w) are picked.
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