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Abstract. We show that certain one-dimensional hypergeometric differential systems underlie objects
of the category of irregular mixed Hodge modules, which was recently introduced by Sabbah, and
compute the irregular Hodge filtration for them. We also provide a comparison theorem between two
different types of Fourier-Laplace transformation for algebraic integrable twistor D-modules.

1. Introduction

In a series of papers (see [Yu14, ESY17, SY15, Sab18]), Sabbah and Yu (partly joint with Esnault)
have considered a so-called irregular Hodge filtration on certain cohomology groups resp. on certain
irregular D-modules. It can be seen as a generalization of the Hodge filtration on a mixed Hodge
module in the sense of M. Saito. Geometrically, such a filtration arises by considering a version of
the twisted de Rham cohomology of certain proper maps, and it plays (conjecturally) a role in Hodge
theoretic mirror symmetry (see [KKP17]). In [Sab18], Sabbah has defined a category of irregular
mixed Hodge modules, which is (up to a technical equivalence) a certain subcategory of T. Mochizuki’s
category of (integrable) mixed twistor D-modules. He has proved that a rigid irreducible D-module
on the projective line can be uniquely upgraded to an irregular Hodge module if and only if its formal
local monodromies are unitary. Consequently, these objects come equipped with an irregular Hodge
filtration and one can define irregular Hodge numbers for them. They should be seen as interesting
numerical invariants attached to these differential systems, contrary to the case of arbitrary mixed
twistor D-modules, where there is no obvious way to define such numbers. In [CDS17], the first and
the third named author have computed that filtration and its corresponding numbers for the purely
irregular hypergeometric modules, that is for systems of the form DGm/DGmP , where P is the operator

P =
n∏
i=1

(t∂t − αi)− t

for real numbers α1, . . . , αn. Let us consider the non-commutative ring Rint
Gm

:= C[z, t±]〈z2∂z, tz∂t〉. A

crucial point was to show that a certain quotient of the corresponding sheafRint
Gm

on Gm which restricts
to the DGm,t-module DGm/DGmP on z = 1 actually underlies an object in the category IrrMHM(Gm)

and the latter can be uniquely extended to an object in IrrMHM(P1).
In this paper we discuss the case of more general hypergeometric D-module, that is, for quotients
DGm/DGmP , where now P is of the form

P =
n∏
i=1

(t∂t − αi)− t
m∏
j=1

(t∂t − βj)

for positive integersm,n and real numbers α1, . . . , αn, β1, . . . , βm such that there is no integer difference
between any αi and βj (this is the irreducibility assumption). It is worth noticing that the presence
of the factor

∏m
j=1(t∂t − βj) rules out the usage of the geometric arguments of [CDS17]. We obtain

(see Theorem 5.7) that for certain such systems, the corresponding quotient of Rint
Gm

still underlies an
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object of IrrMHM(Gm). As an application, we can completely determine the irregular Hodge filtration
for all systems D/DP as above, where n is arbitrary and where m = 1.
The strategy of the proof (which is rather different from that of [CDS17]) of the main theorem is
to reduce these differential systems from (Fourier-Laplace transformed) A-hypergeometric D-modules
(the so-called GKZ-systems of Gel’fand, Graev, Zelevinski and Kapranov, see [GGZ87], [GZK89]),
but at the level of (algebraic, integrable, mixed) twistor D-modules. Notice that the paper [Moc15b]
also studies twistor structures on GKZ-systems, by considering twistor D-modules associated to mero-
morphic functions. We use instead a central result of [RS15], where the Hodge filtration on certain
GKZ-systems has been computed explicitly. Technically, the main point in our proof consists in
showing that for an R-module underlying an integrable mixed twistor D-module on the affine space,
the algebraic Fourier-Laplace transformation (which is defined very much the same as in the case of
algebraic D-modules) coincides with the Fourier-Laplace transformation that can be defined inside
the category MTM, or even IrrMHM. Along the way, we also obtain (see Theorem 4.7) that an
R-module version of the GKZ-D-module underlies an irregular Hodge module provided that the pa-
rameter β ∈ Cd of this system satisfies a natural combinatorial condition. Notice that for the special
case β = 0, this theorem can also be deduced from [Moc15b, Proposition 1.4.].
Our results give concrete representations for objects in the category MTM resp. IrrMHM, which
usually are difficult to describe explicitly. We hope that a similar approach can be used to understand
the irregular Hodge filtration for some higher dimensional analogues of the classical hypergeometric
systems, also called Horn systems, which occur in the mirror symmetry picture for toric varieties.

Acknowledgements. We would like to thank Takuro Mochizuki for communicating the proof of
Lemma 2.3 to us. We would further like to thank Takuro Mochizuki and Claude Sabbah for their
interest in our work and for many stimulating discussions. We are grateful to the participants of the
workshop Mixed Twistor D-modules in Heidelberg in 2017 for their time and effort. We also thank the
Max Planck Institute for Mathematics in the Sciences, where some part of the work presented here
has been carried out.

2. Some results on R- and mixed twistor D-modules

Let X be a complex manifold of dimension d. We denote by OX the sheaf of holomorphic functions
and DX the sheaf of differential operators with holomorphic coefficients. Recall that DX is generated
by the tangent sheaf ΘX . We put X := A1

z ×X, where the subscript means that z is the canonical
coordinate on A1. Denote by pz : X → X the projection. We denote by RX the sheaf of subalgebras
of DX generated by zp∗zΘX over OX and by Rint

X the sheaf of subalgebras of DX generated by
zp∗zΘX and z2∂z over OX . In local coordinates x1, . . . , xd, they are given by OX 〈z∂x1 , . . . , z∂xd〉 and
OX 〈z2∂z, z∂x1 , . . . , z∂xd〉, respectively. We set Ω1

X := z−1p∗zΩ
1
X as a subsheaf of p∗zΩ

1
X ⊗OX (∗({0} ×

X)), Ωp
X :=

∧p Ω1
X and ωX := Ωd

X .
Let f : X → Y be a morphism of complex manifolds. We consider the transfer R-modules, given
by RX→Y := OX ⊗f−1OY

f−1RY and RY←X := ωX ⊗ RX→Y ⊗ f−1ωY , being respectively a

(RX , f−1RY )-bimodule and a (f−1RY ,RX )-bimodule. We have the inverse image and direct image
functors

f+(N ) := RX→Y

L
⊗f−1RY

f−1N ,

f+(M) := Rf∗(RY←X

L
⊗RX

M),

(1)

between the bounded derived categories Db(RX ) and Db(RY ).
If f : X × Y → Y is a projection and dimX = d, then f+(M) is given by

f+(M) = Rf∗DRX ×Y /Y (M)[d],

where DRX ×Y /Y (M) is the relative de Rham complex with differential

d(η ⊗m) = dη ⊗m+

d∑
i=1

(
dxi
z
∧ η
)
⊗ z∂xim,
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the (xi)1≤i≤d being local coordinates on X.
Let σ : Gm,z → Gm,z be the automorphism z 7→ −z−1. Set S := {z ∈ A1

z | |z| = 1}. If λ ∈ S

then σ(λ) = −λ. Let E(d,d)
S×X/S,c(V ) be the space of C∞-sections of Ωd,d

S×X/S over any open subset V of

S×X with compact support and C0
c (S) the space of continous functions on S with compact support.

The space of C∞(S)-linear maps E(n,n)
S×X/S,c(V ) → C0

c (S) is denoted by DbS×X/S(V ). This gives rise

to the sheaf DbS×X/S. The abelian category R-Tri(X) consists of triples T = (M1,M2, C) where
M1,M2 are RX -modules and C : M1|S×X ⊗ σ∗M2|S×X → DbS×X/S is a RX |S×X ⊗ σ∗RX |S×X -
linear morphism. If D ⊂ X is a hypersurface, one similarly defines a category R-Tri(X,D) using
RX (∗D) := RX ⊗OX

OX (∗(A1
z ×D))-modules (cf. [Moc15a, § 2.1] for details).

Now let X := X0 × A1
t and let ΘX(logX0) be the sheaf of vector fields on X which are logarithmic

along X0. Let V0RX be the sheaf of sub-algebras in RX which is generated by zp∗zΘX(logX0). For

z0 ∈ A1
z we denote by X (z0) a small neighborhood of {z0} × X. A coherent RX -module is called

strictly specializable along t at z0 if M|X (z0) is equipped with an increasing and exhaustive filtra-

tion V
(z0)
a (M|X (z0))a∈R by coherent (V0RX )|X (z0)-modules satisfying certain conditions (cf. [Moc15a,

§§ 2.1.2.1, 2.1.2.2]). This filtration is unique if it exists. M is called strictly specializable along t if it
is strictly specializable along t for any z0.

Remark 2.1. If M is itself a coherent V0RX -module, then M is automatically specializable along
t and the corresponding filtration Va(M) exists globally and is trivial, i.e. Va(M) = Vb(M) for all
a, b ∈ R.

If M is a coherent RX (∗t)-module, we define similarly a filtration V
(z0)
a (M|X (z0)) and the notion of

strict specializability along t (cf. [Moc15a, § 3.1.1]). In this case we define the RX -submodulesM[∗t]
resp. M[!t] of M, which are locally generated by V

(z0)
0 M resp. V

(z0)
<0 M.

Remark 2.2. If the coherent RX (∗t)-module M is itself V0RX coherent, then M[!t] = M[∗t] =
M(∗t) =M.

Given an RX (∗t)-triple T = (M1,M2, C) which is strictly specializable along t we can define

T [!t] := (M1[∗t],M2[!t], C[!t]), T [∗t] := (M1[!t],M2[∗t], C[∗t])
(cf. [Moc15a, Prop. 3.2.1] for details).
The category of filtered RX -triples (i.e. RX -triples equipped with a finite increasing filtration W )
underlies the category MTM(X) of mixed twistor D-modules (cf. [Moc15a, Def. 7.2.1]). The full
subcategory of objects T ∈ MTM(X) satisfying T = T [∗D] for some hypersurface D ⊂ X is denoted
by MTM(X, [∗D]).
If X is a smooth, algebraic variety, we denote by Xan the corresponding complex manifold. Let X be
a smooth, complete, algebraic variety such that X ↪→ X is an open immersion and D := X \X is a
hypersurface. We can define the category of (integrable) algebraic, mixed twistor D-modules as

(2) MTM
(int)
alg (X) := MTM(int)(X

an
, [∗D]).

We remark that this definition is independent of the completion up to an equivalence of categories
([Moc15a, Lem. 14.1.3]).
Let f : X → Y be a quasi-projective morphism of smooth, algebraic varieties. We take completions
X ⊂ X,Y ⊂ Y as above, such that DX := X \X and DY := Y \Y and we have a projective morphism
f : X → Y which restricts to f . For T ∈ MTMalg(X), corresponding to T ∈ MTM(X, [∗DX ]), we
define

f i∗T := Hif∗T ,
where f∗ is the direct image functor for mixed twistor D-modules arising from the one for R-modules
depicted in 1.
If X is an algebraic variety, we denote by DX the sheaf of algebraic differential operators and by
RX the sheaf of z-differential operators, where here X := A1

z ×X. We define the inverse and direct
image functor in the category of algebraic RX -modules as in 1. Analogously to the construction of
RX , we can consider the projection p : P1 × X → X, and construct the sheaf of subalgebras of
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DP1×X(∗({∞}×X)) generated by z2∂z and zp∗ΘX over OP1×X (cf. [Moc15a, § 14.4.1.1]), which will
be denoted by Rint

P1×X(∗∞). In that sense, an algebraic integrable RX -module gives rise to a unique

Rint
P1×X(∗∞)-module (cf. [ibid., Thm. 14.4.8]).

The following Lemma, which will be needed later, is due to T. Mochizuki.

Lemma 2.3. Given two good Rint
P1×X(∗∞)-modules P1,P2 and an analytic isomorphism f : Pan

1 →
Pan

2 , then f is induced by a unique algebraic isomorphism between P1 and P2.

Proof. Take a coherent OP1×X -submodule N1 ⊂ P1 such that Rint
P1×X(∗∞) ⊗ N1 → P1 is surjective

and a coherent OP1×X -module N2 ⊂ P2 such that both Rint
P1×X(∗∞) ⊗ N2 → P2 is surjective and

f(N an
1 ) ⊂ N an

2 . According to GAGA we have a morphism g : N1 → N2 which after analytification is
equal to the morphism N an

1 → N an
2 induced by f . Denote by K1 the kernel of Rint

P1×X(∗∞)⊗N1 → P1.

This gives a morphism K1 → P2 which one obtains as the composition K1 → Rint
P1×X(∗∞) ⊗N1

ϕ−→
Rint
P1×(∗∞) ⊗ N2 → P2, where ϕ is induced by g. Because the induced morphism (Rint

P1×X(∗∞) ⊗
N1)an → Pan

2 factors through Pan
1 , the induced morphism Kan

1 → Pan
2 is 0. Hence, we obtain that

K1 → P2 is 0, which means that Rint
P1×X(∗∞)⊗N1 → P2 factors through P1. This shows the existence.

The uniqueness follows from [Ser56, Prop. 10]. �

Since an algebraic, integrable, mixed twistor D-module on X gives rise to an analytic Rint
P1×X(∗∞)-

module which underlies an algebraic Rint
P1×X(∗∞)-module by [Moc15a, Thm. 14.4.8], the Lemma

above shows that we can define functors (up to canonical isomorphism)

Fori : MTMint
alg(X) −→ Mod(Rint

X )

(M1,M2, C) 7→ Mi for i = 1, 2,

which become faithful if we impose goodness.

3. Fourier transformation of twistor D-modules

In this section we define the Fourier-Laplace transformation in the categories of integrable R-modules
and integrable, algebraic, mixed twistor D-modules, and we prove that these two transformations are
compatible.

Consider the diagram

AN × ÂN
j //

p

zz

q

$$

PN × P̂N

q
��

AN ÂN
ĵ // P̂N

,

where p and q are the projections to the first and second factor respectively. Consider the function

ϕ =
∑N

i=1wi · λi on AN × ÂN .

Let Aϕ/zaff the R
A1×AN×ÂN -module O

A1×AN×ÂN equipped with the z-connection zd+dϕ, and consider

the reduced divisor D := (PN × P̂N ) \ (AN × ÂN ). Then Aϕ/z∗ := j∗Aϕ/zaff carries a natural structure
of an R

A1×PN×P̂N (∗D)-module.

We denote by Eϕ/z∗ the analytification of Aϕ/z∗ , which is an R
A1×PN×P̂N (∗D)-module.

Lemma 3.1. Eϕ/z∗ is strictly specializable along D and

Eϕ/z := Eϕ/z∗ [∗D] = Eϕ/z∗ .

Proof. We denote the coordinates on PN × P̂N by ((w0 : w1 : . . . : wN ), (λ0 : λ1 : . . . : λN )), where the

chartAN×ÂN is embedded via the map j : (w1, . . . , wN , λ1, . . . , λN ) 7→ ((1 : w1, . . . , wN ), (1 : λ1 : . . . :
λN )). By symmetry it is enough to prove the claim in the charts {w1 6= 0, λ0 6= 0}, {w1 6= 0, λ1 6= 0}
and {w1 6= 0, λ2 6= 0}. We will assume N ≥ 2 and consider the chart X := {w1 6= 0, λ2 6= 0};
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the arguments with the other charts and when N = 1 go similarly. The chart X is embedded as
(x1, . . . , xN , µ1, . . . , µN ) 7→ ((x1 : 1 : x2 . . . : xN ), (µ1 : µ2 : 1 : µ3 : . . . : µN )), so that the map ϕ is
given on X by 1

x1µ1
(µ2 +x2 +

∑
i≥3 µixi). Set DX := A1× (D∩X) = A1×{x1 ·µ1 = 0}. The module

(Eϕ/z∗ )|X is a cyclic RA1×X(∗DX)-module RA1×X(∗DX)/I , where the left ideal I is generated by

z∂x1 +
1

x2
1µ1

(µ2 + x2 +
∑
i≥3

µixi), z∂x2 −
1

x1µ1
, z∂xj −

µj
x1µ1

,

z∂µ1 +
1

x1µ2
1

(µ2 + x2 +
∑
i≥3

µixi), z∂µ2 −
1

x1µ1
, zµj −

xj
x1µ1

,

where j ≥ 3. Consider the map ig : X → A1
t ×X given by

(x1, . . . , xN , µ1, . . . , µN ) 7→ (x1 · µ1, x1, . . . , xN , µ1, . . . , µN ).

The direct image ig,+(RX (∗DX)/I ) is a cyclic RA1
t×X (∗(A1

t×DX))-module RA1
t×X (∗(A1

t×DX))/J ′

where J ′ is generated by

z∂x1 + µ1z∂t +
1

x2
1µ1

(µ2 + x2 +
∑
i≥3

µixi), z∂x2 −
1

x1µ1
, z∂xj −

µj
x1µ1

,

z∂µ1 + x1z∂t +
1

x1µ2
1

(µ2 + x2 +
∑
i≥3

µixi), z∂µ2 −
1

x1µ1
, z∂µj −

xj
x1µ1

, t− x1µ1,

where j ≥ 3. Define the cyclic RA1
t×X (∗t)-module RA1

t×X (∗t)/J where J is generated by

z∂x1 + µ1z∂t +
µ1

t2
(µ2 + x2 +

∑
i≥3

µixi), z∂x2 −
1

t
, z∂xj −

µj
t
,

z∂µ1 + x1z∂t +
x1

t2
(µ2 + x2 +

∑
i≥3

µixi), z∂µ2 −
1

t
, z∂µj −

xj
t
, t− x1µ1,

where j ≥ 3. Then we have the following RA1
t×X -linear isomorphism

RA1
t×X (∗(A1

t ×DX))/J ′ −→ RA1
t×X (∗t)/J

P · 1

(x1µ1)k
7→ P · 1

tk
.

Consider the V -filtration along t = 0. The relations 1
tk

= (z∂µ2)k,

z∂t = −1

t

z∂x1x1 +
1

t
(µ2 + x2 +

∑
i≥3

µixi)

 = −z∂x1x1z∂µ2 − (µ2 + x2 +
∑
i≥3

µixi)(z∂µ2)2

and a straightforward induction over k for (z∂t)
k show that ig,+(RX (∗DX)/J ) is a cyclic, hence also

coherent, V0RA1
t×X -module. It follows from Remark 2.1 that ig,+(RX (∗DX)/J ) = ig,+(RX (∗DX)/J )[∗t],

and as a consequence, we are done by applying [Moc15a, § 3.3.1.1] and Remark 2.2.
�

It follows from [SY15, Prop. 3.3] that Eϕ/z underlies an object T ϕ/z ∈ MTMint
alg(AN × ÂN ). Let us

notice that the preceding lemma, as well as the similar lemma 3.6 below, are related to a more gen-
eral statement in [Moc15b, Corollary 3.12] on mixed twistor D-modules associated to non-degenerate
functions. However, in order to keep the paper self-contained, we prefer to give direct proofs here.

We will now define a Fourier-Laplace transformation for algebraic Rint
A1×AN -modules.

Definition 3.2. The Fourier-Laplace transformation functor from the category of algebraic Rint
A1×AN -

modules to the category of algebraic Rint
A1×ÂN

-modules is defined as

M̂ := FL(M) := H0q+

(
(p+M)⊗Aϕ/zaff

)
,
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for any M in Mod(Rint
A1×AN ).

Remark 3.3. Let M := Γ(A1×AN ,M) be the Rint
A1×AN -module of global sections ofM. The Rint

A1×ÂN
-

module M̂ := Γ(A1× ÂN ,M̂) is isomorphic to M as a C[z]-module and the full Rint
A1×ÂN

-structure is

given by

λi ·m := −z∂wi ·m, z∂λi ·m := wi ·m and z2∂z ·m :=

(
z2∂z −

N∑
i=1

z∂wiwi

)
·m.

On the other hand, there is a similar definiton of a Fourier-Laplace transformation in the category of
algebraic DAN -modules (see e.g. [Rei14, Def. 1.2]) which we also denote by FL.

The Fourier-Laplace transformation for algebraic, integrable, mixed twistor D-modules is defined in
the following way.

Definition 3.4. The Fourier-Laplace transformation in the category of algebraic, integrable mixed
twistor D-modules on AN is defined by

FLMTM(M) := H0q∗

(
(p∗M)⊗ T ϕ/z

)
,

where M∈ MTMint
alg(AN ).

Recall that forM = (M1,M2, C) ∈ MTMint
alg(X) we denote by Fori the forgetful functors Fori(M) =

Mi for i = 1, 2.

Proposition 3.5. Let M∈ MTMint
alg(AN ). Then

For1(FLMTM(M)) = FL(For1(M)) and For2(FLMTM(M)) = z−N FL(For2(M)).

Proof. By [Moc15a, § 14.3.3.3] it is clear that Fori almost commutes with p∗, more precisely we have

For1(p∗(M)) = zNp+(For1(M)) and For2(p∗(M)) = p+(For2(M)).

Then it is enough to prove for N ∈ MTMint
alg(AN×ÂN ) that q+(Fori(N )⊗Aϕ/zaff ) ∼= Fori(q∗(N⊗T ϕ/z)).

We have

ĵ+q+

(
Fori(N )⊗Aϕ/zaff

)
∼= q+j+

(
Fori(N )⊗Aϕ/zaff

)
∼= q+j∗

(
Fori(N )⊗Aϕ/zaff

)
∼= Rq∗DR

PN×P̂N j∗

(
Fori(N )⊗Aϕ/zaff

)
.

Since N , T ϕ/z ∈ MTMint
alg(AN × ÂN ), there exist mixed twistor D-modules N , T ϕ/z ∈ MTMint(PN ×

P̂N , [∗D]) whose underlying R-modules are (after stupid localization along D) analytifications of the

j∗ Fori(N ) and j∗Aϕ/zaff . Hence(
j∗

(
Fori(N )⊗Aϕ/zaff

))an ∼= Fori

(
N ⊗ T ϕ/z

)
(∗D) ∼= Fori

(
N ⊗ T ϕ/z

)
,

where the last equation follows from Lemma 3.1. We therefore get(
ĵ+p+

(
Fori(N )⊗Aϕ/zaff

))an ∼= Rq∗DRan
PN×P̂N

(
j∗

(
Fori(N )⊗Aϕ/zaff

))an

∼= Rq∗DRan
PN×P̂N Fori

(
N ⊗ T ϕ/z

)
∼= Fori

(
q∗

(
N ⊗ T ϕ/z

))
.

The claim follows now from Lemma 2.3, noting that the goodness is a consequence of Lemma 3.1
and [Moc15a, Thm. 14.4.15]. �



EXAMPLES OF HYPERGEOMETRIC TWISTOR D-MODULES 7

We have the following variant, which will be used in the next section. Consider the diagram

AN ×Gm
j //

p

zz

q

$$

PN × P1

q
��

AN Gm
ĵ // P1

and let ψ := w1 · t+ w2 + . . .+ wN .

Similarly as above we define the RA1×AN×Gm-module Aψ/zaff , being OA1×AN×Gm endowed with the z-

connection zd+dψ. As in the other case, we can consider the divisor H := (PN×P1)\(AN×Gm) and

obtain the RA1×PN×P1(∗H)-module Aψ/z∗ := j∗Aψ/zaff . In the same vein as before, we will denote by

Eψ/z∗ the RA1×PN×P1(∗H)-module being the analytification of Aψ/z∗ . The following Lemma is similar
to Lemma 3.1.

Lemma 3.6. Eψ/z∗ is strictly specializable along H and

Eψ/z := Eψ/z∗ [∗H] = Eψ/z∗ .

Proof. We denote the coordinates on PN × P1 by ((w0 : w1 : . . . : wN ), (u : t)), where the chart
AN ×Gm is embedded via the map j : (w1, . . . , wN , t) 7→ ((1 : w1 : . . . : wN ), (1 : t)). We will assume
N ≥ 3 and consider the chart X := {w2 6= 0, u 6= 0}; the other charts behave similarly, as well as the
case N = 1, 2. The chart X is embedded as (x1, . . . , xN , u) 7→ ((x1 : x2 : 1 : x3 : . . . : xN ), (u : 1)). On
this chart the map ψ is given by 1

x1
(x2u +1+x3+. . .+xN ). Set HX := A1

s×(H∩X) = A1
s×{x1 ·u = 0}.

The module (Eψ/z∗ )|X is a cyclic RX (∗HX)-module RX (∗HX)/I , where the left ideal I is generated
by

z∂x1 +
1

x2
1

(x2

u
+ 1 + x3 + . . .+ xN

)
, z∂x2 −

1

x1u
, z∂xj −

1

x1
, z∂u +

x2

x1u2
,

with j ≥ 3. Consider the map ig : X → A1
s ×X given by

(x1, . . . , xN , u) 7→ (x1 · u, x1, . . . , xN , u) .

Analogously as in Lemma 3.1, the direct image ig,+(RX (∗HX)/J ) is a cyclic RA1
s×X (∗(A1

s ×HX))-

module RA1
s×X (∗(A1

s ×HX))/J ′ where J ′ is the left ideal generated by

z∂x1 + uz∂s +
1

x2
1

(x2

u
+ 1 + x3 + . . .+ xN

)
, z∂x2 −

1

x1u
, z∂xj −

1

x1
,

z∂u + x1z∂s +
x2

x1u2
, s− x1u,

and j ≥ 3. Define the cyclic RA1
s×X (∗s)-module RA1

s×X (∗s)/J where J is generated by

z∂x1 + uz∂s +
1

s2

(
x2u+ u2 + x3u

2 + . . .+ xNu
2
)
, z∂x2 −

1

s
, z∂xj −

u

s
,

z∂u + x1z∂s +
x1x2

s2
, s− x1u,

where j ≥ 3. We have the following RA1
s×X -linear isomorphism

RA1
s×X (∗(A1

s ×HX))/J ′ −→ RA1
s×X (∗s)/J

P
1

(x1u)k
7→ P

1

sk
.

Consider the V -filtration along s = 0. The relations 1
sk

= (z∂x2)k,

z∂s = −1

s

(
z + uz∂u +

x2

s

)
= −z · z∂x2 − uz∂uz∂x2 − x2(z∂x2)2

and a straightforward induction over k for (z∂s)
k show that ig,+(RX (∗DX)/J ) is a coherent V0RA1

t×X -

module. As in the previous lemma, this shows the claim.
�
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It follows again from [SY15, Prop. 3.3] that Eψ/z underlies an object T ψ/z ∈ MTMint
alg(An ×Gm).

Definition 3.7.

(1) The Fourier-Laplace transformation with respect to the kernel ψ in the category of algebraic
RA1×AN -modules is defined as

FLψ(M) := H0q+

(
(p+M)⊗Aψ/zaff

)
,

for any M∈ Mod(RAN ).
(2) Analogously, the Fourier-Laplace transformation with respect to the kernel ψ in the category

of algebraic, integrable twistor D-modules on AN is defined by

FLψMTM(M) := H0q∗

(
(p∗M)⊗ T ψ/z

)
,

for any M∈ MTMint
alg(AN ).

We get the following result for the kernel ψ.

Proposition 3.8. Let M∈ MTMint
alg(AN ). Then

For1(FLψMTM(M)) = z1−N FLψ(For1(M)) and For2(FLψMTM(M)) = z−N FLψ(For2(M)) .

Proof. We have, by [Moc15a, § 14.3.3.3],

For1(p∗(M)) = zp+(For1(M)) and For2(p∗(M)) = p+(For2(M)).

The rest of the proof carries over almost word for word from Proposition 3.5, using Lemma 3.6. �

4. GKZ systems and irregular Hodge modules

Let A = (aki) be a d×N integer matrix with columns (a1, . . . , aN ). We define

NA :=
N∑
i=1

Nai ⊂ Zd

and similarly for ZA and R≥0A. Throughout this section we assume

ZA = Zd and NA = Zd ∩R≥0A .

Set AN := Spec (C[w1, . . . , wN ]) and ÂN := Spec (C[λ1, . . . , λN ]) and

LA :=

{
` = (`1, . . . , `N ) ∈ ZN :

N∑
i=1

`iai

}
.

Definition 4.1. The GKZ-hypergeometric systemMβ
A is the cyclic D

ÂN
-module D

ÂN
/I, where I is

the left ideal generated by

Ek :=

N∑
i=1

akiλi∂λi − βk , for k = 1, . . . , d,

and
�` :=

∏
`i>0

∂`iλi −
∏
`i<0

∂−`iλi
, for l ∈ LA.

The GKZ-hypergeometric system Mβ
A is the Fourier-Laplace transform of the cyclic DAN -module

M̌β
A := DAN /J , where J is the left ideal generated by

Ěk :=

N∑
i=1

aki∂wiwi + βk , for k = 1, . . . , d,

and
�̌` :=

∏
`i>0

w`ii −
∏
`i<0

w−`ii , for l ∈ LA.
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The semigroup ring C[NA] ⊂ C[t±1 , . . . , t
±
d ] is naturally a C[w1, . . . , wN ]-module under the isomorphism

C[w1, . . . , wN ]/((�̌`)`∈LA) −→ C[NA]

wi 7−→ tai ,

where we are using the multi-index notation tai :=
∏d
k=1 t

aki
k . We set SA := C[NA]. Notice that the

rings C[w1, . . . , wN ] and SA carry a natural Zd-grading given by deg(wi) = ai. This is compatible with
the grading on the Weyl algebra DAN := Γ(AN ,DAN ) given by deg(wi) = ai and deg(∂wi) = −ai.

Definition 4.2. ([MMW05, Def. 5.2]) Let P be a finitely generated Zd-graded C[w1, . . . , wN ]-module.
An element α ∈ Zd is called a true degree of P if the graded part Pα is non-zero. A vector α ∈ Cd is
called a quasi-degree of P if α lies in the complex Zariski closure qdeg(P ) of the true degrees of P via
the natural embedding Zd ↪→ Cd.

Consider the set of strongly resonant parameters of A:

sRes(A) :=

N⋃
j=1

sResj(A),

where
sResj(A) := {β ∈ Cd | β ∈ −(N+ 1)aj + qdeg(SA/(t

aj ))}.
Consider as well the torus Gdm := Spec (C[t±1 , . . . , t

±
d ]), together with the torus embedding

h : Gdm −→ AN

(t1, . . . , td) 7→ (ta1 , . . . , taN ).

The following proposition is a slight generalization of the results of Schulze and Walther [SW09, Thm.
3.6, Cor. 3.8].

Proposition 4.3. ([RS15, Prop. 2.11]) Let A be a d × N integer matrix satisfying ZA = Zd and
NA = Zd ∩R≥0A. Assume that β 6∈ sRes(A). Then

H0
(
h+OβGdm

)
∼= M̌β

A,

where Oβ
Gdm

∼= DGdm/DGdm · (∂t1t1 + β1, . . . , ∂tdtd + βd)

For β ∈ Rd, the D-module Oβ
Gdm

underlies the complex mixed Hodge module pC
H,β
Gdm

. Hence for

β ∈ Rd \ sRes(A) the D-module M̌β
A underlies the complex mixed Hodge module H0h∗

pC
H,β
Gdm

. The

Hodge filtration on M̌β
A can be explicitly computed, provided that β belongs to a certain set AA of

so-called admissible parameters β. We recall its definition from [RS15, p. 11]: Let c := a1 + . . .+ aN
and define for all facets F of R≥0A the uniquely determined primitive, inward-pointing, normal vector
nF of F , such that 〈nF , F 〉 = 0 and 〈nF ,NA〉 ⊂ Z≥0. Set eF := 〈nF , c〉 ∈ Z>0. The set of admissible
parameters of A is then defined by

AA :=
⋂

F facet

{R · F − [0, 1/eF ) · c} .

Theorem 4.4. ([RS15, Thm. 3.16]) For β ∈ AA the Hodge filtration on M̌β
A is equal to the order

filtration shifted by N − d, i.e.

FHp+N−dM̌
β
A = F ord

p M̌
β
A .

Let us define the cyclic RA1×AN -module Ň β
A := RA1×AN /Jz, where Jz is the left ideal generated by

Ězk =

N∑
i=1

akiz∂wiwi + zβk , for k = 1, . . . , d,

and
�̌` =

∏
`i>0

w`ii −
∏
`i<0

w−`ii , for l ∈ LA.
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We will denote by M̌β
A := Γ(AN ,M̌β

A) and Ňβ
A := Γ(A1 ×AN , Ň β

A) the modules of global sections of

M̌β
A and Ň β

A , respectively.

We will also consider the Rees module of M̌β
A with respect to the order filtration F ord

• , which is given

by RF
ord
M̌β
A :=

∑
k≥0 z

kF ord
k M̌β

A. An easy computation shows RF
ord
M̌β
A = Ňβ

A, hence

(3) RF
H
M̌β
A = zN−dŇβ

A.

Definition 4.5. The R-GKZ-hypergeometric system N β
A is the cyclic Rint

A1×ÂN
-module Rint

A1×ÂN
/I,

where the left ideal I is generated by

Ez0 := z2∂z +

N∑
i=1

λiz∂λi ,

Ezk :=
N∑
i=1

akiλiz∂λi − zβk, for k = 1, . . . , d,

and
�z
` :=

∏
`i>0

(z∂λi)
`i −

∏
`i<0

(z∂λi)
−`i , for ` ∈ LA .

Remark 4.6. Note that, considering Ň β
A as an Rint

A1×ÂN
-module with the trivial action of z2∂z, N β

A is

its Fourier-Laplace transform as Rint
A1×ÂN

-modules, according to Remark 3.3.

Theorem 4.7. Let A be a d × N -matrix and β ∈ AA an admissible parameter. The R-GKZ-

hypergeometric system z−dN β
A underlies an algebraic, integrable, mixed twistor D-module TMβ

A.

Proof. By the Remark above, we know that N β
A = FL(Ň β

A), which in turn, thanks to the choice of β,

Theorem 4.4 and formula (3), is equal to FL(zd−NRFHM̌β
A). Since RFHM̌β

A is the Rees module of a

mixed Hodge module on AN , it gives rise to an algebraic, integrable mixed twistor D-module on AN ,

say TM̌β
A. Then we can apply Proposition 3.5 and get

N β
A = zd−N FL

(
For2

(
TM̌β

A

))
= zd For2

(
FLMTM

(
TM̌β

A

))
.

The result follows from writing TMβ
A := FLMTM

(
TM̌β

A

)
. �

Corollary 4.8. The analytification of TMβ
A gives rise to an irregular mixed Hodge module on AN

which has a natural extension to an Rint
A1×PN -module underlying an object of IrrMHM(PN ).

Proof. This follows from applying [Sab18, Cor. 0.5] to the operations performed to get TMβ
A. �

5. Application to confluent hypergeometric systems

In this section we are going to use the results achieved so far for the special case of the matrix

A =

(
1m 0m×(n−1) Idm

1n−1 − Idn−1 0(n−1)×m

)
.

For the sake of simplicity, we will write N = n+m in the following. Before going on, let us introduce
the main object of study of this section and state some of its basic properties, extending what we
mentioned in the introduction.

Definition 5.1. Let (n,m) 6= (0, 0) be a pair of nonnegative integers, and let α1, . . . , αn and β1, . . . , βm
be elements of C. The hypergeometric D-module of type (n,m) associated with the αi and the βj is
defined as the quotient of DGm by the left ideal generated by the so-called hypergeometric operator

n∏
i=1

(t∂t − αi)− t
m∏
j=1

(t∂t − βj).

We will denote it by H(αi;βj).
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Proposition 5.2. Let H := H(αi;βj) be a hypergeometric D-module of type (n,m), and let η be any
complex number. Then we have the following:

(1) If we denote the Kummer D-module DGm/(t∂t−η) by Kη, then H⊗OGm Kη ∼= H(αi+η;βj+η).
In particular, an overall integer shift of the parameters gives us an isomorphic D-module.

(2) H is irreducible if and only if for any pair (i, j) of indices, αi − βj is not an integer.
(3) If H is irreducible, its isomorphism class depends only on the classes modulo Z of the αi and

the βj, so we can choose such parameters on a fundamental domain of C/Z.

Proof. A simple calculation shows point 1. Point 2 follows from [Kat90, Prop. 2.11.9, 3.2], whereas
point 3 is part of [ibid., Prop. 3.2]. �

As we mentioned in the introduction, we can express any one-dimensional hypergeometric D-module
as the inverse image of a GKZ hypergeometric D-module (cf. [CDS17, Cor. 2.9]). Notice that there
is a similar statement at the level of R-modules (see [ibid., Lem. 2.12]), yielding a description of the

Rint
A1
z×Gm,t

-module Ĥ from Theorem 5.7 below as an inverse image of a GKZ-hypergeometric R-module

(as defined in [ibid., Def. 2.10]).

Proposition 5.3. Let H(αi;βj) be a hypergeometric DGm-module of type (n,m) with α1 = 0, let
A ∈ M((N − 1) × N,Z) as right above, and let γ = (β1, . . . , βm, α2, . . . , αn)t. Let ι : Gm → AN be
given by t 7→ (t, 1 . . . , 1). Then

H(αi;βj) ∼= ι+Mγ
A.

Since the restriction map ι is not smooth we do not know a priori whether taking inverse image by
it preserves irregular mixed Hodge modules. In order to show that H(αi;βj) can be upgraded to an
element of IrrMHM(Gm) we use Proposition 3.8, where the reduction procedure is build in by the use
of the Fourier kernel ψ = w1 · t+ w2 + . . .+ wN .
Let A ∈ M((N − 1)×N,Z) as above and γ = (γ1, . . . , γN−1)t ∈ AA. The DAN -module M̌γ

A underlies

a mixed Hodge module on AN , so that the Rees module RFH
(
M̌γ

A

)
then gives rise to an algebraic,

integrable mixed twistor D-module on AN that we denote by TM̌γ
A. Then we have the following

concrete description of its Fourier-Laplace transform FLψMTM

(TM̌γ
A

)
= q∗

(
p∗
(TM̌γ

A

)
⊗ T ψ/z

)
.

Proposition 5.4. Let A and γ be as before. Then the Rint
A1×Gm-module For2

(
FLψMTM

(TM̌γ
A

))
can be

expressed as Rint
A1×Gm/(P,H), where

P = z2∂z + (n−m)tz∂t + εz and H = zt∂t

n−1∏
i=1

z(t∂t − γm+i)− t
m∏
j=1

z(t∂t − γj),

with ε =
∑m

j=1 γj −
∑N−1

i=m+1 γi +N − 1.

Proof. As said after Theorem 4.4, for any γ inside the domain AA of admissible parameters, the Hodge
filtration of M̌γ

A is the order filtration shifted by N − (N − 1) = 1. Therefore, for such values of γ

we can give an explicit expression of the Rees module of the filtered module
(
M̌γ

A, F
H
•
)
. Namely, we

have the isomorphism of Rint
A1×AN -modules

RFH
(
M̌γ

A

) ∼= zŇ γ
A := Rint

A1×AN /
(
Ězi , Ě

z
j , �̌, z

2∂z − z
)
,

where

Ězi = z∂w1w1 − z∂wiwi + γm+i−1z, for i = 2, . . . , n,

Ězj = z∂w1w1 + z∂wn+jwn+j + γjz, for j = 1, . . . ,m,

�̌ =
n∏
i=1

wi −
m∏
j=1

wn+j .

First we compute FLψ(zŇ γ
A), which involves performing three operations with zŇ γ

A: inverse image

by p : Gm × AN → AN , tensor product with the Rint
A1×Gm×AN -module Aψ/zaff and direct image by
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q : Gm × AN → Gm. The first one is pretty easy. Namely

p+zŇ γ
A
∼= Rint

A1×Gm×AN /(Ě
z
i , Ě

z
j , �̌, z

2∂z − z, z∂t).

Let us tensor now p+zŇ γ
A with Aψ/zaff . This Rint-module can be presented as Rint

A1×Gm×AN · e
ψ/z =

Rint
A1×Gm×AN /I

ψ, where Iψ is the left ideal generated by

z2∂z + w1t+ w2 + . . .+ wN , z∂t − w1, z∂w1 − t, z∂wi − 1, i = 2, . . . , N.

For n ∈ p+zŇ γ
A, we will call nψ the tensor n⊗ eψ/z. Then we can obtain the formulas(

z∂w1w1n⊗ eψ/z
)

= z∂w1

(
w1n⊗ eψ/z

)
− t
(
n⊗ w1e

ψ/z
)

= (z∂w1w1 − tz∂t) · nψ,(
z∂wkwkn⊗ e

ψ/z
)

= z∂wk

(
wkn⊗ eψ/z

)
−
(
n⊗ wkeψ/z

)
= (z∂wkwk − wk) · n

ψ for k = 2, . . . , N,(
z2∂zn⊗ eψ/z

)
= z2∂z · nψ −

(
n⊗ (−ψ)eψ/z

)
=
(
z2∂z + w1t+ w2 + . . .+ wN

)
· nψ,(

z∂tn⊗ eψ/z
)

= z∂t · nψ −
(
n⊗ w1e

ψ/z
)

= (z∂t − w1) · nψ.

Hence p+zŇ γ
A⊗A

ψ/z
aff is the cyclic Rint

A1×Gm×An-module Rint
A1×Gm×An/J

ψ, with J ψ being the left ideal
generated by

n∏
i=1

wi −
m∏
j=1

wn+j , z2∂z − z + w1t+ w2 + . . .+ wN , z∂t − w1,

z∂w1w1 − tz∂t − z∂wiwi + wi + γm+i−1z, for i = 2, . . . , n,

z∂w1w1 − tz∂t + z∂wn+jwn+j − wn+j + γjz, for j = 1, . . . ,m .

We now consider the zeroth cohomology H0q+

(
p+zŇ γ

A ⊗A
ψ/z
aff

)
, which is in turn the N -th cohomol-

ogy of the de Rham complex q∗DRA1×Gm×AN/A1×Gm

(
p+zŇ γ

A ⊗A
ψ/z
aff

)
. This is given by the cyclic

Rint
A1×Gm-module Rint

A1×Gm/(P
′, H ′), where the operators P and H ′ are given by

P ′ := z2∂z + (n−m)tz∂t + ε′z, H ′ := zt∂t

n−1∏
i=1

(zt∂t − γm+iz)− (−1)mt
m∏
j=1

(zt∂t − γjz)

and ε′ :=
∑m

j=1 γj−
∑N−1

i=m+1 γi−1. Replacing t by (−1)mt we obtain that FLψ(zŇ γ
A) ∼= Rint

A1×Gm/(P
′, H),

with

H := zt∂t

n−1∏
i=1

(zt∂t − γm+iz)− t
m∏
j=1

(zt∂t − γjz).

Now it follows from Proposition 3.8 that

For2

(
FLψMTM

(TM̌γ
A

)) ∼= z−N FLψ(zŇ γ
A) ∼= Rint

A1×Gm/(P,H)

with

P = z2∂z + (n−m)tz∂t + εz and H = zt∂t

n−1∏
i=1

z(t∂t − γm+i)− t
m∏
j=1

z(t∂t − γj),

and ε =
∑m

j=1 γj −
∑N−1

i=m+1 γi +N − 1. �

Remark 5.5. As a matter of fact, we do not have to restrict ourselves to the region AA to find our
admissible parameters. If we have γ ∈ AA and add to it an integer vector k ∈ ZN−1 with no negative
entries, then γ + k /∈ sRes(A) by definition (cf. the proof of [RS15, Lemma 3.5]). Therefore, since

Oγ
Gdm

∼= Oγ+k
Gdm

for any integer vector k, we have M̌γ
A
∼= M̌γ+k

A by Proposition 4.3 and the statement of

the proposition holds true after changing AA by AA +NN−1.

We will also make use of the following result, which calculates the admissible domain AA for the matrix
A in our particular context.
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Lemma 5.6. Let A ∈ M((N−1)×N,Z) be the matrix defined at the beginning of the section. Consider
a point p = (p1, . . . , pm, q1, . . . , qn−1) ∈ [0, 1)N−1. Let us define

p− := min
(
({p1, . . . , pm} \ {0}) ∪ {1}

)
and p+ := max{p1, . . . , pm},

that is, the minimum of the pi that do not vanish (taking p− = 1 if all of them are zero) and the
maximum of them all.
Then, p belongs to (AA +NN−1) ⊂ RN−1 if and only if, for all i = 1, . . . , n− 1:

• qi ∈ [0, p−) if some pi vanishes, or
• qi ∈ [0, p−) ∪ [p+, 1), otherwise.

Proof. We will first find the expression for the admissible region AA. For this purpose, we must find
a set of hyperplanes containing the facets of the cone C := R≥0A ⊂ RN−1. Denote by {u1, . . . , uN−1}
the canonical basis of RN−1 and write x1, . . . , xN−1 for the corresponding coordinates.
Since any face of a cone is generated by a subset of its generators, and for our given matrix A, any
(N −1)× (N −1)-minor is non-zero (so that any subset of N −1 columns generates a full-dimensional
cone), we see that any facet can contain at most N − 2 columns. On the other hand, such facet must
be N − 2-dimensional, so it cannot be generated by fewer columns. Therefore, we can conclude that
it contains exactly N − 2 columns.
Any linear functional h defining a facet of C must satisfy that h(C) ≥ 0. Denote by Hk,l the hyperplane
not containing ak and a`. There are five classes of these hyperplanes: H1,i, H1,n+j , Hi1,i2 , Hi,n+j , Hn+j1,n+j2

with i, i1, i2 ∈ {2, . . . , n} and j, j1, j2 ∈ {1, . . . ,m}. The linear functionals defining them are, respec-
tively,

h1,i := xm+i−1,

h1,n+j := xj ,

hi1,i2 := xm+i1−1 − xm+i2−1,

hi,n+j := xj − xm+i−1,

hn+j1,n+j2 := xj1 − xj2 .

All of the linear forms h1,i, hi1,i2 and hn+j1,n+j2 (for the corresponding values of i, i1, i2, j1, j2) take
both negative and positive values on some columns of A, so the associated hyperplanes do not contain
any facet.
We conclude that each facet of C is contained in one of the following hyperplanes:

(4)
H1,n+j : xj = 0 for j = 1, . . . ,m,
Hi,n+j : xj − xm+i−1 = 0 for i = 2, . . . , n, j = 1, . . . ,m.

These hyperplanes are different one from each other and the respective functionals satisfy h1,n+j(C) ≥
0 and hi,n+j(C) ≥ 0. Hence each of them contains a different facet of the cone C.
The primitive, inward-pointing normal vectors of the hyperplanes H1,n+j resp. Hi,n+j are n1,n+j := uj
resp. ni,n+j := uj − um+i−1. Denote by c the sum of all columns of A. We have c = 2(u1 + . . .+ um)
and ek,l := 〈nk,l, c〉 = 2, where k and l take the admissible values corresponding to the hyperplanes
we consider in (4) (i.e., we have either (k, l) = (1, n + j) or (k, l) = (i, n + j) for i = 2, . . . , n and
j = 1, . . . ,m). Define

Ak,l := Hk,l − [0, 1/ek,l) · c = Hk,l − [0, 1) · (u1 + . . .+ um)

=

{
H1,n+j − [0, 1) · uj for j = 1, . . . ,m,

Hi,n+j − [0, 1) · uj for i = 2, . . . , n, j = 1, . . . ,m,

since for (k, l) = (1, n+ j) resp. (k, l) = (i, n+ j), the vectors u1, . . . , uj−1, uj+1, . . . , um are contained
in H1,n+j resp. Hi,n+j . Then we have

A1,n+j = H1,n+j − [0, 1) · uj =
{

(x1, . . . , xN−1) ∈ RN−1 | − 1 < xj ≤ 0
}

for all j = 1, . . . ,m and

Ai,n+j = Hi,n+j − [0, 1) · uj =
{

(x1, . . . , xN−1) ∈ RN−1 | − 1 < xj − xm+i−1 ≤ 0
}
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for all i = 2, . . . , n, j = 1, . . . ,m. According to the construction given before Theorem 4.4, we can
conclude that

AA =
⋂

F facet

{R · F − [0, 1/eF ) · c} =
⋂

k,l from eq.(4)

Ak,l,

so we can describe the admissible region AA as

AA :

{
−1 < xj ≤ 0 for j = 1, . . . ,m,

−1 < xj − xm+i−1 ≤ 0 for i = 2, . . . , n, j = 1, . . . ,m
⊂ RN−1.

Now let us pick a point p ∈ [0, 1)N−1 ∩ (AA +NN−1), and take k = (k1, . . . , kN−1) ∈ NN−1 such that
p ∈ [0, 1)N−1 ∩ (AA + k). The shifted domain is given by

AA + k :

{
−1 + kj < xj ≤ kj for j = 1, . . . ,m,

−1 + kj − km+i−1 < xj − xm+i−1 ≤ kj − km+i−1 for i = 2, . . . , n, j = 1, . . . ,m
⊂ RN−1.

Assume first there is a vanishing coordinate pj0 . Then we must have kj0 = 0. For such an index and
any i = 1, . . . , n− 1, we can consider the n− 1 inequalities

−1− km+i < −qi ≤ −km+i,

from where we deduce that every qi belongs to [km+i, km+i+1)∩ [0, 1), for i = 1, . . . , n−1. In order for
those intersections to be nonempty, we must have km+i+ 1 > 0 and km+i < 1, so necessarily km+i = 0
for all i (and hence qi must lie within [0, 1), which is no new information).
Now, for any nonvanishing pj , it is clear that kj = 1. Then, if we look at the remaining inequalities,
we see that

0 < pj − qi ≤ 1,

for every i = 1, . . . , n − 1, and any j ∈ {1, . . . ,m} such that pj 6= 0. Therefore, every qi belongs to
[0, 1) ∩

⋂
pj 6=0[pj − 1, pj) = [0, p−). Obviously, if pj = 0 for all j = 1, . . . ,m, we obtain that the qi

belong all to [0, 1) = [0, p−).
Assume now that no pj vanishes. Then k1 = . . . = km = 1. It follows that we can express the shifted
region AA + k as

AA + k :

{
0 < xj ≤ 1 for j = 1, . . . ,m,

−km+i−1 < xj − xm+i−1 ≤ 1− km+i−1 for i = 2, . . . , n, j = 1, . . . ,m
⊂ RN−1.

Then, for any j = 1, . . . ,m, we have qi ∈ [0, 1) ∩ [pj + km+i − 1, pj + km+i), for i = 1, . . . , n − 1. As
before, this implies that pj + km+i > 0 and pj + km+i − 1 < 1, for each j = 1, . . . ,m. Since each pj
lives in (0, 1), the km+i−1 can only be either 0 or 1.
Pick an i ∈ {1, . . . , n− 1} such that km+i = 0. Then, as before,

qi ∈
m⋂
j=1

[pj − 1, pj) ∩ [0, 1) = [0, p−).

If our index i is such that km+i = 1, then

qi ∈
m⋂
j=1

[pj , pj + 1) ∩ [0, 1) = [p+, 1),

and one direction of the statement is done.
To show the other implication of the lemma, suppose now that every qi lies within [0, p−)∪ [p+, 1) for
i = 1, . . . , n − 1, and no pj vanishes. We can rewrite this as a disjunction: either qi ∈

⋂m
j=1[0, pj) =

[0, 1) ∩
⋂m
j=1[pj − 1, pj) or qi ∈

⋂m
j=1[pj , 1) = [0, 1) ∩

⋂m
j=1[pj , pj + 1). If qi ∈ [0, p−), define km+i := 0.

Otherwise, we take km+i := 1. Summing up, it is clear that

p ∈
(
AA + (1, (m). . ., 1, km+1, . . . , kN−1)

)
∩ [0, 1)N−1.

If some pj vanishes, and every qi belongs to [0, p−), we can do the same as above to see that

p ∈ (AA + (k1, . . . , km, 0, . . . , 0)) ∩ [0, 1)N−1,
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where kj vanishes if so does pj and is equal to 1 if pj 6= 0. �

As a consequence of the above calculation of the set of admissible parameters, let us prove a result
extending [CDS17, Theorem 3.24].

Theorem 5.7. Let α1, . . . , αn and β1, . . . , βm be real numbers, lying on the interval [0,1) and increas-
ingly ordered. Assume moreover that:

• No difference αi − βj is zero, for any i = 1, . . . , n and j = 1, . . . ,m.
• After applying the bijection [0, 1)→ S1 given by x 7→ e2πix, all the images of the αi are at one

arc of the unit circle, while those of the βj find themselves at the complementary arc. (In other
words and going back to the interval [0, 1), either no αi belongs to any interval (βj , βj+1) or
viceversa.)

Consider the operators P and H given by

P = z2∂z + (n−m)tz∂t + εz and H =
n∏
i=1

z(t∂t − αi)− t
m∏
j=1

z(t∂t − βj),

with ε =
∑m

j=1 βj −
∑n

i=1 αi +N − 1. Let Ĥ(αi;βj) be the Rint
A1
z×Gm

-module

Ĥ(αi;βj) := OA1
z×Gm〈z

2∂z, zt∂t〉/(P,H).

Then, Ĥ(αi;βj) underlies a unique object of IrrMHM(Gm) with associated DGm-module H(αi;βj). It
can be uniquely extended to an irreducible Rint

A1
z×P1-module underlying an object of IrrMHM

(
P1
)
.

Proof. Let us assume first that α1 = 0. Then, by the first assumption on the αi and the βj , we have
βj 6= 0 for every j. By the second assumption we can deduce that no αi is between any two βj , but all of
the βj must be between two certain αi. Thanks to Lemma 5.6, this means that (β1, . . . , βm, α2, . . . , αn)
belongs to AA +NN−1, where A is the matrix of the beginning of the section. As a consequence, by
Proposition 5.4 and Remark 5.5 we have that

For2

(
FLψMTM

(TM̌γ
A

)) ∼= Ĥ(αi;βj)

(recall that TM̌γ
A is the algebraic integrable mixed twistor D-module with underlying Rint

AN -module

RFHM̌γ
A, i.e. such that For2

(
M̌γ

A

)
= RFHM̌γ

A). We have moreover that TM̌γ
A ∈ IrrMHM(AN ) and

thanks to [Sab18, Cor. 0.5], we know that the functors entering in the definition of FLψMTM preserve

the category of irregular mixed Hodge modules, so we conclude that Ĥ(αi;βj) underlies an element
of IrrMHM(Gm).

Assume now that α1 > 0. For any real number η, denote by K̂η the Kummer RA1×Gm-module

Rint
A1×Gm/(z

2∂z, tz∂t − zη).

The tensor product of Rint
A1×Gm-modules Ĥ(αi;βj)⊗OA1×Gm

K̂−α1 gives rise to the corresponding tensor

product of twistor D-modules on Gm. This product can be presented as Ĥ(α′i;β
′
j), where α′i = αi−α1

for every i and β′j = βj−α1 for every j. The assumptions on the parameters imply that α′1 = 0 and the

vector (β′1, . . . , β
′
m, α

′
2, . . . , α

′
n) lives in AA+NN−1. Then, arguing as before, such tensor product is an

irregular mixed Hodge module of exponential-Hodge origin. Since K̂α1 is the faithful image of a mixed
Hodge module on Gm, the tensor product with it preserves the condition of being in IrrMHM(Gm)
due to [Sab18, Cor. 0.5], and so is the case of our original Rint

A1
z×Gm

-module

Ĥ(αi;βj) ∼= Ĥ(α′i;β
′
j)⊗OA1×Gm

K̂α1 .

This ends the statement on the existence. Let us prove now the claims on the unicity, as in [CDS17,
Thm. 2.13], noting that the condition on the differences αi − βj is equivalent to H being irreducible,
and thus rigid (cf. [ibid., Prop. 2.5], noting that all the parameters belong to [0, 1)).

Consider now any twistor D-module Ĥ′ on Gm,t whose underlying DGm,t-module is H. Since the
functor ΞDR is faithful by [Moc15a, Rem. 7.2.9], we have an injection of Hom groups

HomMTM(Gm,t)(Ĥ, Ĥ
′) ↪→ HomDGm,t (H,H).
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But H is irreducible, so its only endomorphism is the identity and then the twistor D-module under-
lying H is unique.
On the other hand, let j : Gm,t ↪→ P1 be the canonical inclusion and consider the DP1-module
Hpr := j†+H. It is an irreducible holonomic DP1-module, because so is H by the assumption on the αi
and the βj . Then it gives rise to a unique pure integrable twistor D-module Ĥpr on P1 by [Moc11, Thm.
1.4.4] and [Sab18, Rem. 1.40]. In addition, its underlying DP1-module Hpr is rigid, as H was. As a
consequence, we can invoke [ibid., Thm. 0.7] and claim that such twistor D-module on P1 is in fact

an object of IrrMHM(P1). Take now Ĥ′ := j+Ĥpr, which is an irregular mixed Hodge module whose
underlying DGm,t-module is H, by [Moc15a, Prop. 14.1.24]. Then we must have, as was just shown,

Ĥ′ ∼= Ĥ, so that the extension Ĥpr of Ĥ is unique, and we are done. �

Remark 5.8. Let us consider the last theorem for the case m = n, that is, the case of regular hyper-

geometric systems. Consider Ĥ as a RA1
z×Gm-module only, as such it is isomorphic to RA1

z×Gm/(H),

where now H =
∏m
i=1 z(t∂t − αi)− t

∏m
j=1 z(t∂t − βj). RA1

z×Gm is graded by degree in z (where z has

degree 1), and since H is homogenous (which is not the case if n 6= m), we see that Ĥ is a graded
RA1

z×Gm-module. It is obviously strict, i.e. it has no z-torsion, and then by [SS18, A.2.5(5)], we see

that Ĥ is the Rees module of a filtered DGm-module, namely, the (regular) hypergeometric module
H(αi;βj) together with the filtration by order of differential operators. Notice also that if n = m,

we have P = z2∂z + εz, which implies that Ĥ has an action by z∂z and that if we write Ĥ = ⊕kĤk
(grading with respect to z), then for any m ∈ Ĥk, we have (z∂z)(m) = (k − ε)m.
Now suppose that we have n = m and that additionally the hypotheses of the last theorem are

satisfied, then since Ĥ(αi;βj) is the unique object in IrrMHM(Gm) (lying actually in the essential
image of MHM(Gm)) with underlying DGm-module H(αi;βj), it is the Rees module of the filtered
module (H(αi;βj), F

H
• ), where FH• denotes the Hodge filtration of the complex variation of Hodge

structures on H(αi;βj). Hence FH• H(αi;βj) = F ord• H(αi;βj) in this case. Moreover, if we put

Rk :=
k∏
i=1

(t∂t − αi)

for k = 0, . . . , n − 1 (where R0 := 1), then (Rk)k=0,...,n−1 is an OGm-basis of H(αi, βj) and yields a

splitting of the Hodge filtration FH• . In particular, we obtain that the Hodge numbers hp(H(αi;βj)) =
dim

(
FHk /F

H
k−1

)
are all equal to one. This is consistent with [Fed17, Thm. 1] (up to an overall shift,

as noticed in that theorem) in the version of [CDS17, Proposition 2.6], since under the assumption of
Theorem 5.7, the function #{j : βj < αk} is constant.

We will finish this section with a calculation of an irregular Hodge filtration, similar to the last
section of [CDS17]. In that reference, the authors computed such a filtration in the case where the
hypergeometric D-module had a purely irregular singularity at infinity, that is, it was of type (n, 0).
It is immediate to see that for modules of type (n, 1), the second assumption of Theorem 5.7 holds
true, so that we obtain an explicit description of the Rint

A1
z×Gm

-module underlying the irregular Hodge

module with associated DGm-module H(α1, . . . , αn;β). In the sequel, we are going to compute the
irregular Hodge filtration of such modules of type (n, 1).
Let us recall the conventions and notations used in [CDS17, § 4] (cf. [Sab18, Not. 2.1]). We will deal
with the classical hypergeometric D-module H = H(αi;β), where the αi and β are n+ 1 real numbers

belonging to the interval [0, 1). We will denote by Ĥ both its associated algebraic, integrable twistor
D-module on Gm and its underlying Rint

A1
z×Gm

-module (as in the statement of Theorem 5.7). From now

on, we will write X , θX and τX meaning the products A1
z ×Gm,t, X ×Gm,θ, and X ×A1

τ , respectively,
where θ = 1/τ . Finally, we will write τX0 = X × {τ = 0} ⊂ τX .

Theorem 5.9. Let real numbers α1, . . . , αn, β ∈ [0, 1) be given. Suppose that α1 ≤ . . . ≤ αn and that
moreover αi − β /∈ Z for all i = 1, . . . , n. For each k = 1, . . . , n, set ρ(k) = −(n − 1)αk + k. Then
the jumping numbers of the irregular Hodge filtration of H = H(αi;β) are, up to an overall real shift,
the numbers ρ(k). The irregular Hodge numbers are the multiplicities of those jumping numbers, or
equivalently, the nonzero values of |ρ−1(x)|, for x real.
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Moreover, let να(k) = d−α+k− ε− (n− 1)αk+1e (recall from Theorem 5.7 that ε = β−
∑n

i=1 αi+n).
Let us consider the operators

Q̄k = (−(n− 1))k
k∏
i=1

(t∂t − αi)

for k = 0, . . . , n− 2 (where the empty product equals one) and

Q̄n−1 = (−(n− 1))n−1
n−1∏
i=1

(t∂t − αi) +
(−(n− 1))n−1t(β − α1)

1 + α1 − αn
Q̄0.

Then, the irregular Hodge filtration F irr
• H is given by

F irr
α+jH =

⊕
k:j≥να(k)

OXQ̄k.

Remark 5.10. In general, the procedure given below can be of use to find an explicit expression for the
irregular Hodge filtration, not only the numbers, of any hypergeometric of type (n,m), provided both
assumptions from Theorem 5.7 are fulfilled. However, the calculations become soon too cumbersome
to be included here.

Proof. We will mimic the arguments of [CDS17, § 4], providing almost no proof of the claims which
are similar to some therein.
We must first consider the rescaling of Ĥ: this is the inverse image θĤ := µ∗H (as OθX -module),
endowed with a natural action of Rint

θX as depicted in [Sab18, 2.4] (note that θ = τ−1), where µ is the
morphism given in [ibid., Not. 2.1] by

µ : θX → X
(z, t, θ) 7→ (zθ, t).

In this sense, we can apply the same argument of [CDS17, Prop. 4.1] to get that the Rint
θX -module

θĤ associated with Ĥ can be presented as Rint
θX /(P,

θR, θH), where P = z2∂z + (n−m)tz∂t + εz as in

Theorem 5.7, θR = z2∂z − zθ∂θ and

θH =

n∏
i=1

zθ(t∂t − αi)− tzθ(t∂t − β).

Now we have to invert θ to obtain an Rint
τX (∗τX0)-module τĤ, to work in the setting given by [Sab18,

§2.3]. In this sense, we will denote by τĤ the Rint
τX (∗τX0)-module (idX ×(j ◦ inv))∗

θĤ, where inv :
Gm,θ → Gm,τ is the inversion operator θ 7→ τ−1 and j : Gm,τ ↪→ A1

τ is the canonical inclusion. Then

it is easy to see that τĤ = Rint
τX (∗τX0)/(P, τR, τH), with P as always, τR = z2∂z + zτ∂τ and

τH =

n∏
i=1

z

τ
(t∂t − αi)− t

z

τ
(t∂t − β).

The next step is forming the basis of τĤ as a OτX (∗τX0)-module. Let it be given by

Qk = (−(n− 1))k
k∏
i=1

z

τ
(t∂t − αi)

for i = 0, . . . , n− 2 and

Qn−1 = (−(n− 1))n−1
n−1∏
i=1

z

τ
(t∂t − αi) +

(−(n− 1))n−1t(β − α1)

1 + α1 − αn
Q0.

It is indeed a basis: we can use the expressions of τR and P to replace the classes of zτ∂τ and z2∂z,

respectively, in terms of zt∂t. Now τĤ is generated as a OτX (∗τX0)-module by the powers of zt∂t, and
we can get rid of those of exponent greater than n − 1 using τH. The remaining n powers can be
expressed as a linear combination of the Qi, forming a triangular matrix (almost diagonal in fact), so
the latter conform a basis as well.
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One could wonder about the odd expression of the Qi. In the case with no betas of [CDS17], the basis

considered there was formed just by the successive products
∏k
i=1

z
τ (t∂t − αi), up to some constant.

In this case, such a basis does not provide a connection matrix solving the Birkhoff problem with a
diagonal matrix as a coefficient of the pole at infinity in z, which would give us a way to read the
spectrum from that matrix (cf. [GMS09, Prop. 4.8]). As a consequence, we have to adapt such initial
basis, and that is how we get the Qi. Let us write the connection matrix explicitly.
Let c = (β − α1)/(1 + α1 + αn), in such a way that

Qn−1 = (−(n− 1))n−1
n−1∏
i=1

z

τ
(t∂t − αi) + (−(n− 1))n−1ctQ0.

A similar (but longer) calculation to the proof of [CDS17, Lem. 4.3] shows that the integrable con-

nection arising from the Rint
τX (∗τX0)-module structure associated with τĤ has the following matrix

form:

∇Q = Q

(
(τA0 + zA∞)

dz

z2
+
(
−τA0 + zA′∞

) dt

(n− 1)zt
− (τA0 + zA∞)

dτ

zτ

)
.

There, if n > 2, A0, A′∞ and A∞ are the matrices

(5)
A0 =


0 · · · −(−(n− 1))n−1ct 0

1
. . . (−(n− 1))n−1(c+ 1)t
. . . 0

...
1 0

 ,

A′∞ = diag((n− 1)α1, . . . , (n− 1)αn) and A∞ = diag(0, 1, . . . , n− 1)− εIn −A′∞.
If n = 2, we have

(6) A0 =

(
ct c(c+ 1)t2

1 (c+ 1)t

)
, A′∞ =

(
α1 0
0 α2

)
and A∞ = diag(0, 1)− εI2 −A′∞.

Finally, the irregular Hodge filtration is obtained from a suitable V -filtration along the divisor τ = 0

defined on τĤ, which is called τV -filtration (the new symbol τV is to make clear the variety over which
we are working; note the same convention in [Sab18], from Remark 2.20 on). We are actually to define

a filtration on τĤ, and then prove that it equals the τV -filtration, following [Moc15a, §2.1.2].
Let us consider then

τUα
τĤ :=

{
n−1∑
k=0

fkτ
νkQk : fk ∈ OτX , max(k − (n− 1)αk+1 − ε− νk) ≤ α

}
,

τU<α
τĤ :=

{
n−1∑
k=0

fkτ
νkQk : fk ∈ OτX , max(k − (n− 1)αk+1 − ε− νk) < α

}
,

(7)

for any α ∈ R.

The τUα
τĤ form an increasing filtration, indexed by the real numbers but with a discrete set of jumping

numbers, such that τ τUα
τĤ = τUα−1

τĤ for any α (those are conditions i and ii’ in [Moc15a, § 2.1.2]).

As usual, the graded piece associated with α is Gr
τU
α

τĤ = τUα
τĤ/τU<ατĤ.

In (7), all the exponents νk of the powers of τ accompanying the fkQk satisfy that νk ≥ −α +
k − (n − 1)αk+1 − ε. Then we can define the steps of the filtration in the same alternative way as
in [CDS17, Rem. 4.5] as the free OτX -modules of finite rank

(8) τUα
τĤ =

n−1⊕
k=0

OτX · τνα(k)Qk,

where να(k) = d−α + k − ε − (n − 1)αk+1e. With that expression, it is clear that the graded pieces

Gr
τU
α
τĤ are

Gr
τU
α
τĤ =

n−1⊕
k=0

OX · τνα(k)Qk,
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which are strict RX -modules (condition iv in [Moc15a, § 2.1.2]).

The next step in the proof is proving that τĤ is strictly R-specializable along τX0 and its τV -filtration

is actually given by the τUα
τĤ. Although the proof is similar to that of [CDS17, Prop. 4.6], we have

to adapt it a bit to our case here.
After what we already showed, it remains to show conditions iii’ and v of [Moc15a, § 2.1.2] and prove

that the τUα
τĤ are coherent V0RX -modules. Let us start by the second condition. Consider then the

mappings p, e given by

(p, e) : R× C −→ R× C
(β, ω) 7−→ (β + 2<(zω̄),−βz + ω − ω̄z2)

.

We must check that the operator zτ∂τ − e(β, ω) is nilpotent on the graded pieces Gr
τU
α

τĤ only for
a finite amount of (β, ω) ∈ K := {β + 2<(z0ω̄) = α}, for any value z0 of z. Moreover, those (β, ω)
should belong in fact to R× {0} (cf. [Sab18, §1.3.a]), if we want to obtain the R-specializability.

Take then (β, ω) ∈ K and fτνQk ∈ τUα
τĤ, with f ∈ OτX . We must have that k−(n−1)αk+1−ε−ν ≤ α.

Assume that n > 2 and k < n− 2. Thanks to the matrix form (5) we know that

(zτ∂τ − e(β, ω))fτνQk =
(
zτ∂τ + (ν + (n− 1)αk+1 + ε− k + β)z − ω + ω̄z2

)
(f)τνQk − fτν+1Qk+1.

Recall that the αi are increasingly ordered, lying within the interval [0, 1). Thus fτν+1Qk+1 lives in
τUα

τĤ, for

k + 1− (n− 1)αk+2 − ε− ν − 1 ≤ ((k + 1)− (n− 1)αk+2 − ε)− (k − nαk+1 − ε))− 1 + α ≤ α.

Now we should look at what happens to the class of fτν+1Qk+1 in the α-graded piece of τĤ.
Note that [fτνQk] 6= 0 if and only if ν + (n− 1)αk+1 + ε− k + α = 0, so

(zτ∂τ − e(β, ω))fτνQk =
(
zτ∂τ + (β − α)z − ω + ω̄z2

)
(f)τνQk − fτν+1Qk+1 =

=
(
zτ∂τ − 2<(z0ω̄)z − ω + ω̄z2

)
(f)τνQk − fτν+1Qk+1.

Now notice that τ divides τ∂τ (f), so in fact zτ∂τ (f)τνQk ∈ τUα−1
τĤ and then we can further reduce

our expression to

(zτ∂τ − e(β, ω))fτνQk = (−ω − 2<(z0ω̄)z + ω̄z2)fτνQk − fτν+1Qk+1.

On the other hand, τν+1Qk+1 does not vanish either in Gr
τU
α

τĤ if and only if αk+2 = αk+1. Indeed, we
know that ν+(n−1)αk+1 +ε−k+α = 0, so doing the same as before, k+1−(n−1)αk+2−ε−ν−1 =
α+ (n− 1)(αk+2 − αk+1) and the claim follows. Furthermore, in order to (zτ∂τ − e(β, ω)) to vanish,
we should impose that ω = 0, just by looking at the coefficients of the powers of z in the expression
for f .
If k = n− 2, we obtain from 5 that

(zτ∂τ − e(β, ω))fτνQn−2 =
(
zτ∂τ + (ν + (n− 1)αn−1 + ε− (n− 2) + β)z − ω + ω̄z2

)
(f)τνQn−2

− fτν+1Qn−1 + fτν+1(−(n− 1))n−1ctQ0.

Since −(n − 1)α1 − ε − ν − 1 ≤ −(n − 1)(α1 − αn−1 + 1) + α < α because αn−1 < α1 + 1, the last

summand above belongs to τU<α
τĤ, and then the argument can follow as with k < n− 2.

Now if k = n − 1, then everything would be the same again as before except we get the additional
summand −τν+1Qk+1, which becomes −fτν+1(−(n − 1))n−1(c + 1)tQ1, whose class vanishes in the
graded piece under consideration, too. Indeed,

1− (n− 1)α2 − ε− ν − 1 ≤ −(n− 1)(α2 − αn + 1) + α < α,

for αn < α2 + 1.
In conclusion, (zτ∂τ − e(β, ω))lfτνQk can only vanish in Gr

τU
α

τĤ if α = β (and then ω = 0), and does
not do so until we get to an index k+ l such that αk+l is strictly bigger than αk. Since there is a finite
set of indexes, (zτ∂τ − e(β, ω)) is nilpotent, of nilpotency index n at most.
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When n = 2, we notice from (6) that we have two possibilities. If k = 0, everything is the same as
with k = n− 2 for n > 2, and if k = 1,

(zτ∂τ − e(β, ω))fτνQ1 =
(
zτ∂τ + (ν + α2 + ε− 1 + β)z − ω + ω̄z2

)
(f)τνQ1

+ fτν+1(c+ 1)tQ1 + fτν+1c(c+ 1)t2Q0.

Here the argument runs similarly as in the general case.

Condition iii’ can be rephrased as zτ∂τ
τUα

τĤ ⊆ τUα
τĤ, using that τUα

τĤ = τ τUα+1
τĤ, and that

follows essentially from the same argument used to prove condition v above. Last, since V0RX =
OτX 〈z∂t, zτ∂τ 〉, it is clear from the computations above and the alternative expression (8) for the
filtration steps that they are cyclic V0RX -modules, and then coherent. Summing up and noting that

all the calculations performed were in fact independent of z0, τĤ is strictly R-specializable along τX0

and the τU•
τĤ form its τV -filtration.

We can finally show the expression for the irregular Hodge filtration and then the irregular Hodge

numbers like in [CDS17, Thm. 4.7]. Since we know that Ĥ underlies an object in IrrMHM(Gm,t) by

Theorem 5.7, we deduce by [Sab18, Def. 2.52] that Ĥ is well-rescalable (cf. [ibid., Def. 2.19]) and so
we can apply [ibid., Def. 2.22]. After formula (8), we clearly have

i∗τ=z
τVα

τĤ = τVα
τĤ/(τ − z)τVατĤ =

⊕
k

OX zνα(k)Q̄k,

which is free z-graded of finite rank. Denote by π the projection X → Gm,t. Then, the z-adic filtration

on π∗H[z−1] induces a filtration on i∗τ=z
τVα

τĤ, given by

Fri
∗
τ=z

τVα
τĤ :=

⊕
s≤r

 ⊕
k : να(k)≤s

OGm,tQ̄k

 zs.

Then, GrF
(
i∗τ=z

τUα
τĤ
)

is the Rees module associated to a new good filtration F irr
α+•H on H, for some

k = 0, . . . , n− 1, which is the irregular Hodge filtration. More concretely, F irr
• H is given by

F irr
α+jH =

⊕
k : να(k)≤j

OGm,tQ̄k.

Therefore, its jumping numbers are −ε+ j − 1− (n− 1)αj for j = 1, . . . , n. Since the irregular Hodge
filtration is defined up to an overall real shift, we can normalize the jumping numbers to j− (n− 1)αj
and the irregular Hodge numbers will be their multiplicities. �
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