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Abstract

We review a version of the mirror correspondence for smooth toric varieties with a numerically
effective anticanonical bundle. We give a precise description of the so-called B-model, which involves
the Gauß-Manin system of a family of Laurent polynomials. We show how to derive from these data
a variation of non-commutative Hodge structures and describe general results on period maps and
classifying spaces for these generalized Hodge structures. Finally, we explain a version of mirror
symmetry as an isomorphism of Frobenius manifolds.

Contents

1 Introduction 1

2 Quantum cohomology of smooth projective varieties 3

3 Givental’s approach: quantum D-module and J-function 7

4 Landau-Ginzburg models of toric Fano varieties 9

5 Gauß-Manin systems and hypergeometric differential equations 13

6 Non-commutative Hodge structures 16

7 Mirror symmetry statements 19

1 Introduction

The aim of this survey is to describe how classical constructions from singularity theory enter into mirror
symmetry. The latter subject evolves from string theory, but has become over the last 20 years one of
the main branches of research in pure mathematics, connecting various areas like algebraic, symplectic
and differential geometry, integrable systems, linear differential equations, homological algebra and so
on. Due to the complexity of the subject, we will limit this survey to a particular aspect of the mirror
symmetry picture, in which linear differential equations with complex coefficients (also called D-modules)
play a central role.
Let us start this introduction with a well-known motivating example which does not come from physics,
but which is a very classical problem in enumerative algebraic geometry. Enumerative geometry is
concerned with the question of counting geometric objects of a certain type that satisfy some extra
conditions. Here we will be interested in the number of curves in the plane passing through some
prescribed set of points. To be more precise, we will look at algebraic curves, that is, vanishing loci
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of a single polynomial in two variables, second, we will work over the complex numbers, that is, we
take polynomials with complex coefficients to be sure that our vanishing loci are really 1-dimensional
as topological spaces (we do not want things like {(x, y) ∈ R2 |x2 + y2 + 1 = 0} = ∅), and last we
will actually look at projective curves, that is, we consider the zero locus in the projective plane P2

of a homogenous polynomial in three variables. This is the usual approach in algebraic geometry that
excludes pathological facts like parallel lines with no intersections. The degree of such a polynomial,
henceforth called the degree of the curve, will be a fixed positive integer denoted by d. The problem
will consists in determine the number of such curves passing through some fixed points. It is easy to
see that we need 3d − 1 points in general position to have a chance that the number of curves through
these points is finite. For small values of d these numbers are known via classical methods of algebraic
geometry:

• d = 1 and d = 2: The number of lines through two points as well as the number of quadrics through
5 general points is known to be one since antiquity.

• The number of cubics (curves of degree three) through 8 general points is 12 (Steiner, 1848).

• For d = 4, Zeuthen (1873) computed the number of quartics through 11 points in general position
to be 620.

However, for higher d there is no general method to calculate theses number. It came as a surprise when
Kontsevich produced a formula that allows one to do this calculation for all d. He used in an essential
way ideas from string theory. The precise result is as follows.

Theorem (Kontsevich, 1994). Denote by Nd the number of rational curves of degree d passing through
3d− 1 points in P2 which lie in general position. Then the following recursive formula holds.

Nd =
∑

d1+d2=d; d1,d2≥1

d2
1d

2
2

(
3d− 4
3d1 − 2

)
Nd1Nd2 −

∑
d1+d2=d; d1,d2≥1

d3
1d2

(
3d− 4
3d1 − 1

)
Nd1Nd2

The meaning of this theorem is that we only need to know the first two numbers Nd and then we can
calculate all others recursively by the computer. Without giving the details of the proof, let us just
outline the strategy: First one re-interprets the numbers Nd as a so-called Gromov-Witten invariant
(precise definitions and properties are below in section 2). These give rise to the quantum product on
the cohomology space of P2. One of the main properties of the latter is its associativity, and Kontsevich’s
proof consists in deriving the above recursive formula from that property.
There is a similar problem in enumerative geometry where classical methods fail to produces results
beyond the easiest cases. Namely, it concerns the number of curves of fixed degree on special three-
dimensional complex manifold, called Calabi-Yau. Let us give here for future use the precise definition
of these and some related varieties.

Definition 1.1. Let X be a smooth and projective algebraic variety over the complex numbers. Let n be
the dimension of X. Denote by KX its canonical bundle, by definition, KX :=

∧n Ω1
X is the top exterior

power of the cotangent bundle, hence, as the latter is of rank n, a line bundle. Then we call X

1. Calabi-Yau iff KX
∼= OX , that is, if it is the trivial line bundle.

2. Fano iff −KX is ample, that is, if there in an embedding i : X ↪→ PN such that for some n ∈ N
we have K⊗nX = i∗OPN (−1).

3. numerically effective (nef) or sometimes also weak Fano if the intersection of −KX with any curve
is non-negative (recall that to the line bundle −KX we can associate a divisor which have a well
defined intersection product with curves).

Notice that both Calabi-Yau varieties and Fano varieties are nef.

The most prominent example of a Calabi-Yau threefold is a hypersurface of degree five in P4 (that
this satisfies the Calabi-Yau condition is an immediate consequence of the adjunction formula). For
those, [CdlOGP92] gave a formula predicting of the number of curves of fixed degree. This formula is
not achieved by direct computation of Gromov-Witten invariants or by using formal properties of the
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quantum product. Rather, a basic principles of mirror symmetry comes into play: one is given a pair of
Calabi-Yau manifolds (or a family thereof), and the quantum cohomology of one of these varieties (called
A-model) can be obtained from much more classical invariants (like period integrals) of the other (family
of) Calabi-Yau manifold(s), called B-model. To be more precise, the so-called quantum D-module (see
section 3 below) of the given Calabi-Yau manifold can be reconstructed as a classical variation of Hodge
structures of the mirror family. Let us notice however that in contrast to the case of curves in P2

discussed above, the enumerative meaning of the Gromov-Witten invariants of the quintic is less clear:
The corresponding numbers should be seen as the “virtual number” of curves of fixed degree on X.
However, for some degrees they actually coincide with the true numbers, and even this limited result
gives interesting enumerative information that was not available by classical algebraic geometry.
It soon turned out that this picture can be extended to Fano and nef varieties. One striking difference
to the Calabi-Yau case is that the mirror is no longer a family of compact varieties, but rather an affine
morphism, e.g. a family of Laurent polynomials. These are called Landau-Ginzburg models. One aspect
that is central to this survey is to explain which kind of Hodge-like structures survive in this more general
correspondence. The objects which generalize usual Hodge structures in the correct way that is needed
for these more general mirror correspondences are nowadays called non-commutative Hodge structures.
This name stems from a (conjectural) relation to the so-called homological mirror symmetry, which very
roughly speaking expresses the above mentioned correspondence between A- and B-model through an
equivalence of certain categories. However, we are not going to touch upon any aspects of homological
mirror symmetry in this survey. Rather, we emphasize the fact that non-commutative Hodge structures,
in contrast to classical ones, are certain systems of linear differential equations. For that reason, one may
try to express the mirror correspondence by identifying such differential systems on both sides. This is
possible at least in the case where the variety on the A-side is toric, then the rather well understood
theory of hypergeometric differential equations comes into play.
The structure of this article is as follows: We recall the very basics of quantum cohomology in section
2, where we restrict to the easiest case of genus zero invariants for convex manifolds. This is not quite
sufficient for all examples that we are interested in but avoids technical difficulties. Next (section 3) we
describe the so-called quantum D-module which defines the differential system on the A-side. We proceed
in section 4 by a detailed description of the mirror of a toric Fano resp. numerically effective variety, and
show how to define and calculate its associated Gauß-Manin-system. The latter will ultimately be the
mirror partner for the quantum D-module, this correspondence is worked out in section 7. The section
6 gives definition and some important results on non-commutative Hodge structures and describe how
they appear in mirror symmetry.

2 Quantum cohomology of smooth projective varieties

We recall in this section the definition of the quantum cohomology ring of a smooth projective variety.
As there are many excellent sources available (e.g. [FP97, Gue08, KV07]), we mainly fix the notation for
the later sections. Throughout the first two sections, we will denote by X a smooth projective variety
having only even-dimensional cohomology classes.
Before giving precise definitions, let us point out the main idea of the construction of Gromov-Witten
invariants and of the quantum product. Suppose that we are interested in an enumerative problem
associated to X like those mentioned in the introduction, that is, counting the number of curves on X of
a certain degree satisfying some incidence conditions, e.g., passing through some subspaces of X. These
subspaces define homology classes on X, and as X is compact, they correspond via Poincaré duality to
some cohomology classes. Now the idea is to construct a moduli space of all maps from P1 to X of a
certain degree (this is the degree of the curves to be considered). Our P1 will also be equipped with some
points, called markings, which are allowed to vary in the moduli space. The markings define maps from
the moduli space to X (one for each marking) and our enumerative invariants will be obtained by pulling
back the aforementioned cohomology classes to the moduli space and then integrating them against the
fundamental class of the moduli space. It can be shown that in favorite situations, this construction
(with some technical modifications, e.g., in order to obtain compact moduli spaces we need to consider
also maps from certain singular curves) can be carried out and the invariants thus defined indeed have
the enumerative meaning that we are looking for. Let us notice however that the general construction is
very involved, in particular, the ordinary fundamental class of the moduli space may not be the right one
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(because the moduli space may have the “wrong” dimension, i.e., its dimension is higher than the so-
called “expected one”). In order to circumvent this problem, one needs to construct a virtual fundamental
class, and this uses rather advanced techniques like stacks, obstruction theories etc. However, as already
mentioned above, we will concentrate on the simple case of genus zero Gromov-Witten invariants of
convex varieties (see below), where these sophisticated techniques are unnecessary.
We now start with a precise description of the moduli spaces involved. First we need to describe what
kind of curves on X we are looking at.

Definition 2.1 (stable map). Let C be a reduced projective curve of genus zero with at most nodal
singularities, i.e., singular points that are locally given by an equation x·y = 0. Suppose that x1, . . . , xn ∈
C are distinct smooth points. Let β ∈ H2(X,Z)/Tors. A stable map f : C → X is a projective morphism
such that f∗([C]) = β and such that each smooth component of C that is contracted by f to a point in X
has at least three marked points.

Theorem 2.2. Let X be convex, i.e., for all maps f : P1 → X, we have that H1(P1, f∗(TX)) = 0,
and β ∈ H2(X,Z)/Tors. Then there exists a coarse moduli space M(0,n)(X,β) of stable maps which
is a projective variety of dimension n + dim(X) +

∫
β
c1(X) − 3 with at most orbifold singularities. In

particular, it carries a well-defined fundamental cycle [M(0,n)(X,β)] of degree equal to the dimension of
M(0,n)(X,β).

For the definitions and basic results below, we will for simplicity of the exposition always suppose that
X is convex. Notice however that not all examples that are going to occur later satisfy this assumption,
e.g., the Hirzebruch surfaces F1 and F2 (see end of section 4) are not convex.
We chose once and for all a basis of the cohomology space H∗(X,C) consisting of homogenous classes
T0, T1, . . . , Tr, Tr+1, . . . , Ts such that T0 = 1 ∈ H0(X,C) is the Poicaré dual of the fundamental class and
such that T1, . . . , Tr form a basis of H2(X,C).

Definition 2.3 (GW-invariant). Let α1, . . . , αn be cohomology classes in H∗(X,C), then we define the
correlator or Gromov-Witten invariant to be

〈α1, . . . , αn〉0,n,β :=
∫

[M(0,n)(X,β)]

ev∗1(α1) ∪ . . . ∪ ev∗n(αn).

Here for i ∈ {1, . . . , n} the map evi :M(0,n)(X,β)→ X sends a class of a stable map (C, [x1, . . . , xn], f :
C → X) ∈M(0,n)(X,β) to f(xi) ∈ X.

Definition 2.4 (Quantum cohomology). Denote by Leff the set of effective homology classes in H2(X,Z)/Tors,
i.e., classes represented by curves. Denote by g : H∗(X,C)×H∗(X,C)→ C the Poincaré pairing, which
is symmetric (recall that we suppose H∗(X,C) = H2∗(X,C)) and non-degenerate. For any triple of co-
homology classes α, γ, η ∈ H∗(X,C), we define the big quantum product, denoted by α ◦η γ, by its values
under g on any class δ ∈ H∗(X,C) using the formula

g(α ◦η γ, δ) :=
∑

n≥0;β∈Leff

1
n!
〈α, γ, η, . . . , η︸ ︷︷ ︸

n−times

, δ〉0,n+3,β ∈ H∗(X,C) (1)

Remark: There is a technical obstacle in the definition of the quantum product: Formula (1) does
not make sense as such, as we are considering an infinite sum over both n and β. Hence it does not
even define a formal sum. This problem is usually solved by splitting the contributions of the different
homology classes β in Leff using the so-called Novikov ring. However, the above definition makes sense
once we know that there is a domain in the parameter space on which the quantum product is convergent.
Throughout this survey, we will use this assumption without further mentioning. More precise results
on the convergence of the quantum product can be found, e.g., in [Iri07].
Let us summarize very briefly some of the most important properties of the quantum product.

Proposition 2.5. Consider the big quantum product ◦ as above.

1. ◦ is symmetric, associative with unit 1 ∈ H0(X,C).
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2. Gromov-Witten invariants have a special behavior with respect to degree 2 classes. More precisely,
suppose that α1 ∈ H2(X,C), then we have that

〈α1, . . . , αk〉0,n,β =
(∫

β

α1

)
· 〈α2, . . . , αk〉0,n−1,β

This implies that we can rewrite the definition of the quantum product, that is, formula (1) by
decomposing a class η ∈ H∗(X,C) into a sum η = η′+η′′ with η′ ∈ H2(X,C) and η′′ ∈ H 6=2(X,C).
Then we have

g(α ◦η γ, δ) :=
∑

n≥0;β∈Leff

eη
′(β)

n!
〈α, γ, η′′, . . . , η′′︸ ︷︷ ︸

n−times

, δ〉0,n+3,β ∈ H∗(X,C) (2)

3. A convenient way to collect all Gromov-Witten invariants is the so-called (genus zero) potential,
this is the formal function on H∗(X,C) defined by

F(t) :=
∑

n≥3,β∈H2(X,Z)

1
n!
〈t, . . . , t︸ ︷︷ ︸
n−times

〉0,n,β

Here t = (t0, t1, . . . , ts) are the coordinates on H∗(X,C) corresponding to the choice of a homoge-
nous basis T0, T1, . . . , Ts from above.

4. The associativity of the quantum product can be very nicely expressed using the Gromov-Witten
potential. It is equivalent to the following system of partial differential equations satisfied by F ,
which are called WDVV-equations (after Witten, Dijkgraaf, E.Verlinde and H.Verlinde):

s∑
e,f=0

(∂i∂j∂eF) · gef · (∂f∂k∂lF) =
s∑

e,f=0

(∂k∂j∂eF) · gef · (∂f∂i∂lF)

for any i, j, k, l ∈ {0, . . . , s}, where (gef )e,f∈{0,...,s} := (g(Te, Tf ))−1.

For many computations, it is sufficient to calculate only a restricted set of Gromov-Witten invariants,
which involve the moduli space of stable maps from curves with only three marked points (the so-called
three point invariants or correlators). A basic result due to Kontsevich and Manin (see [KM94]) says
that often the (big) quantum product can be reconstructed from the small one. The precise definition
of the small quantum product is as follows.

Definition 2.6 (The small quantum product). Let, as before, α, γ and δ be arbitrary classes in H∗(X,C)
and take η to be in H2(X,C). Then we define

g(α ?η γ, δ) :=
∑
β∈Leff

eη(β)〈α, γ, δ〉0,3,β (3)

Remarks: The divisor axiom and the formula (2) that it implies show that we can naturally define
the quantum product and the potential on the space H0(X,C)⊕

(
H2(X,C)/2πiH2(X,Z)

)
⊕H>2(X,C)

(where 2πiH2(X,Z) acts on H2(X,C) by translation), which is a product of an affine space with a
torus. Namely, the Gromov-Witten invariants resp. the potential depend on the coordinates t1, . . . , tr
on H2(X,C) only via the exponentials eη

′(β), so that by putting qa := eta (a = 1, . . . , r), we obtain a
function (resp. a tensor) in the variables t0, q1, . . . , qr, tr+1, . . . , ts.
At several places below, we will have to use the fact that the quantum product (written in the above
q-coordinates) carry an inherent grading. More precisely, consider the first Chern class of X, i.e., the
first Chern class of the tangent bundle of X, this is a cohomology class of degree two and hence can be
written as c1(X) =

∑r
a=1 daTa. Write deg(Ti) = k iff Ti ∈ H2k(X,C) and put

deg(qa) = 2 · da

deg(ti) = 2− 2 · deg(Ti)
(4)
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Then the potential F has a certain homogeneity property with respect to this grading (to be more precise,
the quantum part

Fquant(t) :=
∑

n≥3,β∈H2(X,Z)\{0}

1
n!
〈t, . . . , t︸ ︷︷ ︸
n−times

〉0,n,β

is homogenous of degree 2(3− dim(X))).

Example: As a well known and instructive example, we are going to compute here the small quantum
product of the projective spaces. The advantage of this case is that the mirror correspondence with the
Landau-Ginzburg model can be very explicitly written down (see section 7 below) and this motivates
also the general mirror constructions for toric varieties, as explained below.
Let Pn be the n-dimensional projective space. It is well-known that its ordinary cohomology ring
H∗(Pn,Z) is isomorphic to Z[p]/(pn+1). Here p denotes the degree 2 cohomology class which is Poincaré
dual to the class of a hyperplane H ⊂ Pn. In particular (this is true for any smooth toric variety), the
cohomology is generated as a ring by its degree two classes and hence we have H∗(Pn,Z) = H2∗(Pn,Z),
that is, only even dimensional cohomology classes do appear.
The small quantum cohomology ring is by definition a finitely generated algebra over C[q±] := C[q, q−1],
where q is the coordinate on H2(Pn,C)/2πiH2(Pn,Z) corresponding to the choice of p as generator of
H2(Pn,Z). It is graded by deg(p) = 2 and deg(q) = 2c1(Pn) = 2(n + 1). As a C[q±]-module, it is
isomorphic to C[p]/(pn+1)⊗C[q±]. The degree preserving property of the quantum product tells us that
for any k ∈ {1, . . . , n}, we have

p ? · · · ? p︸ ︷︷ ︸
k−times

!= p ∪ · · · ∪ p︸ ︷︷ ︸
k−times

=: pk

so that it suffices to compute p?(n+1) which equals p?n ? p = pn ? p. Notice that here we do not have to
put a parameter as index to the small quantum product as we consider it as a family of algebras (see
the remark after definition 3.1 below for a more conceptual explanation). We use the definition of the
quantum product, i.e., formula (3), saying that we have to compute for any class γ ∈ H∗(Pn,C) the
expression

g(pn ? p, γ) =
∑
β

qp(β)〈pn, p, γ〉0,3,β =
∑
β

qp(β)

(∫
[M0,3(Pn,β)]

ev∗1(pn)⊗ ev∗2(p)⊗ ev∗3(γ))

)

Notice that β is always a integer multiple of the class of a line [L] ∈ H2(Pn,Z) dual to p, so that we can
rewrite the sum as

∑
d≥0〈pn, p, γ〉0,3,d[L] · qd. The correlators in this sum are nonzero only if the degrees

of the classes pn, p and γ add up to the dimension ofM0,3(Pn, d[L]), that is, to 3 + dim(Pn) +
∫
d·[L]

(n+
1) ·PD([H])−3 = n+d · (n+1). Hence only classes γ of degree deg(γ) = (n+1)d−1 can give a non-zero
correlator. Since deg(γ) ≤ n, we arrive at the conclusion that d can only take the value 1 and then
deg(γ) = n. Hence we are left with 〈pn, p, pn〉0,3,[L], and this is the number of lines in P2 through two
generic points meeting a generic hypersurface. Obviously, there is only one such line, so that we finally
arrive at the conclusion that g(p?(n+1), γ) = q if γ = pn and 0 else, meaning that the relation p?n+1 = q
holds in the small quantum cohomology ring, i.e., we have the isomorphism

SQH(Pn) = (H∗(X,C), ?) ∼= C[p, q±]/(pn+1 − q) (5)

of C[q±]-algebras.
The following rather obvious remark will be of fundamental importance in the sequel. The above descrip-
tion of the small quantum cohomology of Pn shows that it corresponds to a vector bundle on C∗ (the
coordinate on C∗ being q) of rank n + 1, equipped with a commutative and associative multiplication.
There is a canonical extension of that bundle to a bundle over Cq, i.e., over the limit point q = 0, which
is simply given as the C[q]-algebra C[p, q]/(pn+1 − q). Even more, the fibre of this extended bundle on
q = 0 is nothing but the restriction of this algebra to q = 0, i.e., the zero-dimensional Gorenstein ring
C[p]/pn+1 ∼= (H∗(Pn,C),∪). This limit behavior is not accidental, the point q = 0 is called the large
radius limit, and it is one of the most prominent features of the quantum product that it degenerates
to the ordinary cup product at this limit point. A basic philosophy in the later sections of this paper is
to express the mirror correspondence by objects defined on partial compactifications of the parameter
spaces which include the large radius limit.
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3 Givental’s approach: quantum D-module and J-function

One of the central ideas in quantum cohomology that we are going to exploit is that the relations encoded
in the WDVV-equation can be rewritten as a system of linear differential equations. This is usually called
the quantum D-module. We will encounter some general D-modules below as the so-called Gauß-Manin
systems, however, the quantum D-module is merely a vector bundle with a connection. We recall the
basic definitions.

Definition 3.1. Let M be a complex manifold M and E →M be a holomorphic vector bundle.

1. A connection on E is a C-linear map

∇ : E −→ E ⊗ Ω1
M

satisfying the Leibniz rule ∇(f · s) = f · ∇(s) + s ⊗ df for any local sections f ∈ OM and s ∈ E.
It is called flat if moreover the OM -linear map (called curvature) ∇(2) ◦ ∇ vanishes, where ∇(2) :
E ⊗ Ω1

M → E ⊗ Ω2
M is defined by ∇(2)(s⊗ ω) := ∇(s) ∧ ω − s⊗ dω.

2. Let D ⊂M be a simple normal crossing divisor (in most cases that we will meet below, D is simply
smooth). Then a meromorphic bundle F is by definition a locally free sheaf of OM (∗D)-modules,
and a meromorphic connection on E resp. F is a C-linear operator ∇ : E → E ⊗ Ω1

M (∗D) resp.
∇ : F → F ⊗ Ω1

M (∗D) satisfying the Leibniz rule as above. Any meromorphic connection on E
defines a meromorphic connection on E(∗D) = E ⊗OM (∗D).

3. A meromorphic connection on a holomorpic bundle E → M is said to have a logarithmic pole
along D if it takes values in E ⊗ Ω1(log D). Here Ω1(log D) is the sheaf of differential forms
with logarithmic poles along D. Locally, by choosing coordinates z1, . . . , zk, tk+1, . . . , zm on M
such that D = {z1 · . . . · zk = 0}, the sheaf Ω1

M (log D) is freely generated over OM by the forms
dz1/z1, . . . , dzk/zk and dzk+1, . . . dzm.

4. A connection (E,∇) which is logarithmic with respect to a smooth divisor D ⊂M defines a residue
endomorphism Φres on the restriction E|D, locally, if z1 = 0 is the equation of the divisor, it is given
by the class of z1∇∂z1 ∈ EndOD (E|D). However, Φres does not depend on the choice of coordinates.
Similarly, but only if we fix a coordinate system (z1, . . . , zm) on M such that D = {z1 = 0}, the
residue connection ∇res can be defined on E|D in the following way: If e = (e1, . . . , en) is a local
basis of E, then ∇ is written as

∇(e) = e ·

A1(z1, . . . , zm)
dz1

z1
+

m∑
i≥2

Ai(z1, . . . , zm)


then ∇res is defined with respect to e by the matrix A1(0, z2, . . . , zm).

Notice that there is a natural generalization of the notion of the residue endomorphism which applies
to meromorphic connections with pole order two (more precisely, with Poicaré rank one), these are the
so-called Higgs fields. We refer to [Sab07, section 0.14c] for details.

We can now define the small quantum D-module. It corresponds to the small quantum cohomology ring,
and will be sufficient for our purpose. Before giving the formal definition, let us make a remark on the
definition of the quantum product (both the big and the small one). A priori, it is defined as a product of
two cohomology classes, denoted by α and γ above, depending on a third class, denoted by η (this class
has to be of degree two for the small quantum product). An elegant way to eliminate this dependence in
the notation is to consider a trivial vector bundle with fibre H∗(X,C) on either H∗(X,C) (big quantum
product) or H2(X,C) (small quantum product). Then any cohomology class gives a (constant) section
of this bundle, and we can consider the (small/big) quantum product as a commutative and associative
multiplication with unit on this vector bundle. On each fibre of this bundle at a base point η, this
multiplication gives back the product α ◦η γ resp. α ?η γ from above. Below, we will always adopt this
convention and write the quantum product as a product of two classes α ◦ γ resp. α ? γ.
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Definition 3.2. Let X be smooth projective satisfying H∗(X,C) = H2∗(X,C). Choose a homogenous
basis T0, T1, . . . , Tr, Tr+1, . . . , Ts of the cohomology as above. Let M ⊂ H2(X,C) be an open subset (with
coordinates t1, . . . , tr corresponding to the basis vectors T1, . . . , Tr) on which the small quantum product
is convergent. Consider the projection π : P1

z ×M � M , where we chose z to be a fixed coordinate on
the chart of P1 centered at 0. Let G := H∗(X,C)×M →M be the trivial vector bundle on M with fibre
H∗(X,C). It comes equipped with a flat connection ∇fl corresponding to the given trivialization, i.e.,
such that ∇fl(s) = 0 for any section s : M → H∗(X,C)×M sending any point in M to a constant value
γ ∈ H∗(X,C). Put F := π∗G→ P1

z ×M , and define the Givental connection ∇Giv on F as follows:

∇Giv∂tk
(s) := ∇fl∂tk (s)− 1

zTk ? s

∇Giv∂z
(s) := 1

z

(
E?s
z + µ(s)

) (6)

where s ∈ F , µ ∈ AutC(H∗(X,C)) is the grading operator that takes the value k · γ on any class
γ ∈ H2k(X,C) and the vector field E is defined as E :=

∑s
i=0

(
1− deg(Ti)

2

)
ti∂ti +

∑r
a=1 ka∂ta , where∑r

a=1 kaTa = c1(X) (see also equations (4))
It follows from formula (6) that ∇Giv has poles along z = {0,∞}. Its restriction to C∗z ×M thus defines
a holomorphic connection operator.
By a slight abuse of notation, the object (F,∇Giv) is called the quantum D-module.

The following is one of the main properties of the Givental connection. It is follows easily from the basic
properties of the quantum product. In particular, it implies the WDVV differential equations for the
Gromov-Witten potential and hence the associativity of the quantum product.

Proposition 3.3. The Givental connection is flat, that is, the linear operator ∇2 : F → Ω2
P1
z×M

⊗ F
vanishes.

Remark: By its very definition, the quantum D-module is a vector bundle on P1×M and the connection
has a logarithmic pole along {∞} ×M and a pole of Poincaré rank one along {0} ×M . Hence we can
consider the residue connection ∇res and the residue endomorphism of ∇Giv along {∞} ×M as well as
the Higgs field of ∇Giv along {0} ×M . It also follows from the definition, i.e., from formula (6) that
the residue connection is nothing but ∇fl, the residue endomorphism is the grading operator µ and the
Higgs field is given by the quantum multiplication. This observation is very useful when studying the
object corresponding to the Givental connection via mirror symmetry.
A (rather simple) variant of the Riemann-Hilbert correspondence tells us that the restriction (F,∇Giv)|C∗z×M
defines a local system of flat sections. There is a canonical way to construct such flat sections, starting
from the so-called J-function. This is a cohomology valued function, defined in terms of the so-called
gravitational descendents.

Definition 3.4 (J-function and fundamental solutions). 1. Let α1, . . . , αn ∈ H∗(X,C). Define the
genus zero gravitational descendant invariants by

〈α1ψ
k1
1 , . . . , αnψ

kn
n 〉0,n,β :=

∫
[M(0,n)(X,β)]

ψk1
1 ∪ ev∗1(α1) ∪ . . . ∪ ψknn ∪ ev∗n(αn).

where ψi are line bundles on M(0,n)(X,β) defined in such a way that their fibre at the point
[C, (x1, . . . , xn), f ] ∈M(0,n)(X,β) (here C is the projective curve, x1, . . . , xn its marked points and
f : C → X the stable map from C to X) is the cotangent line T ∗xiC. A more precise definition can
be found, e.g., in [RS10, definition 4.1].

2. Write η′ =
∑r
a=1 taTa and define the H∗(XΣ,C)-valued power series J by

J(η′, z−1) := e
η′
z ·

1 +
∑

β∈EffXΣ\{0}

j=0,...,s

eη
′(β)

〈
Tj

z − ψ1
, 1
〉

0,2,β

T j

 .
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here the gravitational descendent GW-invariant 〈 Tj
z−ψ1

, 1〉0,2,β has to be understood as the formal
sum

∑
k≥0 z

−k−1〈Tjψk1 , 1〉0,2,β and T 0, T 1, . . . , T s is the basis of H∗(XΣ,C) which is g-dual to
T0, T1, . . . , Ts.

Theorem 3.5. We have
z∇Giv(∂tkJ) = 0,

that is, the partial derivatives of J form a fundamental system of solutions of the (relative) Givental
connection.

Remark: The derivatives of the J-function are not flat with respect to the “vertical connection” ∇Giv∂z
.

However, one can obtain truly flat sections from the J-function by an easy twist, taking into account the
logarithmic pole of ∇Giv on F along z =∞.
Givental has shown how to obtain all interesting Gromov-Witten invariants for nef toric varieties. In
fact, Giventals result is broader, as it concerns the case of complete intersections in toric varieties. Such
a subvariety is not necessarily toric itself. In particular, it includes the case of the quintic Calabi-Yau
hypersurface in P4 mentioned in the introduction. We will restrict to toric varieties in the sequel. A
thorough discussion of the B-model of a complete intersection would require the introduction of more
notions, from which we refrain here.
The next section contains a detailed reminder on toric geometry, however, let us state Givental’s main
result here in order to finish the discussion of the quantum D-module. We need one object from toric
geometry, which is the so-called I-function.

Definition 3.6. Let XΣ be a smooth projective toric variety and write D1, . . . , Dm for its torus invariant
divisors. Define I to be the H∗(XΣ,C)-valued formal power series

I = eη
′/z ·

∑
l∈Leff

ql ·
m∏
i=1

∏0
ν=−∞ ([Di] + νz)∏li
ν=−∞ ([Di] + νz)

∈ H∗(XΣ,C)[z][[q1, . . . , qr]][[z−1]].

Now Givental’s theorem takes the following form.

Theorem 3.7. [Giv98, theorem 0.1] Let XΣ be a smooth projective toric variety with a numerical effective
anticanonical bundle −KXΣ . There is a formal coordinate change κ ∈ (C[[q1, . . . , qr]])r) called the mirror
map, such that

I = (idCz ×κ)∗J

If XΣ is Fano, that is, if −KXΣ is ample, then κ = id.

4 Landau-Ginzburg models of toric Fano varieties

In the sequel of this survey, we will concentrate on the case of a toric variety with a nef anticanonical
divisor. We will describe how to associate a certain family of Laurent polynomials to such a variety.
These are called Landau-Ginzburg models. Our presentation below follows mainly [Iri09].
Whereas these Landau-Ginzburg models can be obtained very explicitly in a rather elementary way in
the toric case, it is a largely unsolved problem how to construct them for more general varieties. Most of
the known construction somehow come back to the toric case, like the technique of toric degenerations
([Bat04]). In order to orient the reader, let us give some reminders on basics of toric geometry that are
relevant for the present paper. As a basic reference for the facts discussed below, the reader may consult
[Ful93] or the more recent [CLS11].
Let N = ⊕nk=1Znk be a free abelian group of rank n and Σ ⊂ N ⊗ R be a fan. This means that Σ is
a collection of cones {σ ∈ Σ}, where any σ is a strongly convex (i.e., σ ∩ (−σ) = {0}) polyhedral cone
(i.e., σ =

∑
R≥0bi for some bi’s in N). Being a fan means that for any σ ∈ Σ, any face of σ is again

a cone in Σ, and that for any two cones σ, τ ∈ Σ, the intersection σ ∩ τ is a face of both τ and σ. The
fan Σ defines a toric variety XΣ. Recall that XΣ is covered by affine charts Xσ := Spec C[M ∩ σ∨], here
M := HomZ(N,Z) and σ∨ := {m ∈ M ⊗ R |m(n) ≥ 0 ∀n ∈ N ⊗ R}, and that XΣ is obtained from
these affine pieces by gluing Xσ and Xτ along Xσ∩τ .
We will suppose for simplicity that the fan Σ is smooth and complete, which means by definition that
any cone σ ∈ Σ can be generated by elements bi which can be completed to a Z-basis of N and that
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the support Supp(Σ) =
⋃
σ∈Σ σ is all of N ⊗ R. It is well-known that this translates into XΣ being

smooth and complete. The smoothness condition can by weakened by requiring Σ to be only simplicial,
which means that the generators of each cone are linearly independent over Q. In this case XΣ can
have quotient singularities, i.e., it is the underlying topological space of a an orbifold. The question
how to extend the results presented here to the orbifold case is in the focus of current reasearch on
quantum cohomology and mirror symmetry, however, we will restrict to the smooth case in this survey
for simplicity.
We have an exact sequence

0 −→ L −→ ZΣ(1) −→ N −→ 0 (7)

where Σ(1) are the one-dimensional cones of Σ, called rays, the last map sends a generator ei of ZΣ(1)

to a primitive integral generator bi ∈ N of a ray, and where the lattice L is the free submodule of ZΣ(1)

of relations between the elements bi ∈ N . Dualizing yields the sequence

0 −→M −→ ZΣ(1) −→ L∨ −→ 0.

It is well known (see, e.g., [Ful93, p. 106]) that for a smooth toric manifold XΣ, we have H2(XΣ,Z) ∼= L∨.
Inside L∨⊗R we have the cone K(XΣ) of Kähler classes, which can be defined by saying that a ∈ K(XΣ)
iff a(β) ≥ 0 for all effective 1-cycles in H2(XΣ,R) (The latter set of cycles also forms a cone, called the
Mori cone). We write K0(XΣ) for the interior of K(X), i.e., for all elements a ∈ L∨ with a(β) > 0.
Write Di ∈ L∨ for the components of the map L ↪→ ZΣ(1), then the anticanonical divisor −KXΣ is∑m
i=1Di ∈ L∨. As we already mentioned in definition 1.1, XΣ is called a Fano variety iff −KXΣ is

ample, i.e., if it lies in K0(XΣ). If −KXΣ ∈ K(XΣ), then XΣ is nef . Notice that a Calabi-Yau manifold
(i.e., KXΣ = 0) is obviously nef, however, it is easy to see that in this case the defining fan can never be
complete.
The projection ZΣ(1) � N is given by a matrix (aki)k=1,...,n;i=1,...,m with respect to the basis (nk) of
N . Moreover, we will chose once and for all a basis (pa)a=1,...,r of L∨ (with r = m− n and m = |Σ(1)|)
which consists of nef classes (i.e., classes lying inside of K(X)) and such that the anti-canonical class
−KXΣ lies in the cone

∑r
a=1R≥0pa. Then the map L ↪→ ZΣ(1) is given by a matrix (mia)i=1,...,m;a=1,...,r

with respect to the dual basis (p∨a ).
Applying the functor HomZ(−,C∗) (where Z acts on C∗ by exponentiating) to the exact sequence (7)
yields

1 −→ HomZ(N,C∗) ∼= (C∗)n α−→ (C∗)Σ(1) β−→ HomZ(L,C∗) ∼= (C∗)r −→ 1 (8)

where α(y1, . . . , yk) = (wi :=
∏n
k=1 y

aki
k )i=1,...,m and β(w1, . . . , wm) = (qa :=

∏m
i=1 w

mia
i )a=1,...,r, here

(qa)a=1,...,r are the coordinates on HomZ(L,C∗) corresponding to the basis (pa) of L∨, (wi)i=1,...,m are the
standard coordinates on (C∗)Σ(1) and (yk)k=1,...,m are the coordinates on HomZ(N,C∗) corresponding
to the basis (n∨k ) of M .

Definition 4.1. Let W =
∑m
i=1 wi. The Landau-Ginzburg model of XΣ is defined to be the restriction

of W to the fibres of the map β : (C∗)Σ(1) → (C∗)r.

Notice that the choice of the basis (pa) of L∨ and hence the isomorphism HomZ(L,C∗) ∼= (C∗)r is part
of the data of the Landau-Ginzburg model, as the map (C∗)Σ(1) → HomZ(L,C∗) depend only on Σ(1),
not on Σ itself.
The following construction allows us to rewrite the restriction of W to the fibres of β as a family of
Laurent polynomials. Chose a section l : L∨ → ZΣ(1) of the projection l : ZΣ(1) � L∨, given, with
respect to the above bases, by a matrix (lia). This yields a section (denoted abusively by the same
letter)

l : (C∗)r −→ (C∗)Σ(1) (9)

which sends (q1, . . . , qr) to (wi :=
∏r
a=1 q

lia
a ). Then putting Ψ : HomZ(N,C∗)× (C∗)r → (C∗)Σ(1) where

Ψ(y, q) :=
(
wi :=

∏r
a=1 q

lia
a ·

∏n
k=1 y

bki
k

)
i=1,...,r

yields a coordinate change on (C∗)m such that β becomes

the projection p2 : HomZ(N,C∗)× (C∗)r � (C∗)r. Then we put

W̃ := W ◦Ψ : HomZ(N,C∗)× (C∗)r −→ C

(y1, . . . , yk, q1, . . . , qa) 7−→
∑m
i=1

∏r
a=1 q

lia
a ·

∏n
k=1 y

bki
k
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which is a family of Laurent polynomials on HomZ(N,C∗) parameterized by (C∗)r.
Recall ([Kou76]) that a single Laurent polynomial W̃q := W̃ (−, q) ∈ OHom(N,C∗) is called convenient
iff 0 lies in the interior of its Newton polyhedron, and non-degenerate iff for any proper face τ of its
Newton polyhedron, the Laurent polynomial (W̃q)τ =

∑
bi∈τ

∏r
a=1 q

lia
a ·

∏n
k=1 y

bki
k does not have any

critical point on HomZ(N,C∗). If we consider the whole family W̃ , the following holds

Proposition 4.2. 1. W̃q is convenient for any q ∈ HomZ(L,C∗)

2. There is an algebraic subvariety Z ⊂ (C∗)r such that W̃q is non-degenerate for all q /∈ Z. Write
M0 := (C∗)r\Z.

3. If XΣ is Fano, then Z = ∅.

4. If XΣ is weak Fano, then there exists an ε > 0, such that for all q ∈ HomZ(L,C∗) ⊂ Cr with
|q| < ε, we have q /∈ Z. Here the inclusion HomZ(L,C∗) ⊂ Cr and the metric | · | refer to the
chosen coordinates (qa) on HomZ(L,C∗).

Examples: In order to make the above construction more transparent, let us consider some simple but
important examples.

1. The mirror of projective spaces:

-
(1,0)

6
(0,1)

�
�

�
�	

(−1,−1)

Figure 1: The fan of P2

The fan of Pn consists of n+ 1 rays (see figure 1 for the case n=2), namely, the standard vectors
ei for i = 1, . . . , n in Zn and the additional vector

∑n
i=1−ei. Hence the exact sequence (7) reads

0 // L ∼= Z


1
...
1


// Zn+1


1 0 . . . . . . −1
0 1 . . . . . . −1
...

...
. . . . . . −1

0 0 . . . 0 1 −1


// Zn // 0

where we have chosen a basis of L∨ corresponding to the Poincaré dual of a hyperplane. Hence by
dualizing and tensoring with C∗ we obtain the Landau-Ginzburg model given by the restriction of
the linear function W = w0 + . . .+wn to the fibres of the fibration β : (C∗)n+1 → C∗, which sends
(w0, . . . , wn) to w0 · . . . · wn. Choosing the section l : Z ∼= L∨ → Zn+1, l(m) = (m, 0, . . .) ∈ Zn we
obtain that W̃Pn(y1, . . . , yn, q) = y1 + . . .+ yn + q

y1·...·yn .

2. The mirror of the Hirzebruch surfaces F1 and F2:

Recall that for any k ∈ N, the projective bundle P(OP1(k) ⊕ OP1) is called the k-th Hirzebruch
surface and denoted by Fk. However, these surfaces are Fano only for k = 0 (this is the rather
trivial case P1×P1) and k = 1. For k = 2, F2 has a nef anticanonical divisor, but this is no longer
true for the higher Fk’s. Hence we can construct Landau-Ginzburg models for F0, F1 and F2. Let
us concentrate on the last two cases. These are toric varieties defined by the fans shown in figure
2.
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-
(1,0)

6
(0,1)

�
�

�
��	

(0,−1)
?

(−1,−1)

-
(1,0)

6
(0,1)

�
�
�
�
�
�
�
�
��

?
(0,−1)

(−1,−2)

�
�

�
�

�
�
�

�
�

Figure 2: The fans of F1 and F2

The exact sequence (7) takes the following form for F1

0 // L ∼= Z2


1 0
0 1
1 0
−1 1


// Z4

1 0 −1 0
0 1 −1 −1


// Z2 // 0

so that the Landau-Ginzburg model is the following two parameter family of Laurent polynomials:

W̃F1 = x+ y +
q1 · q2

xy
+
q2

y

where we have chosen the section of the map Z4 → L∨ given by the matrix
0 0
0 0
1 1
0 1

 .

For F2, we have the following exact sequence

0 // L ∼= Z2


1 0
0 1
1 0
−2 1


// Z4

1 0 −1 0
0 1 −2 −1


// Z2 // 0

and we obtain:

W̃F2 = x+ y +
q1 · q2

2

xy2
+
q2

y

where the section is given by the matrix 
0 0
0 0
1 2
0 1

 .

Notice that for q1 = 1
4 , WF2(x, y, 1

4 , q2) is degenerate: the Laurent polynomial x + q2
2

4xy2 + q2
y has

critical points on the torus (C∗)2. This reflects the fact that F2 is nef but not Fano, and can be
seen on its fan from the fact that there is a lattice point on the boundary of the convex hull defined
by the rays of the fan of F2 (the point (1,−1) on the red line).
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5 Gauß-Manin systems and hypergeometric differential equa-
tions

In this section we describe how to associate a system of differential equations to the Landau-Ginzburg
models defined above. These systems will ultimately be equal to the quantum D-module, and this is
precisely the kind of mirror correspondences we are interested in. However, the differential equations we
are going to consider are interesting in their own right, and have been studied since a long time. They
are related to the classical Gauß-Manin connection but they are more general in two respects: First,
one has to take into account singularities which occur at the critical points of the Laurent polynomials.
The corresponding object is called Gauß-Manin system, and is constructed in a functorial way using
the general notion of direct image in the category of D-modules. Equivalently, and this is the point
of view that we are going to adapt below, it is obtain as a twisted de Rham cohomology group. The
second difference to the classical setup is that in order to mach with the quantum D-module, we have
to consider a variant of the Gauß-Manin system, which is obtained by a partial Fourier transformation.
The solutions of the transformed systems can be obtained as oscillating integrals, whereas the original
Gauß-Manin system consists of differential equations satisfied by period integrals over vanishing cycles.
We will not explain in detail this more analytic point of view, one can find in [Her03, chapter 8] some
explanations for the related case of germs of functions with isolated singularities. Notice also that the
construction described below is carried out in the analytic category in [Iri09].
In order to establish the mirror correspondence via differential equations satisfied by oscillating integrals,
one needs to have a concrete description of these D-modules. Luckily, such a description is available in
the toric case, and the systems obtained are said to have a hypergeometric structure. Hypergeometric
functions and hypergeometric differential equations have a long history, starting at least with Gauß. We
will not review here these developpements (one may consult, e.g., [Sti07] for some classical aspects of
the theory). Instead, we start with the following definition of the so-called GKZ-systems (after Gelfand,
Kapranov and Zelevinski) taken from [GGZ87] and [GZK89] (see also the more recent reference [Ado94]).
Any system of hypergeometric equation can be rewritten as a GKZ-system (or a reduction of it). We
also discuss the main properties of these D-modules, and for that purpose we recall some of the most
important notions related to algebraic D-modules.

Definition 5.1 (GKZ- or A-hypergeometric system). Consider a lattice Zn and vectors a1, . . . , am ∈ Zn
which we also write as a matrix A = (a1, . . . , an). Moreover, let β = (β1, . . . , βn) ∈ Cn. Write L for the
module of relations of A and DCm for the sheaf of rings of algebraic differential operators on Cm (where
we choose x1, . . . , xm as coordinates). Define

Mβ
A := DCs/

(
(�l)l∈L + (Zk)k=1,...t

)
, (10)

where
�l :=

∏
i:li<0 ∂

−li
xi −

∏
i:li>0 ∂

li
xi

Zk :=
∑s
i=1 bkixi∂xi + βk

Mβ
A is called hypergeometric system.

Notice that although the definition of Mβ
A involves infinitely many operators (one for each l ∈ L plus

the finite number of operators Zk), the denominator of in formula (10) is of course generated by a finite
number of elements of DCs . However, and this is one important feature of the theory of GKZ-systems,
in order to generate the ideal (�l)l∈L, it is in general not not sufficient to take operators �l where l runs
through a basis of L.
Next we are going to describe some general properties of GKZ-systems. In order to do this, we first recall
some basic notions from the general theory of algebraic D-modules. As an example for a reference, the
interested reader may consult [HTT08] for the proofs and many more results.

Definition-Lemma 5.2. Let X be a smooth algebraic variety over C, DX the sheaf of algebraic differ-
ential operators on X and M be a coherent DX-module. Consider the usual filtration F• on D by orders
of operators. The associated graded (sheaf of) rings gr•(D) equals the structure sheaf on the cotangent
bundle T ∗X.
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1. A filtration F•M is good if it is compatible with F•D, i.e., if FkD · FlM ⊂ Fk+lM holds for
all k, l and if this is an equality for l sufficiently large and if moreover we have that gr•(M) is
gr•(D) = OT∗X-coherent.

2. The characteristic variety char(M) of a M is the reduced support of gr•(M) in T ∗X. This sub-
variety does not depend on the choice of the good filtration F•M.

3. M is holonomic iff char(M) is a Lagrangian subvariety of T ∗Cm for its natural symplectic structure,
that is, iff the restriction of the symplectic form to all tangent spaces of smooth points of char(M)
vanishes. Equivalently, M is holonomic iff ExtpDX (M,DX) = 0 for all p 6= n.

4. Let π : T ∗X → X be the canonical projection. Let char(M) =
⋃
Ci be the decomposition of

char(M) into irreducible components. Suppose that the zero section T ∗XX of T ∗X is a component
of char(M) and that it is equal to C1. Define the singular support Sing(M) to be π(char(M)\C1),
if T ∗XX 6⊂ char(M), then Sing(M) = Supp(M). The restrictionM|X\C1 is OX-locally free of rank
k (k = 0 if Supp(M) ( X), and k is called the holonomic rank of M. It is equal to the dimension
of the space of (say, holomorphic) local solutions of M near a point in X\Sing(M).

5. M is regular if its restriction to any curve C ⊂ X is so, and this last condition can be reduced
to the usual condition of regularity for linear systems of differential equations in one variable. A
precise definition of regularity can be found, e.g., in [HTT08, chapter 6].

With all these notions in mind, we can describe the main properties of the GKZ-systems.

Proposition 5.3. Let A, β and Mβ
A be as above.

1. Mβ
A is holonomic for any A and any β. For generic β, the holonomic rank of Mβ

A is n! ·
vol(∆(a1, . . . , an)), where ∆(a1, . . . , an) denotes the convex hull of a1, . . . , an in Rn and vol(−)
is the normalized volume, which takes the value 1 on the hypercube [0, 1]n ⊂ Rn. In particular, if
β is generic, then n! · vol(∆(a1, . . . , an)) is the dimension of the solution space of the differential
system defined by Mβ

A at a generic point of Cm.

2. Mβ
A is regular if and only if a1, . . . , an is contained in an affine hyperplane of Zn.

3. The singular locus equals the degeneracy locus of the Laurent polynomial
∑m
i=1 xi · yai , where

yai :=
∏n
k=1 y

aki
k , i.e., is equal to(λ1, . . . , λm) ∈ Cm | ∀τ ∈ ∂∆(a1, . . . , an),

∑
j:aj∈τ

λjy
aj has a critical point in (C∗)n


The differential systems that will appear in the mirror correspondence that we are going to explain
are variants of special GKZ-systems. First, one starts with a regular GKZ-system, this is achieved by
forcing the columns of the defining matrix to be contained in an affine hyperplane (see point (2) in the
above proposition). Next there are two modifications to be carried out: A restriction of the parameter
space, this corresponds to the chosen embedding l from equation (9), and finally a Fourier-Laplace
transformation which introduces irregular singularities. Let us explain these steps in some more detail.
For the restriction just mentioned, we have to use the inverse image functor of D-modules, which we do
not explain here (see again [HTT08] for details).

Definition-Lemma 5.4. 1. For a given matrix A ∈M(n×m,Z) with columns a1, . . . , am, let ãi :=
(1, ai) ∈ Zn+1 for i = 1, . . . ,m and ã0 = (1, 0). Write Ã for the matrix with columns ã0, ã1, . . . , ãm
and consider the hypergeometric systems Mβ

Ã
for β ∈ Cn+1.

2. For any C[λ0, . . . , λm]〈∂0, . . . , ∂m〉-module M, define FLz
−1

λ0
(M)[z] to be the operation of replac-

ing ∂0 by z−1, λ0 by z2∂z and by inverting z−1, i.e., by tensoring with C[z±, λ1, . . . , λm] over
C[z−1, λ1, . . . , λm]. Then FLz

−1

λ0
(M)[z] is a C[z±, λ1, . . . , λm]〈∂z, ∂1, . . . , ∂m〉-module.
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3. Consider the chosen section l : HomZ(L,C∗) ∼= (C∗)r → (C∗)Σ(1) ∼= (C∗)m from equation (9).
Define

QMÃ :=
(

(idz, l)+ FLz
−1

λ0
(M(1,0)

Ã
)[z]
)

then QMÃ is given as the quotient of C[z±, q±1 , . . . , q
±
r ]〈∂z, ∂q1 , . . . ∂qr 〉 by the left ideal generated

by

�̃l :=
∏

a:pa(l)>0

qpa(l)
a

∏
i:li<0

−li−1∏
ν=0

(
r∑
a=1

miazqa∂qa − νz)−
∏

a:pa(l)<0

q−pa(l)
a

∏
i:li>0

li−1∏
ν=0

(
r∑
a=1

miazqa∂qa − νz)

for any l ∈ L and by the single operator

z2∂z −
r∑
a=1

KXΣ(p∨a )qaz∂qa .

4. Denote by 0QMÃ ⊂ QMÃ the C[z, q±1 , . . . , q
±
r ]-subalgebra generated by z2∂z and zqa∂qa where a =

1, . . . , r. Then 0QMÃ is C[z, q±1 , . . . , q
±
r ]-free of rank n! · vol(∆(a1, . . . , am)) and it comes equipped

with a connection operator with a pole of Poincaré rank one along z = 0.

There are many results in the literature concerning solutions of hypergeometric differential equations.
In our setup, the I-function introduced above (definition 3.6) will yield (cohomology valued) solutions
of the GKZ-systems defined by a toric variety.

Proposition 5.5. Put Ĩ := zKXΣ · zµ · I (µ is the grading operator on cohomology classes) and write
Ĩ =

∑s
t=0 Ĩt ·Tt, where T0, T1, . . . , Ts of H∗(XΣ,C) is a homogeneous basis of H∗(XΣ,C) as above. Then

the components Ĩt yield solutions of the differential system QMÃ over a subset of C∗z × (C∗)r on which
the I-function is convergent. For a precise statement, see [RS10, proposition 3.12 and corollary 3.13].

The next step is to explain how we can associate a (version of a) GKZ-system to the Landau-Ginzburg
models defined in section 4. As mentioned in the beginning of this section, this is done using the so-called
twisted de Rham cohomology, which is a version of the more general Gauß-Manin system. Here is the
corresponding definition, which is simplified to fit to our purpose.

Definition 5.6. Let U,K be a smooth affine algebraic varieties with dimC(U) = n and ϕ = (F, pr) :
U ×K → C×K be an affine morphism, where F ∈ OU×K and pr : U ×K → K is the projection. Let z
be a new variable and consider the following complex of OU×K-modules with a OC×K-linear differential(

Ω•pr[z], zd− dϕ∧
)

where Ω•pr := Ω•U ⊗OU OK×U are the differential forms relative to the projection map pr. Call Hn(ϕ) :=
Hn(Ω•pr[z], zd− dϕ∧) the twisted de Rham cohomology of ϕ (more precisely, it is the de Rham complex
of U with the differential twisted by ϕ). Notice that in the examples we are interested in, all other
cohomology groups Hi(ϕ) for i 6= 0 will vanish. Moreover, define a connection operator ∇ : Hn(ϕ) →
Hn(ϕ)⊗ Ω1

C×U (∗{0} × U) by

∇∂z (ω) := −z−2 · F · ω
∇X(ω) := LieX(ω) + z−1 ·X(F )ω

where ω ∈ Ωkpr and X ∈ TK and where the above formulas are extended to the whole module Hn(ϕ) by
the Leibniz rule.

An appropriate version of the GKZ-system can be used to compute the twisted de Rham complex of
the Landau-Ginzburg models we are interested in. Hence, let (W̃ , pr) : (C∗)n × (C∗)r → C× (C∗)r be a
morphism as in section 4. Then we have the following.

Theorem 5.7 ([RS10, corollary 3.3], [Iri09]). There is an isomorphism of OCz×(C∗)r -modules with con-
nections on Cz × (C∗)r

Hn(W̃ , pr) ∼= 0QMÃ. (11)

0QMÃ (and hence also Hn(W̃ , pr)) is locally free of rank n! · vol(∆(a1, . . . , am)) when restricted to the
complement of the degeneracy locus Z defined in proposition 4.2. In particular, both objects are locally
free over the whole of Cz × (C∗)r if XΣ is Fano.
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Examples: Using the last theorem, we can give an explicit expression for the twisted de Rham
cohomology for the examples considered in section 4.

1. XΣ = Pn: Recall that h2(Pn) = 1 and hence (W̃Pn , pr) : (C∗)n × C∗ → C × C∗; (x1, . . . , xn, q) 7→
x1 + . . .+ xn + q/(x1 · . . . · xn). Then we have

Hn(W̃ , pr) ∼=
C[z, q±]〈z2∂z, qz∂q〉

((zq∂q)n+1 − q, z2∂z + (n+ 1)q∂q)
(12)

2. XΣ = F1: We have h2(F1) = 2, (W̃F1 , pr) : (C∗)2 × (C∗)2 → C × (C∗)2; (x, y, q1, q2) 7→ x + y +
q1·q2
xy + q2

y and

Hn(W̃ , pr) ∼=
C[z, , q±1 , q

±
2 ]〈z2∂z, z∂q1 , q2z∂q2〉

((q1z∂q1)2 − q1(q2z∂q2 − q1z∂q1), q2z∂q2 · q1z∂q1 − q2, z2∂z + q1z∂q1 + 2q2z∂q2))

3. XΣ = F2: We have h2(F1) = 2, (W̃F1 , pr) : (C∗)2 × (C∗)2 → C × (C∗)2; (x, y, q1, q2) 7→ x + y +
q1·q2
xy2 + q2

y and

Hn(W̃ , pr) ∼= C[z, q±1 , q
±
1 ]〈z2∂z, z∂q1 , q2z∂q2〉/I

where I is the left ideal generated by

(q1z∂q1)2 − q1(q2z∂q2 − 2q1z∂q1)(q2z∂q2 − 2q1z∂q1 − 1)
(zq2∂q2)(zq2∂q2 − 2zq1∂q1)− q2

z2∂z + 2q2z∂q2

6 Non-commutative Hodge structures

In this section, which can be read almost independently of the other parts of the text, we will discuss
some results on abstract non-commutative Hodge structures (called ncHodge structures for short in the
sequel). The ultimate aim is to use ncHodge structures very much like ordinary ones, in particular,
one would like to study period maps, Torelli problems etc. However, for the moment these kind of
techniques are available only for a restricted class of ncHodge-structures (namely, the so-called regular
ones). However, these are in a certain sense the building blocks for more general (irregular) ncHodge
structures, which, as we will see, occur in mirror symmetry. In that sense any result for the regular case
will certainly also be of importance for ncHodge structures defined by Landau-Ginzburg models.
We start with the very definition of a non-commutative Hodge structure. For simplicity, we suppress any
notion of weights, that is, we consider only ncHodge structures of weight 0. Such structures almost never
exists in (commutative or non-commutative) geometry, however, they are technically slightly simpler to
treat and the adaption to the general case is not very difficult. We also omit the grading present in
the definition in [KKP08], as we are not going to discuss the (conjectural) construction of an ncHodge
structures from a category, as described in loc.cit.

Definition 6.1 (ncHodge structure, [HS07b], [KKP08], [Sab11]). A real resp. rational non-commutative
Hodge structure (of weight 0) consists of the following data:

1. An algebraic vector bundle H on Cz (z being a fixed coordinate on C) of rank µ.

2. A K-local system L on C∗ (with K being either R or Q), together with an isomorphism

iso : L ⊗K OC∗ → H|C∗

such that the connection ∇ induced by iso has a pole of order at most 2 at z = 0 and a regular
singularity at z =∞.

3. A polarizing symmetric form P : L ⊗ j∗L → KC∗ (where j(z) = −z), which induces a non-
degenerate pairing

P : H⊗OC j∗H → OC
In particular, we have an induced non-degenerate pairing [P ] : H/zH×H/zH → C.
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4. There is an isomorphism

H⊗OC ÔC[∗{0}] ∼= ⊕ki=1(Ri,∇i)⊗ eui/z

where u1, . . . , uk ∈ C, where ÔC denotes the completion of OC at z = 0 and where (Ri,∇i) are
formal meromorphic bundles (i.e., locally free ÔC(∗{0})-modules) equipped with a connection with
regular singularity at z = 0.

If all ui in this decomposition are equal to zero, then H⊗OC(∗0) is a regular DCz -module, and we
say that the (H,L, iso, P ) is regular in this case.

5. Consider the morphism γ : P1 → P1 given by γ(z) = 1/z, and glue the bundle H on C and the
bundle γ∗H on P1\{0} via an identification of the local systems L ⊗K C and γ∗L ⊗K C on C∗.
Using the flat structure, it suffices to define this identification on S1 only and here it is given by
complex conjugation called τ , that is, by conjugation with respect to K-structure L in LC. Call the
resulting holomorphic bundle Ĥ → P1. Then we call H pure iff Ĥ ∼= OµP1 and pure polarized if it
is pure, and if the hermitian form

h := P (−, τ−) : H0(P1, Ĥ)×H0(P1, Ĥ) −→ C

is positive definite. Notice that τ induces an anti-linear involution on the space of global sections
of the trivial bundle Ĥ.

The following result gives a partial explanation of the term “ncHodge”: namely, it shows how ordinary
Hodge structures can be seen as ncHodge-structures.

Proposition 6.2 ([KKP08, lemma 2.9],[HS07b, section 5]). The functor sending a real resp. rational
Hodge structure (VK, F •VC, w) to the ncHodge structure given by H := ⊕k∈Zz−kF kVC ⊂ VC⊗CC[z, z−1]
(where L ∼= VK ⊂ VC ⊗C C[z, z−1]) is fully faithful. Its image are the ncHodge structures where ∇ has a
logarithmic pole (i.e., a pole of order 1) on H at zero and such that the monodromy of ∇ is trivial.

Remark: We will not give any more details on the origins of the name non-commutative Hodge
structures. The basic idea (which is described in [KKP08] but which is for the moment merely a collection
of conjectures) is that one can find such structures starting from a certain triangulated category. The
object which is supposed to underly a non-commutative Hodge structure is the so-called negative cyclic
homology of this category. In some special cases, one expects to get back ncHodge structures constructed
directly from geometric input data via this general categorical setup. See, e.g. [Shk11] for the case of
isolated hypersurface singularities (the example from theorem 6.9 below).
A very important feature of the theory is the study of families of ncHodge structures, very much similar
to the case of ordinary Hodge structures. The classical notion of Griffiths transversality is expressed as
a certain pole order property of a family of ncHodge structures.

Definition 6.3. A variation of (pure resp. pure polarized) ncHodge structures on a complex manifold
M is a vector H bundle on Cz ×M , equipped with a connection operator with poles along {0} ×M such
that

1. For any vector field X on M , H is invariant under the operator z∇X .

2. For any point c ∈ M , the restriction of H to Cz × {c} is a (pure resp. pure polarized) ncHodge
structure in the sense of definition 6.1

One checks that for a variation of ncHodge structures coming from an ordinary one, that is, such that
the restriction to each point in the parameter space lies in the essential image of the functor considered
in proposition 6.2, the pole order property (1.) in the above definition is equivalent to the Griffiths
transversality property of the variation of Hodge structures we started with.
A regular ncHodge structure has a set of discrete invariants, the so called spectral numbers. They will
be used below for the construction of classifying spaces. We give the definition together with some of
the main properties.
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Definition-Lemma 6.4. Let (H,L, iso, P ) be a regular ncHodge structure and suppose that the mon-
odromy of the local system L is quasi-unipotent, i.e, that the monodromy operator T on the space of (flat
multivalued) sections of L satisfies (Tn − Id)m = 0 for some non-negative integers m,n. This condition
is equivalent to the fact that the eigenvalues of T are roots of unity, and it is satisfied in virtually all
examples coming from geometry.

1. Define the spectrum (which is actually an invariant of H and ∇ only) by

Sp(H,∇) =
∑
α∈Q

dimC

(
GrαVH
GrαV zH

)
· α ∈ Z[Q],

where V •H(∗D) is the canonical V -filtration, also called Kashiwara-Malgrange filtration, on the
DCz -module H(∗0) (see, e.g. [Her02, section 7.2]). It induces a filtration V •H on the lattice
H ⊂ H(∗0), which is used in the above definition through its graded parts GrαVH. Notice that the
V -filtration is indexed by Q, which corresponds to the quasi-unipotency of L.

We also write Sp(H,∇) as a tuple α1, . . . , αµ of µ numbers (with µ = rank(H)), ordered by α1 ≤
. . . ≤ αµ.

2. α is a spectral number, that is, we have dimC (GrαV (H/zH)) > 0, only if e−2πiα is an eigenvalue
of the monodromy operator T .

3. The spectrum satisfies αi = −αµ+1−i (more generally, if we allow weights, then we have αi +
αµ+1−i = w for an ncHodge structure of weight w).

A fundamental tool in the study of Hodge structures is the theory of classifying spaces and period maps
associated to a variation of Hodge structures. A similar result exists in the non-commutative case, and
can be expressed as follows.

Theorem 6.5. 1. [HS10, theorem 7.3] Fix a quasi-unipotent K-local system L on C∗ and the polar-
izing form P : L ⊗ j∗L → KC∗ . Fix also a rational number α1 such that e−2πiα1 is an eigenvalue
of the monodromy of L. Moreover, suppose that α1 ≤ 0 (or, more generally, that α1 ≤ w

2 , where
w is a fixed integer that will be the weight of the ncHodge structures to consider). Put

M :=
{

(H,∇z) |H → Cz vector bundle, ∇z ∈ AutC(H|C∗z ) connection , (z2∇z)(H) ⊂ H,

Sp(H,∇) ⊂ [α1,−α1] ∩Q,∃ iso : L ⊗KC∗ OC∗
∼=→ H|C∗ , P (H,H) ⊂ zwOCz non-degenerate

}
Then M is a projective variety which is stratified by locally closed smooth subvarieties parameter-
izing bundles with connection with fixed spectral numbers.

M comes equipped with a universal bundle HM → Cz ×M with a relative connection ∇z, and a
polarizing form defined by P .

2. [HS10, section 8] Define

Mpp :=
{
x ∈M| (HM,L, iso, P )|C×{x} is a pure polarized ncHodge structure

}
(this is an open subvariety of M), then the tangent sheaf ΘMpp of Mpp can be endowed with a
positive definite hermitian metric h, which defines a distance function dh on Mpp.

3. [HS10, theorem 8.6] The metric space (Mpp, dh) is complete.

The following result describes the period maps which are analogues of the classical period maps for
variations of ordinary Hodge structures.

Proposition 6.6. Let (H,L, iso, P ) be a variation of regular pure polarized ncHodge structures on a
simply connected manifold M , and let α1 be the smallest spectral number of the restriction of (H,∇) to
a generic point of M . Then there is a period map φncHodge : M →Mpp satisfying φ∗ncHodge(HM) ∼= H.
If the spectrum of (H,∇) is constant on M , then the holomorphic sectional curvature κ of the metric h
on ΘMpp will be negative and bounded from above by a negative number on the image Im(dφncHodge) of
the derivative dφncHodge : TM → φ∗ncHodgeΘMpp of the period map.
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Using standard tools from complex hyperbolic analysis, we obtain the following two consequences.

Corollary 6.7. 1. [HS07a, corollary 4.5] Let (H,L, iso, P ) be a variation of pure polarized regular
ncHodge-structures on Cn with constant spectrum. Then the associated period map φncHodge is
constant, in other words H is stable under ∇. One says that (H,L, iso, P ) is a trivial variation of
ncHodge structures in this case.

2. [HS10, theorem 9.5] Let X be a complex manifold, Z ⊂ X a complex space of codimension at
least two. Suppose that the complement Y := X\Z is simply connected. Let (H,L, iso, P ) be a
variation of pure polarized regular ncHodge-structures on the complement Y which has constant
spectral numbers. Then this variation extends to the whole of X, with possibly jumping spectral
numbers over Z.

Remarks:

1. The first statement from the above corollary even extends to the irregular case. However, if we do
not suppose that the connection ∇ is regular along z = 0, then we need some kind of regularity
along the boundary of the parameter space, e.g. along Pn\Cn. Such a property exists, and is called
tameness of the associated harmonic bundle. See [HS10, corollary 6.3] for a precise statement.

2. The second statement treats extensions of regular ncHodge structures over codimension two sub-
varieties. The question how to extend a variation over a divisor is perhaps even more important.
In that case, we need the full power of the limit statements for harmonic bundle, due to Mochizuki
(see [Moc07]). We also need to take care of the possible monodromy along the boundary divisor,
this can be done by adding the structure of a lattice (i.e., a Z-local subsystem of L). A precise
formulation of the result for extensions over divisors can be found in [HS10, theorem 9.7].

The following fundamental theorem shows how ncHodge structures occur in geometry. It concerns a
certain type of regular functions on smooth affine varieties, called cohomologically tame. Without giving
the precise definition of this notion (see [Sab06]) let us just mention that such functions have isolated
critical points and satisfy moreover an assumption concerning their behavior at infinity (in the fibres
of an appropriate compactification). In particular, convenient and non-degenerate Laurent polynomials,
like the Landau-Ginzburg model of a toric Fano manifold are cohomologically tame.

Theorem 6.8 ([Sab08]). Let U be a smooth affine manifold and f : U → C a cohomologically tame
function. Then the twisted de Rham cohomology Hn(f) underlies a pure polarized non-commutative
Hodge structure.

There is another important class of examples where the twisted de Rham cohomology can be equipped
with an ncHodge structure. These are germs of holomorphic functions with isolated critical points also
called isolated hypersurface singularities. However, and this is one of the main issues of study in this so-
called local case, the corresponding structure does not necessarily satisfy the condition (5.) in definition
6.1. Nevertheless, we have the following result.

Theorem 6.9 ([HS07b, corollary 11.4]). Let f : (Cn+1, 0) → (C, 0) be an isolated hypersurface singu-
larity. Then for a sufficiently large real number r, the twisted de Rham cohomology of an appropriate
representative of the germ r · f underlies a pure polarized ncHodge structure.

7 Mirror symmetry statements

Using all the objects introduced above we can now express mirror correspondences as isomorphisms of
systems of differential equations. This identification relies on Givental’s theorem (theorem 3.7 above),
and yields an isomorphims of vector bundle with connections on Cz×(C∗)r. This is the first result of this
section. However, from a physical point of view, we would like to express the mirror correspondence as
an isomorphism of so-called Frobenius manifolds, which appear as moduli spaces of two dimensional
topological field theory in physics. The cohomology of any, say smooth projective, variety carries a
Frobenius structure which is defined precisely using the quantum multiplication. We introduce this
notion here and show briefly (refering to [RS10] for more details) how to construct such a manifold
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from the Landau-Ginzburg model. The final result then says that there is an isomorphism of Frobenius
manifolds between the A-model and the B-model, and this can be considered to be the culminating point
of this version of mirror symmetry for smooth toric varieties with ample or nef anticanonical bundle.
Let us start with the very definition of a Frobenius manifold. For our purpose, we also need an extended
version called logarithmic Frobenius manifold, which takes into account the degeneration behavior of the
quantum multiplication at the large radius volume limit.

Definition 7.1. Let M be a complex manifold.

1. A Frobenius structure on M is given by two tensors ◦ ∈ (ΩM )⊗2 ⊗OM TM , g ∈ (ΩM )⊗2 and two
vector fields E, e ∈ TM subject to the following relations.

(a) ◦ defines a commutative and associative multiplication on TM with unit e.

(b) g is bilinear, symmetric and non-degenerate.

(c) For any X,Y, Z ∈ TM , g(X ◦ Y,Z) = g(X,Y ◦ Z).

(d) g is flat, i.e., locally there are coordinates t1, . . . , tµ on M such that the matrix of g in the
basis (∂t1 , . . . , ∂tµ) is constant.

(e) Write ∇ for the Levi-Civita connection of g, then the tensor ∇◦ is totally symmetric.

(f) ∇(e) = 0.

(g) LieE(◦) = ◦, LieE(g) = D · g for some D ∈ C

2. Now suppose that dimC(M) > 0 and let D ⊂ M be a simple normal crossing divisor. Suppose
that (M\D, ◦, g, e, E) is a Frobenius manifold. Then we say that it has a logarithmic pole along
D (or that (M,D, ◦, g, e, E) is a logarithmic Frobenius manifold for short) if ◦ ∈ Ω1

M (log D)⊗2 ⊗
TM (log D), g ∈ Ω1

M (log D)⊗2, E, e ∈ T (log D) and if g is non-degenerate on TM (log D). Here
Ω1(log D) resp. T (log D) are the sheaves of logarithmic differential forms resp. logarithmic vector
fields along D.

The following is the basic result which explains why Frobenius structures enter into the mirror symmetry
picture.

Theorem 7.2 (see, e.g., [Man99]). Let X be smooth projective and convex (this last assumption is not
essential). Define a multiplication ◦ on the tangent bundle of the cohomology space H∗(X,C) as was
done above before definition 3.2. Define a constant (hence flat) pairing g(−,−) on TH∗(X,C) by the
non-degenerate Poincaré metric on H∗(X,C). Put e = 1 ∈ H0(X,C) and recall from the definition of the
quantum D-module (equations (6)) that E =

∑s
i=0

(
1− deg(Ti)

2

)
ti∂ti +

∑r
a=1 ka∂Ta , where

∑r
a=1 kaTa =

c1(X). Then the tuple (H∗(X,C), ◦, g, e, E) defines a formal germ of a Frobenius manifold at t0 = t1 =
. . . = ts = 0.

The fact that we do not know in general whether the quantum product is convergent forces us to restrict
to formal germs in the last theorem. However, as explained above, we do not worry about convergence
questions in this paper, so that we simply assume that there is a certain subspace of H∗(X,C) on which
we have a holomorphic Frobenius structure, and we also want this subspace to contain a neighborhood
of the large radius limit. Then the divisor axiom for Gromov-Witten invariants yields

Lemma 7.3 ([Rei09, section 2.1.2]). Let U ⊂ H0(X,C)⊕
(
H2(X,C)/2πiH2(X,Z)

)
⊕H>2(X,C) be a

domain of convergence of the quantum product, and assume that a point (t0, q, t) is contained in U if it
is small enough in the standard hermitian metric of C× (C∗)r×Cs−r−1. Let U ⊂ Cs be the closure (i.e.,
including points where qa = 0 for some a = 1, . . . , r). Then the Frobenius structure on U extends to a
logarithmic Frobenius structure on (U,D), where D =

⋃r
a=1Da, with Da = {qa = 0}.

Our next task is to explain how one can construct a Frobenius structure (which will also acquire logarith-
mic poles along a normal crossing divisor) starting from a Landau-Ginzburg model, that is, from a family
of Laurent polynomials W̃ : (C∗)n × (C∗)r → C. We use the twisted de Rham cohomology constructed
in section 5, and the isomorphism (11) expressing it by hypergeometric differential equations. The main
step towards the construction of Frobenius manifolds is contained in the following proposition. In order
to keep notations simple, we restrict to the Fano case.
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Proposition 7.4 ([RS10, proposition 3.10]). Suppose that XΣ is smooth toric and Fano. There is a
Zariski open subset U ⊂ Cr including the limit point {q = 0} ∈ Cr and an extension 0̂QMÃ → P1

z ×U of
0QMÃ which is a family of trivial P1-bundles and such that the connection extends with a logarithmic pole

along {z = ∞} ∪
⋃r
a=1{qa = 0}. Moreover, the restriction

(
0̂QMÃ

)
|{z=0,qa=0}

is canonically equipped

with a multiplication and is isomorphic as an algebra to the classical cohomology ring of XΣ.

Example: We give here the simplest example for which the mirror correspondence can be estab-
lished directly, namely, that of the projective spaces. For the Hirzebruch surfaces F1 and F2, a similar
computation can be carried out. In fact, the representation of the twisted de Rham cohomology of the
Landau-Ginzburg model of Pn, i.e., formula (12) already gives the desired extension to z =∞. More pre-
cisely, put ωi := (zq∂q)i for i = 0, . . . , n, then there is an isomorphism Hn(W̃Pn , pr) ∼= ⊕ni=0OCz×(C∗)rωi,
and we have a connection

∇(ω) = ω ·
[
(A0

1
z

+A∞)
dz

z
−A0 ·

dq

n · z · q

]
(13)

where ω = (ω0, . . . , ωn), where

A0 :=


0 0 . . . 0 c · q
−1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . −1 0

 ,

with c ∈ C∗ and where A∞ = diag(0, 1, . . . , n).
Then we can simply define 0̂QMÃ := ⊕ni=1OP1

z×(C∗)rωi, so that U = (C∗)r in this case and it is easily

seen from equation 13 that the connection ∇ on 0̂QMÃ has poles with the desired properties.

We now deduce from Givental’s theorem two types of mirror statements. The first one concerns the
small quantum D-module G from definition 3.2.

Theorem 7.5. [Iri09, proposition 4.8], [RS10, proposition 4.10] Let XΣ be Fano. There is an isomor-
phism of bundles with connection on P1 × U

0̂QMÃ
∼= F.

The second mirror correspondence will be an isomorphism of Frobenius manifolds. There is a general
strategy to construct Frobenius manifolds starting from families of trivial vector bundles on P1. Results
of this kind are due to Malgrange, Dubrovin and Hertling-Manin (see [HM04] and the references therein).
The version that we need here (taking into account logarithmic poles) can be found in [Rei09], and this
gives the following result.

Theorem 7.6 (Mirror symmetry for smooth toric Fano varieties). Let XΣ be smooth projective and Fano.
Let W̃XΣ be its Landau-Ginzburg model. There is a germ ((M, 0), (D̃, 0)) of a canonical logarithmic Frobe-
nius structure associated to W̃XΣ . Here M = U×Ck and D̃ = D×Ck, where k = n! vol(∆(a1, . . . , am))−r.
The Frobenius structure is defined by a family of P1-bundles on M which restricts to 0̂QMÃ on U ×{0}.
This Frobenius structure is isomorphic to the one from theorem 7.2 (i.e. to the quantum cohomology of
XΣ) near the limit point q = 0.

The very last statement can be considered as the final version of the mirror symmetry for smooth toric
Fano varieties. The nef case can also be treated by these methods, and the result is basically the same,
with some small technical modifications.
Finally, let us once again come back to the example of the projective spaces. Consider the twisted de
Rham cohomology (i.e., either formula (12) or formula (13)), then we easily see (and this is of course a
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general fact) that the restriction Hn(W̃Pn , pr)|z=0 is a family of C[q±]-algebras. More precisely, write p
for the class of zq∂q, then formula (12) gives that

Hn(W̃Pn , pr)|z=0
∼=

C[p, q±]
(pn+1 − q)

and we see from the isomorphism (5) that this is precisely the small quantum cohomology of Pn. In the
same way, it is easy to see that the quantum-D-module of Pn is exactly given by the connection operator
in formula (13). Hence, in this simple case there is an explicit identification of the differential systems
on the two sides of the mirror correspondence.
We finish this survey by mentioning the following corollary, which follows directly from theorem 7.5 and
theorem 6.8 above.

Corollary 7.7. Let XΣ be Fano. Then the (restriction to Cz × (C∗)r of the) quantum D-module F of
XΣ underlies a variation of a pure polarized non-commutative Hodge structures.
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[Kou76] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976),
no. 1, 1–31.

[KV07] Joachim Kock and Israel Vainsencher, An invitation to quantum cohomology, Progress in
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