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A GENERAL FORM OF INTEGRAL. 

BY P. J. DANIELL. 

Introduction. The idea of an integral has been extended by Radon, 
Young, Riesz* and others so as to include integration with respect to a 
function of bounded variation. These theories are based on the funda- 
mental properties of sets of points in a space of a finite number of dimen- 
sions. In this paper a theory is developed which is independent of the 
nature of the elements. They may be points in a space of a denumerable 
number of dimensions or curves in general or classes of events so far as 
the theory is concerned. It follows that, although many of the proofs 
given are mere translations into other language of methods already 
classical (particularly those due to Young), here and there, where previous 
proofs rested on the theory of sets of points, new methods have been 
devised (see, for example, theorems 3(3), 3(4), 5(1)). 

Mooret has developed a theory of a similarly general nature, but 
restricts himself to the use of relatively uniform sequences. This concept 
is not used nor is it necessary in the following paper. We consider a 
group of elements p, which may be whatever we choose, and certain classes 
of functions f(p) of those elements so that to every element p of the group 
there exists a real number f(p) (which may be infinite in certain cases). 
To each function of a certain class there corresponds a real number 
S(f ) or I(f ) which is defined so as to satisfy certain conditions. S(f ) 
is a generalized Stieltjes integral, while I(f ) may be called the positive 
integral and the latter possesses correlates of nearly all the properties of 
the Lebesgue integral. It is shown that any I-integral is an S-integral 
while any S-integral is expressible as the difference of two I-integrals. 

Two symbols have been taken over from symbolic logic, namely those 
for logical sum and logical product. The concepts involved are used 
extensively by Young and by the author and the symbols have been 
introduced to save space and to clarify the reasoning. 

The reader is referred also to Hildebrandtj for references to an exten- 
* J. Radon, Sitzungsberichte der Akademie der Wissenschaften, Wien (1913), p. 1295. 

W. H. Young, Proceedings of the London Mathematical Society (1914), 13, p. 109. F. Riesz, 
Annales de 1'Ecole Normale Superieure (1914), 31, p. 9. 

t E. H. Moore, Bulletin of the American Mathematical Society (1912), 18, p. 334. 
t T. H. Hildebrandt, Bulletin of the American Mathematical Society (1917), 24, p. 117 and 

p. 177. 
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sive literature on generalized integrals. Frechet considers a general 
integral but does not discuss existence theorems so completely.* 

1. Logical addition.-f(p) is said to be the logical sum of fi(p) and 
f2(p) if, for each p, the value of f(p) is the greater of the values of fi(p), 
f2(p) for that p. Symbolically 

f(p) = fi(p) V f2(p). 

Logical product.-f(p) is said to be the logical product of fi(p) and f2(p) 

if, for each p, the value of f(p) is the less of the values of fi(p), f2(p) for 
that p. Symbolically 

f(p) = f(ip) A f2(p). 
Then 
1(1) f1 Vf2+fi Af2 = fi + f2j 

1(2) (-fl) V (-f2) = - (f A f2). 
It is assumed that there is an initial class To of numerically valued 
functions f(p) of the elements p where To is closed with respect to the 
operations:-multiplication by a constant (C), addition (A), logical addi- 
tion (G) and logical multiplication (G'). It is further assumed that the 
functions of To are limited, that is corresponding to any f(p), a finite 
number K(f ) can be found such that If(P) I < K(f ) for all p. The 
following properties C, A, L, P, M are essential in what follows. f, fi, f2, 
* * -f, * * represent functions of the elements p belonging to the class To. 
Let U(f ) be a functional operation on f, then each of the properties is 
as follows: 
(C) U(cf) = cU(f), 
where c is constant; 
(A) U(fl + f2) = U(fl) + U(f2); 

(L) If f'(p) _f2(p) * *.* and if limf (p) = 0 for all p, lim U(fn) = 0. 
(P) If f(p) 0 for all p, U(f) _ O. 
(M) A functional operation M(9) exists for all functions of the type If I] 
where f is of class To, such that if yp A,, M(<) M(Ai), and such that 
IU(f) I M( If I). The I-integral, or I(f), is a functional on func- 
tions of To satisfying (C) (A) (L) (P), while the S-integral satisfies 
(C) (A) (L) (M). 

The class To is also restricted so as to include only such functions f 
that I(f )I M( I f I ) are finite for each f, though these integrals will not be 
bounded in their class. A few instances of the theory are as follows: 

(a) The element p is a real number x in an interval (a, b). The 
* M. Fr6chet, Bulletin de la Societ6 Math6matique de France (1915), 43, p. 249. 
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class To is the class of continuous functions. Then the Riemann integral 
is an I-integral and the Stieltjes integral an S-integral. The extension 
to the class of summable functions leads to Lebesgue or Young integrals 
in the former case and to Radon or Young-Stieltjes integrals in the latter. 

(b) p is a complex of numbers (x1, x2, *'*, x,) or a point in a finite 
number of dimensions. Again To is the class of continuous functions in a 
fundamental interval which may have infinite bounds. Again we obtain 
the Radon or Young-Stieltjes integral as an S-integral. The modular 
integral ff(p) I dv(p) I is an I-integral. 

In place of continuous functions we may take To to be the class of 
step-functions (functions constant over each of a finite number of sub- 
intervals), or else polygonal functions, or the class of polynomials together 
with their combinations by logical addition and multiplication. The 
resulting integral is the same. The Frechet and Moore integrals (see 
references above) are also special instances. 

(c) To show that our analysis applies also to integrals of a really new 
kind we may consider a particular example, namely 

f(x)d log x. 

Here log x is not a function of limited variation. Take To as the class of 
functions f(x) such that f(x) /x is continuous. Substitute t = -log x, 
and the integral may be defined as 

I [f(e-t)et]e-tdt. 
Since f(x) /x is continuous, 

I f(e-')et l I some K, 
or the integral is absolutely convergent. 

An example is interesting where a linear functional operation satisfies 
(C) (A) (P) but not (L), and therefore is not an instance. Suppose To 
is the class of step functions f(x) defined in the interval 0 c x c 1, and 
let c be a number between 0 and 1, then we can define 

U(f) = limf(c -e) 
C>O 

This U(f ) satisfies (C) (A) (P), but consider 

fn(Z = 0, 0 C x!E c c n 

= 1, < x < c n 

=0, C X --1. 
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Evidently fi f2 - *., and lim f,(x) = 0 for all x. But U(f,) = 1 
for all n, or, lim U(fn) = 1 instead of 0. 

2. Relations between S(f ) and I(f ).-In this and the next two paragraphs 
all functions mentioned will be of class To. 

2(1). If f(p) - g(p), I(f) I(g). For g - f is of class To and 

I(g) -I(f) = I(g -f) [By (C), (A) 

0 O [By (P). 

If -=f V (-f) must be of class To, then in condition (M), I(If[) 
satisfies the conditions to be satisfied by M( I f i 

2(2). I I(f ) II( If) 
For 

- Ifl If = + iflI 
.s I( I f I I( f )cI( i f I By 2 (1) . 

Then I(f ) satisfies the condition (M) and it already satisfies (C) (A) (L), 
hence any I-integral is an S-integral. 

3. If f(p) ? 0 for all p we define I,(f) as the upper bound of S(y) for 
all functions Sp of class To such that 0 c sp f. 

This upper bound exists for 
S(sP) c M( lP sn i )by (M). 

M(ll) M() for O c , 

CM(f) forsof. 

S(sO) cM(f) 

Il(f ) is called the positive integral associated with S. 
3(1). If f(p) _ 0 for all p, Il(f ) _ 0. 0 = Of is a function of class 

To and S(0) = 0. But 0 is one of the functions so by which I1(f) is 
defined. 

.I(f) O. 

Thus Il(f ) satisfies condition (P). 
3(2). If f(p) O 0 for all p and c is a positive constant, 

Ii(cf) = ci1(f). 

For if 0 cp cf, 0 c cy _ cf, and vice versa. Also S(cy) = cS(fp). 
3(3). If f (p) . 0, f2(p) O 0 for all p, Ii(f +?f2) = I1(fi) + I1(f2). 

Firstly, I1(f +?f2) - Ii(fi) + I1(f2). For if 0 c P1 Pfi, 0 c Y2 -f2, 

0 c y1 + Y2 _fi +f2. 

.-. Il(fl +f2) - S(s1 + (P2), or S((Pl) + S(sP2). 
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But this is true however we vary spi; )2, hence 

Il(fl + f2) Il'(fl) + Il(f2). 
Secondly, 

Ih (fi + f2) c Ii(fi) + I1(f2). 

Let sp be any function such that 0 ! sp fi + f2, then so - f- f2, 

*-- (y-fi) V 0 f2j 

(p = 'p Afi + ('p -f) V 0. 

For if 'p(p) fi(p) for a particular p, on the right-hand side the first 
term is fi and the second 'p - fl, while if 'p(p) c fi(p) the first term is 'p 
and the second 0. Now 

0 C 'p A fi C fi 0 C ('p -f) V 0 c f2. 

S('p A f') I h(fi), S[(' - fl) V 0] c I1( f2) 

S9 S(() CIl(fi) + Il(f2). 

But we may vary 'o in any way so long as 0 c p c fi + f2. 

.'. 1( fl + f2) 
: Ii( fi) + I1( f2) - 

From what has been proved firstly and secondly it follows that 

Il(fi + f2) = Il(fl) + I1(f2). 

3(4). Iff1 -f2 * and limf- = Ofor all p, lim Il(fn) = 0. Il(fn) 
is defined as the upper bound of S('pn), where 0 _ 'n- fn. Hence given 
any positive e we can find pn(? (0 (n cp,_E fn) such that 

Il(fn) < S('Pn) + 2-ne. 

Lemma. Given that 

Il(fn-1) < S(\Vn-1) + en-1, I(fn) < S('Pn) + 2-ne, 

and that 
fn - 0 -f /n-1 0 =,c C 

Then 
Ii(fn) < S(V/n-1 A 'Pn) + en-1 + 2-ne. 

Since 
0 = )/n1 0 

fn-1) 
? = fn fn-1 ? (Pn) fn-1 

Se 8({Vn- V 'pn) = I((fn-1) < S(\Vn-1) + en-, 

I/n_-1 A 'pn = Vln-1 + 'pn - (Vl/n-1 V (Pn) [By 1(1). 

* S(4n-1 A (pn) = S(4&n-1) + S('pn) - S( Vn-1 V (pn) > S('Pn) - en-1- 
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.'. Il(fn) < S((pn) + 2-ne < S(1In1 A (Pn) + en-1 + 2-ne, 
which proves the lemma. 

For each fn in the sequence choose the appropriate (pn sO that 

IM(fM) < S(lPn) + 2-ne. 
Let 

V/1 = (Pi, V/n = V/n-1 A (p. (n = 2, 3, * *) 

el = e/2, en = en-l + 2-ne (n = 2, 3, 

Then, using the Lemma successively with n = 2, 3, ***, we get 

IM(fM) < S(\6n) + en, en = e(1/2 + 1/4 + *. + 2-n) < e. 

. Il (ffn) < S( in) + e. 

Moreover 0 c 6n c 'Pn _ fn, and lim fn = 0, therefore lim i~n = 0. 

411 _ 12_*** and lim 4,. = O. 
lim S(4kn) = 0 [By (L). 

..lim Ii(fn)_ e. 

But e was any positive quantity. 
.'. lim I(fn) = 0. 

Hence Il(f ) satisfies the condition (L). 

If f = p- t', where p o 0, O. i_- 0, by definition 

I1( f ) = I,((P)- 

This definition is self-consistent, for if 

f = (Pl - V1= P2 - J2; P 1+ J2 = P2 + 111 

Il(q'l) + I1(Jk2) = Il(so2) + Ii(VI1) [By 3(3). 

.-.Il(Pl) -Il() = I1((2) -Il(2) 

Il(f ) satisfies condition (C). For if c is positive 

Ii(cf) = Ii(co) -MI(ci/') = cl(q) - cIl(v/) [By 3(2) 

= cIl(f)- 
If c is negative, 

Ii(cf) = Ii(- c)- I(- c(P) 
- cIl(4) -[-cIl(P)] [By 3(2) 

= cIl(f). 

If c = O Il(cf) = Il(O) = 0 = O Il (f). 
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I( f ) satisfies condition (A). For we have 

Il(fl +f2) = I'(yo1 + *?2) - Il (1 + Jk2) 

= Il (s1) + I1(y02) - Il(411) - I1(16/2) [By 3(3) 

= Il(fi) + Il(f2). 

We have already proved that Il(f ) also satisfies conditions (L) (P). 
Hence I( f ) is an I-integral. 

4. We define further 

I2(f) =I1(f) S(f) 
the negative integral associated with S. Also we define 

I(f ) = I1(f ) + I2(f ) = 2I,(f ) -S(f 

the modular integral associated with S. Evidently I2(f ), I(f ) satisfy 
all the conditions for I-integrals. Another definition of the modular 
integral I(f ) when f is non-negative is the upper bound of S(so) for all 
functions so of class To such that - f c *? c f. For then 

? - so + f _2f, S (p) = S (p + f )- S(f ). 

Varying yp, keeping f fixed, we see that the upper bound of S(so) is equal to 

I1(2f ) - S(f ) = 2Ij(f ) - S(f ) = I(f ). 

4(1). 1 S(f) _ I( f ), if I is the modular integral associated with S. 

For 
S(f) I = II(f) -I2(f) | lI1(f) + I2(f)I 

_I1( I f 1 ) + I2( i f I ) By 2(2) 
or I( If ). 

It can be seen that if we extend the definitions of Il( f ), I2(f ) to functions 
of a wider class T so as still to satisfy (C) (A) (L) (P), and if we define 

S(f ) = Ii(f ) -I2(f ) I(f ) = Ii(f ) + I2(f ), 

S(f) will satisfy (C) (A) (L) (M) and I(f) will satisfy (C) (A) (L) (P). 

5. Extension to class T1 for any I-integral. If f, _ f2 c * * * is a non-de- 
creasing sequence of functions of class To, lim fn exists (if we allow + 0o 
as a value) and we say that lim fn = f is of class T1. 

Then 
I(afl) crn I( fe w)2). 

and lim I(fn) exists (if we allow + co as a value). 
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5(1). If f'1 f2 ... are of class To, and if limf, i_ some function h 
of class To, lim I(fn) _ I(h). Let gn = f1n A h. Then gn is of class To 
and since limn f, _ h, lim gn = h. Also fn c fn, therefore gn-1 c . 

h-g -h- 92 -* andlim(h- g) = O. 

lim I(h-g )=O [By (L). 

..lim I(g.) w-I (h). 

Butf gn or I(f ) _ I(g.) [By 2(1). 
.'. lim I(fn) _ lim I(gn) or I(h). 

5(2). Iff1 f2 _ * 91 c 92 _ * * are of class To, and if 

lim n lim gn, then lim I(fn) rnlim I(gn). 
For lim f. is of class T1 and _ lim g, and therefore _ g,. 

lim I(fn) I(g.) (n = 1, 2, *..) [By 5(1). 

..liM I (fn) RlM I (9n) 

5(3). If fl c f2 c * 91 c 92 _ * * * are of class To and if 
lim fn = lim 9n, then lim I (fn) = lim I(gn) 

Apply 5(2) twice. 
We define I(f) = liM I( fn), if f is of class T1 and defined by the non- 

decreasing sequence (fn) of functions of class To. By 5(3) this definition 
will be self-consistent. By 5(1), if f _ 0, I(f) O 0. Hence condition 
(P) is satisfied. Evidently conditions (A) (C) will be satisfied so long 
as in (C) the constant c is positive. 

Note. We have allowed lim I(fn) to be + oo and this necessitates 
a reconsideration of the above theorems. In 5(1), h is of class To and 
therefore I(h) is finite, or the statement will hold even if lim I( fn) = + oo. 

In 5(2) the theorem must be taken to mean, in the case where either 
lim I(fn) or lim I(gn) is + co, that at least lim I(fn) is + oo. In 5(3) 
if either limit is + oo so is the other. 

If I(f) = lim I(fn) is finite andf is of class T1 we say thatf is summable. 
5(4). If f, cf-f2 ... is a nondecreasing sequence of functions of 

class T1, then lim fn = f is also of class T, and I(f) = lim I(fn). 
For any integer r, fr is of class T1 and is the limit of a nondecreasing 
sequence of functions of class To, 

f r, 1 ---5f r, 2 - * fr,8-* 

Let gn be the logical sum of all functions fr, 8 for which r c n, s c n. 
Then gn is of class To andgn gc gn+l. 
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.r. nim gn is of class T1. 

If r n flr, 8 C r f fn 

*ne gn _ fn and I(gn) _I(fn). 

If r _ n, g f fr, n 
. r. lim gn - lim fr, n or fr. 

..lim gn ':-fr (r = 1, 2,***) 
and 

I(lim 9n) E I(fr). 

gn -fn, lim gn - lim fn. 
lim gn fr. 

lim gn - lim fn. 

rlim n = lim fn. 

But lim 9n is of class T1, therefore lim fn is of class T1. 

I(f ) = I(lim gn) I(fr) for all r. 
. 1. I(f) limI(fn). 

I(f ) = I(lim gn) c I(gn). 
But 

I(an) _I(fn). 
(f) climI(fn). 

I(f) lim I(fn). 

6. Semi-integrals. For any function f we define I(f ),the upper semi- 
integral of f, as the lower bound of I(yp) for all functions yp of class T1, such 
that s -f. 

6(1). If c is a positive constant, I(cf) = cI(f) For if s f 
cop cf and vice versa, and I(csp) = cI(<p). 
6(2) I(fl + f2) _ I(fi) + I(f2). 

For if Soi, Vo2 are any functions of class T1 such that (pi fi, s02 -f2, 

(P1 + (P2 fi + f2. 

I(fl + f2) _ I(<01 + (p2), or I((pi) + I((P2). 

Varying Soi, S02 independently, we obtain the theorem. 
6(3). If f g for all p, 

I(f) I(g). 

For if so is any function of class T1 such that g, a9 s -f. 
I(f ) =I((p), etc. 
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6(4). We define I(f) = -I(-f); then I(f) is called the lower 
semi-integral off, and I(f) 1 1(f). For by 6(2) 

0 = I(O) = I(f-f) _I(f) + I(-f) or (f)- 1(f) 

6(5) I(f V g) + I(f A g) - I(f) + I(g). 
For if spj, f2 are any functions of class T1 such that <pj f, s- 9. 

(PI V (P2 -f V g. soi A 502 'f A g. 

fI(f V g) + I(f A g) c I(sPl V (P2) + I((p, A 502) or I((p) + I(502). 

For 
(P1 V 502 + (pi A 502 = 501 + 502. 

Varying (pi, 52 independently, we obtain the theorem. 
Corollary. 

'(If) ) (ff I) ; I (f) 1(f) 
For 

if I =f V (-f),2 _ I f A (-f). 
*- I( f I + I(- if I )cI(f )+ I(- f) 

7. Summability. If I(f) = 1(f) = finite, f is said to be summable, 
and we define 

I(f) = I(f) =(f) 

7(1). If f is summable and f O 0 for all p, I(f) _ 0. For by 6(3), 
1(f) _ 1(0) or 0. 

7(2). If c is any constant and f is summable, cf is summable and 
I(cf) = cI(f). 
If c is positive, 

(cf ) = Cf = cI(f) [By 6(1). 

- I(cf) = I(- cf) = cI(-f) = -cI(f). 

I(cf) = I = = cI(f). 
If c is negative, 

I(cf ) = - cI(-f) [By 6(1) 
= cI(f) 

- I(cf ) = I(- cf) = - cI(f). .(. etc. 

7(3). If f1,f2 are summable, so isf, + f2 and I(f, + f2) = I(f,) + I(f2). 
For 

I(f + f2) =c I( fl) + I( f2) [By 6(2), 
or I(fi) + I(f2). 
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-I( f + f2) = I(- fl- f2) 
-'- 

I(- f) + I(f2). 

or - I(f) -I(f2). 

.o I( fl + f2) I(fi) + I ( f2) 
But 

I(fl+f2) I(f1+f2). .. etc. 

7(4). If f is summable, so is If I and I I(f) I c I f f). By 6(5) Cor. 

I f i )-(fJ I (f )I (f ) = 

But I( I ) I( fI ). Hence the first part follows. Moreover, 

- f lf c f 

- I( If I) = (-If I) 

I(f) or I(f) 

I( I ) or I( I ) 

The second part follows immediately. 
7(5). If fl, f2 are summable, so are f, V f2, fl A f2. For by 6(5) 

I(fi V f2) + I(ft A f2) ff 1() + I(f2), or I(fi) + I(f2). 

If we replace f, by - fl, f2 by -f2, we shall replace f, V f2 by - (f A f2) 
andf1 A f2 by - (f, Vf2). 

. I[- (fi A f2)] +I[ - (f' V f2)] I(-fl) + I(-f2), 

I(fi A f2) + I(f' V f2) : I(fj) + j(f2), or I(fJ) + I(f2). 

1( (fi V f2) - 1(f, V f2) + 1(f, A f2) - 1(f, A f2) _! O. 

But each of these differences is non-negative, therefore they are both zero. 
7(6). If fi I f2 ! ... is a nondecreasing sequence of summable 

functions, and if lim I(f.) is finite, lim fn = f is summable, and 
I(f) = limI(fn); while if limI(fn) = + co, 1(f) = + co. 
For -f -f,.. 

I(-f ) I(-fn) [By 6(3). 

I( f )I('fn (n = 1J 2, ).. 

1n (f) liM I(fn) 

This proves the last part of the theorem. Given any positive e, we can 
choose ( pi2, * 2 of class T1 such that 

( 1 .1 (P _2 
- ,A~ (P _S 

- 
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and so that 
I(<p) < 1(fl) + e/2, 

I(,2) <I(f2 fi) + e/4, 

If n 2, (Pn -f-fn-1 O. We define 41n = (P1 + (P2 + ? *+ (n 
Then 44n is of class T1 and 4, 1 2 44c ** * .. By 5(4), lim 44n is of class T, 
and I(lim 4/n) = lim I(44n) 44n fn or limn 44 lim fn or f. 

1Q. I(f ) c I(lim 44n) [By 6(3), 

or lim I (/n) . 
I(44) = I(s1+I) + + ... + I((n) 

< I(fl) + I(f2-fl) + * + I(fn-fn-1) 

+e(-1 + 1 + *@+ 2-n) 

<I(fn) + e. 

lrn I(m4) _lim I(fn) + e. 

I(f) clim I(fn) + e. 

But e is any positive quantity. 

.z.I~f) _lim'I(fn). 

We have already shown that I( f) lim I( fn). 
1(f) = 1(f) = lim I(fn). 

* . if lim I( fn) exists, f is summable and 1(f ) = lim I( fn). 
7(7). If fi, f2 . . . is a sequence of summable functions with limit f, 

and if a summable function So exists such that I fn I c for all n, f is 
summable, lim I( fn) exists and = I(f ). We must recall the method 
whereby the limit of a sequence is obtained. Let gr, , be the logical sum 
of fr, fr+i, *.* fT+'; then gr, s c gr, s+l *** with limit 9r. Then 
gr 9r+1 - ** , and lim gr = f, if lir fn = f. Similarly we let hr , be 
the logical product of fr, fr+i, * fr+8, and then hr, - 8hr ** * with 
limit hr. Then hr hr+1 c * *., and lim hr = f if limfn = f. fn is 
summable for all n, therefore by 7(5), gr, is Cummable. Since fn c (0 

9r,, C Si. . . I(gqr3 8 I((p). Therefore gr is summable by 7(6). Again 
9r, s - p or - 9r, c o s gr = o sI(_ gr) =cI(p). But 

- r - -gr+ * 

with limit - f. Therefore - f is summable by 7(6) and 



A GENERAL FORM OF INTEGRAL. 291 

I(- f ) = Ui1I(- 9) . 
Therefore by 7(2), f is summable and I(f) = uIr 1(g,). Given any 
positive e we can find ri, so that 

I(gr) < I(f) + e (r _ ri). 
Now 

fr - gr, 8 - gr. 
..I(fr) I(9r) 

< I(f )+ e (r i_~ ri). 
Similarly we can prove teat h, is summable and I(f) = lim I(hr). We 
can find r2 so that 

I(hr) > I(f -e (r r2). 

fr _hr, 8 hr. 

.,I(fr) =I(hr) 
> I (f,) -e (r r2). 

Therefore if ro is the greater of ri and r2, 

I I(fr) -I(f ) I < e (r ~_,ro). 

Hence lim I(fn) exists. and equals I(f ). From these theorems it follows 
that I(f ) satisfies the conditions (C) (A) (L) (P), where the functions 
now belong to the class of summable functions. 

8. S-integrals. Associated with any S-integral S(f) for functions of 
class To we have three I-integrals, namely Il(f ), I2(f) I(f ), such that 

S(f) = II(f) - I2(f) I(f) = I1(f) + I2(f)- 

If we extend our definitions of the I-integrals to functions of class T1, 
we shall still have 

I(f) = I1(f) + I2(f) 

8(1). If f is any function, 

I1(f) + I2(f) = I(f) 

For if so is any function of class T1 such -that sp - 

Il(f) + 12(f) `Il(P) + I2(P), or I(sp 
Varying so, we obtain 

il (f) + I2f) If) 

Again given any positive e we can choose spj, (02 of class T1 so that p j 
(02 -f and 11(f ) > Ij(oj) - e, 12(f ) > I2Q(p2) - 4e. Let ,1 = soi A /02, 
then ,1 o j and ,1 -Yp2. 
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Il(so1) + I2((P2) I1(41) + I2(4/), or 

..il(f ) + I2(f ) > I(+)-e 
Buttd f -. I(+) I(f ) 

I f) +l(f) +I2(f) > -e(f. - 

This is true for any positive e. 

.'. fl(f ) + 12(f ) i(f ) 

But we have already proved that 

1l(f) + 12(f) cI(f). .. etc. 

8(2). If f is summable (I), it is summable (I,) and (I2), and 

I(f) = I1(f) + I2(f). 
For 

Ii(f) + f2(f) = 1(f) = I(f). 

I1(-f) + i2(-) = I(-f) = -I(f). 

[1(f) + J2(f) = I(f). 

fl(f ) - (f) + f2(f - 12(f) = 0. 

But each of these differences is non-negative, therefore each must be zero 
separately. Then f is summable (I,) and (I2) and 

I(f) = I1(f) + I2(f) = I1(f) + I2(f). 

f is said to be summable (S) if, and only if, it is summable (I), where I 
is the modular integral associated with S. Hence if f is summable (S), it 
is summable (II) and (12) by 8(2). 

We define 
S(f) = Ii(f) -I2(f). 

Then S(f) satisfies all the conditions (C) (A) (L) (M) for functions 
summable (S). 

Many of the theorems already obtained for the I-integral can be imme- 
diately stated also for the S-integral. 

Thus 7(2, 3, 5, 7) are true if we replace I everywhere by S. 7(4) 
becomes: 

If f is summable (S), so is I f I, and 

I S(f I -I(Ifl ), 

where I is the modular integral associated with S. 7(6) becomes: 
If fi f2 _ * are summable (S) and if lim I(fn) exists, where I is 
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the associate modular integral, then lim fn = f is summable (S) and 

SU ) = lim S(fn) . 
8(3). The necessary and sufficient condition that f be summable (S) 

is that given any positive e there exists a function fe of class To such that 

'(If -fel) <el 

where I is the modular integral associated with S. 
Also in this case 

S(f) =lim S(fe). e-'o 
The condition is sufficient for 

f = fe + f -fe _ fe + If -fe I 

..I(f) I(fe) + I( I f -fe I ) < I(fe) + e. 

Similarly An(-f) < I(-fe) + e, 

1(f ) > I(fe) -e. 

1(f ) - I(f) < 2e. 

This is true for any positive e, therefore I(f) = I(f). They are also 
finite for I(fe) and e are finite. Also 

I|SUf -S(fe)| I I SUffe)l CI (Iffe I) < e. 
S(f) =lim S(fe). 

The condition is necessary, for given any positive e there exists a summable 
function so of class T1 such that so f and 

I( f)_ I(sP) < I( f) + 2e 
'(K s-fl ) = I(so-f) 

(since so f ) 
CI(p)+I(-f) or I(p)-f(f) or !(p)-I(f 

for f is summable. 
. 1. I -f )<le. 

so is summable and of class T1, therefore there exists a function fe 
of class To such that fe c so and 

I(fe) > I(o) - 2e. 
Then 

I( x so-fei) < ele. 

..I(I | f.-f|) fI( ! f I + I s-fe I 

RIl f I f) + !(I s - fe I) < e. 
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Evidently the condition for summability, or the class of summable func- 
tions depends both on the operation S and on the class To. 

9. Measure. It is usual, though not necessary, to define the integral 
in terms of the measure of certain fundamental sets. Let us suppose that 
the measures of a certain class of elementary, or initial sets, or collections 
E, of the p are given. In connection with a collection E we can define a 
function = 1 when p belongs to E, = 0 otherwise. We can agree to call 
the measure of E, the integral of the corresponding function. The class 
To is then taken as the class of all functions which are linear combinations 
of these elementary set-functions. It will then be closed with respect to 
the operations (C) (A). For any set E whatever we can say that it is 
measurable if the corresponding function is summable, and we can 
identify its measure with the integral of that function. This question 
requires however a separate and careful consideration. The author 
wishes to point out, without proof, a simple manner in which the Stieltjes 
integral can be generalized. 

rb 

In the ordinary Stieltjes integral fbf(x)da(x), f(x) is a continuous 

function (a _ x c b) and a(x) of limited variation, that is such that 
n 
Ea!(x(i) - a(xi-) xMy 

for all subdivisions a = xo < xi < ... <xn = b. Suppose that ay(x) is 
not a function of limited variation but that 

n 
Exs I Y(xi) - (xi-i) ] M, 

for all subdivisions 0 = xo < xi < ... < xn = 1. Then if f(x)/x is con- 
tinuous (O c x c 1), we can define 

St Sl~~~f(X) ff(x) d7(x) =jf;)xdy (x). 

Of course this is only a transformation of the integral, If () dot(x), 
ox~~~~~~~~~~~ 

where a(x) = f xdy(x) is of limited variation. It shows nevertheless 

that so long as suitable restrictions are placed on the integrand, integrals 
similar to that of Stieltjes can be defined with respect to functions which 
are not of limited variation. 

RICE INSTITUTE, 
HOUSTON, TEXAS. 
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