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Abstract

We describe mirror symmetry for weak Fano toric manifolds as an equivalence of filtered D-
modules. We discuss in particular the logarithmic degeneration behavior at the large radius limit
point, and express the mirror correspondence as an isomorphism of Frobenius manifolds with loga-
rithmic poles. The main tool is an identification of the Gauß-Manin system of the mirror Landau-
Ginzburg model with a hypergeometric D-module, and a detailed study of a natural filtration defined
on this differential system. We obtain a solution of the Birkhoff problem for lattices defined by this
filtration and show the existence of a primitive form, which yields the construction of Frobenius
structures with logarithmic poles associated to the mirror Laurent polynomial. As a final applica-
tion, we show the existence of a pure polarized non-commutative Hodge structure on a Zariski open
subset of the complexified Kähler moduli space of the variety.
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1 Introduction

In this paper we study the differential systems that occur in the mirror correspondence for smooth toric
weak Fano varieties. On the so-called A-side of mirror symmetry, which is mathematically expressed
as the quantum cohomology of this variety, these systems has been known since quite some time as
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quantum D-modules. A striking fact which makes their study attractive is that the integrability of the
corresponding connection encodes many properties of the quantum product, in particular, the associa-
tivity, usually expressed by the famous WDVV-equations. It is well-known (see, e.g., [Man99]) that the
quantum D-module (or first structure connection) is essentially equivalent to the Frobenius structure
defined by the quantum product on the cohomology space of the variety.
The main subject of this paper is to establish the same kind of structures for the B-side, also called
the Landau-Ginzburg model, of such a variety. This problem is related to more classical objects in the
theory of singularities of holomorphic or algebraic functions: namely, period integrals, vanishing cycles
and the Gauß-Manin connection in its various forms. A by-now well-known construction going back to
K. Saito and M. Saito endows the semi-universal unfolding space of an isolated hypersurface singularity
f : (Cn, 0) → (C, 0) with a Frobenius structure. There are two main ingredients in constructing these
structures: a very precise analysis of the Hodge theory of f , which is done using the the so-called
Brieskorn lattice, and which culminates in a solution of the Birkhoff problem (also called a good basis of
the Brieskorn lattice). The second step is to show that there is a specific section of the Brieskorn lattice,
called primitive and homogeneous (which is also known as the “primitive form”).
However, these Frobenius manifolds will never appear as the mirror of the quantum cohomology of some
variety. Sabbah has shown in a series of papers (partly joint with Douai, see [Sab97], [Sab06], [DS03])
that the above results can be adapted if one starts with an algebraic function f : U → C defined on
a smooth affine variety U . Besides the isolatedness of the critical locus of f , one is forced to impose
a stronger condition, known as tameness. Roughly speaking, it states that no change of the topology
of the fibres comes from critical points at infinity. The need for this condition reflects the fact that
the Gauß-Manin system of such a function, and other related objects, are not simply direct sums of
the corresponding local objects at the critical points. For tame functions, it is known that the Birkhoff
problem for the Brieskorn lattice always has a solution, similarly to the local case, one uses information
coming from the Hodge theory of f to show this result. One the other hand, the existence of a primitive
(and homogeneous) form is a quite delicate problem which is not known in general. It has been shown for
certain tame polynomials in [Sab06], for convenient and non-degenerate Laurent polynomials in [DS03]
(and later with different methods in [Dou05]) and also for some other particular cases of tame functions
(e.g., [GMS09]). In any case, the outcome of these constructions is a germ of a Frobenius structure
on the deformation space of a single function. The general construction in [DS03] does not give much
information on how these Frobenius manifolds vary for families of, say, Laurent polynomials. Notice also
that the Frobenius structure associated to a Laurent polynomial (or even to a local singularity) is not
at all unique, it depends on both the choice of a good basis and a primitive (and homogeneous) form.
However, there is a canonical choice of a solution of the Birkhoff problem, predicted by the use of Hodge
theory (more precisely, it is defined by Deligne’s Ip,q-splitting of the Hodge filtration associated to f),
but in general Frobenius structure coming from this solution will not behave well in families.
For some special kind of Fano varieties like the projective spaces (see [Bar00]) or, more generally, for
some orbifolds like weighted projective spaces ([Man08], [DM09]), it is possible to find explicit solutions
to the Birkhoff problem and to carry out the construction of the Frobenius manifold rather directly.
Then one may compare the Brieskorn lattices (or their extension using good bases) to the quantum
D-module by an explicit identification of bases. This yields isomorphisms of Frobenius manifolds and
even some results on their degeneration behavior near the large radius limit (see [DM09]), but of course
this method is limited if one wants to attack more general classes of examples.
In the present paper, we obtain such an identification of Frobenius manifolds for all weak Fano toric
manifolds, using Givental’s I = J-theorem ([Giv98]). We do not rely on the results of [DS03], instead,
we identify the family of Gauß-Manin systems attached to the Landau-Ginzburg model of our variety
with a certain hypergeometric D-module (also called Gelfand-Kapranov-Zelevinski-(GKZ)-system) by a
purely algebraic argument. This makes available some known results and constructions from the theory
of these special D-modules, and we are able to deduce a finiteness and a duality statement for the
family of Brieskorn lattices. The tameness assumption from above is used via an adaption of a result in
[Ado94], who has calculated the characteristic variety of a hypergeometric D-module. In general, this
tameness will hold on a Zariski open subspace of the parameter space, and we show that if our variety
is genuine Fano, then this is the whole parameter space. An important point in the construction is to
extend the family of Brieskorn lattices on the Kähler moduli space of the variety to a certain partial
compactification including the large radius limit point. This compactification depends on a choice of
coordinates on the complexified Kähler moduli space, that is, on a choice of a basis of nef classes of the
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second cohomology of our variety. Once we have this logarithmic extension, we can apply [Rei09] which
yields the construction of a logarithmic Frobenius manifold, that is, a Frobenius structure on a manifold
which is the complement of a normal crossing divisor, and such that both multiplication and metric
are defined on the sheaf of logarithmic vector fields. At any point inside the Kähler moduli space, this
restricts to a germ of a Frobenius manifold constructed in [DS03]. In this sense our mirror statement also
generalizes the equivalence of Frobenius structures (at fixed points of the Kähler moduli space) known
in particular cases like Pn.
Let us give a short overview on the content of this paper: In section 2 we study in some detail various
differential systems associated to toric data defined by a smooth toric weak Fano variety XΣA (where ΣA
is the defining fan), parts of the results hold even more generally for a given set of vectors in a lattice.
In particular, we obtain an identification of a certain hypergeometric D-module with the Gauß-Manin
system of a generic family of Laurent polynomials defined by the toric data, more precisely, with a
partial Fourier-Laplace transformation of it (theorem 2.4). We next study a natural filtration of this
Gauß-Manin system, prove a finiteness result (theorem 2.14) and show that it satisfies a compatibility
condition with respect to the duality functor (proposition 2.18).
The actual Landau-Ginzburg model is a subfamily of the family of generic Laurent polynomials studied
in section 2, parameterized by the Kähler moduli space, i.e., by a dimH2(XΣA ,C)-dimensional torus. In
section 3, we first identify the Gauß-Manin system of the Landau-Ginzburg model of XΣA with a GKZ-
system on the Kähler moduli space (corollary 3.3). In the second part of this section, we extend this
module to a vector bundle with an integrable connection having logarithmic poles along the boundary
divisor of an appropriate compactification of the Kähler moduli space (theorem 3.7). From this object
we can derive, using a a method which goes back to [Gue08], a specific basis defining a solution to the
Birkhoff problem in family in the sense of [DS03]. This is a family of P1-bundles which extends the
GKZ-D-module mentioned above. An important new point is that this construction works taking into
account the logarithmic degeneration behavior near the large radius limit point. As a consequence, we
can construct a canonical logarithmic Frobenius manifold associated to the Landau-Ginzburg model of
XΣA , which has an algebraic structure on the subspace corresponding to the compactified Kähler moduli
space (theorem 3.16). One may speculate that it restricts to the canonical Frobenius structure considered
in [DS03] in a small neighborhood of any point of the Kähler moduli space (question 3.17).
In section 4 we first recall very briefly the construction of the quantum D-module of a projective variety,
and then show that it is isomorphic, in the toric weak Fano case, to the family of P1-bundles with
connection constructed in section 3. From this we deduce (theorem 4.11) an isomorphism of logarithmic
Frobenius manifolds by invoking the main result from [Rei09].
In the final section 5 we show (theorem 5.3), using the fundamental result from [Sab08] that the quan-
tum D-module is equipped with the structure of a variation of pure polarized non-commutative Hodge
structures in the sense of [KKP08]. As there are several versions of this notion around, we briefly recall
the basic definitions and show how they apply in our context. This result strengthens a theorem of
Iritani ([Iri09b]), who directly shows the existence of tt∗-geometry in quantum cohomology, however, he
uses an asymptotic argument, whereas our approach gives the existence of an ncHodge structure wher-
ever the small quantum product is convergent and the mirror map is defined. We also deduce from the
construction of a logarithmic Frobenius manifold that this tt∗-geometry behaves quite nicely along the
boundary divisor of the Kähler moduli space, namely, that the corresponding harmonic bundle is tame
along this divisor (theorem 5.5).
We finish this introduction by some remarks on how our work relates to other papers concerning mirror
symmetry for Fano varieties and hypergeometric differential systems: As already mentioned above, our
main result relies on Givental’s I = J-theorem. It is certainly well-known to specialists (and it is briefly
mentioned at some places in [Giv98] and also in subsequent papers) that the I-function is related to
oscillating integrals and hence to the Fourier-Laplace transformation of the Gauß-Manin system of the
mirror Laurent polynomial, but to the best of our knowledge, a thourough treatment of these issues
is missing in the literature. More recently, Iritani has given in [Iri09a] an analytic description of the
differential system associated to the Landau-Ginzburg model and discussed its relation to hypergeometric
D-modules. He considers the more general case of toric weak Fano orbifolds, however, solutions to the
Birkhoff problem resp. Frobenius structures are not treated in loc.cit. Passing through the analytic
category one also looses the algebraic nature of the objects involved, which may be an obstacle in some
situations. As an example, one cannot apply the general results on formal decomposition of meromorphic
bundles with connection from [Moc09] and [Moc08b] for non-algebraic bundles. Nevertheless, some of

3



the techniques used here are also present in [Iri09a], and at some points our presentation is (without
explicit mentioning) similar to that of loc.cit.
Finally, let us notice that although one may think of an extension of some of our results (like those in
section 2) to the orbifold case, there is a serious obstacle in the construction of a logarithmic Frobenius
structure associated to the Landau-Ginzburg model of a weak Fano toric orbifold. This is mainly due to
the fact that the “limit” orbifold cup product does not satisfy an “H2-generation condition”, in contrast
to the case of toric manifolds (see also the preprint [DM09] for a discussion of this phenomenon for the
case of weighted projected spaces).

2 Hypergeometric D-modules and filtered Gauß-Manin systems

In this section we study Gauß-Manin systems associated to generic families of Laurent polynomials. We
show that (a partial Fourier-Laplace transformation of) these D-modules always have a hypergeometric
structure, i.e., are isomorphic to (a partial Fourier-Laplace transformation of) a certain GKZ-system.
Moreover, both Gauß-Manin systems and GKZ-systems carry natural filtrations by O-modules. For the
Gauß-Manin system, these are the so-called Brieskorn lattices, as studied, for more general polynomial
functions, in [Sab06]. We show that the above identification also works at the level of lattices. As
an application, we prove that if the family of Laurent polynomials is associated to a fan of a smooth
toric weak Fano manifold, then outside a certain “bad part” of the parameter space, the family of
Brieskorn lattices is O-locally free. This will be needed later in the construction of Frobenius manifolds
associated to these special families of Laurent polynomials. Finally, we study the holonomic dual of the
Gauß-Manin system and obtain (up to a shift of the homological degree) an isomorphism of this dual
to the Gauß-Manin system itself. The way of constructing this isomorphism is purely algebraic, using
a resolution called Euler-Koszul complex of the hypergeometric D-module which is isomorphic to the
Gauß-Manin system. This proof differs from [Sab06] or [DS03], where the duality isomorphism is obtain
in a topological way. We could also give a topological proof along the lines of the quoted papers, by
using a partial compactifications of the family of Laurent polynomials and a smoothness property at
infinity (see the proof of proposition 2.9 for a description of this partial compactification). However, our
algebraic approach gives almost for free that the above mentioned filtration is compatible (up to a shift),
with the duality isomorphism. This fact is also needed for the construction of Frobenius structures.

2.1 Hypergeometric systems and Gauß-Manin systems

We start with the following set of data: Let N be a finitely generated free abelian group of rank n,
for which we choose once and for all a basis which identifies it with Zn. Let a1, . . . , am be elements
of N , which we also see as vectors of Zn. We suppose that a1, . . . , am generates N , if we only have∑n
i=1Qai = NQ := N ⊗Q, then some of our results can be adapted, see proposition 2.6 below. In order

to orient the reader, let us point out from the very beginning that the case we are mostly interested
in is when these vectors are the primitive integral generators of the rays of a fan ΣA in NR := N ⊗ R
defining a smooth projective toric variety XΣA which is weak Fano, that is, such that the anticanonical
divisor −KXΣA

is numerically effective (nef). The Fano case, i.e., when −KXΣA
is ample is of particular

importance and will sometime be treated apart, as there are cases in which we obtain stronger statements
for genuine Fano varieties. See also the proof of proposition 2.1, the proof of lemma 2.8 and the beginning
of section 3 for toric characterizations of the weak Fano condition. We will abbreviate this case by saying
that a1, . . . , am are defined by toric data. We write L for the module of relations between a1, . . . , am, i.e.,
l ∈ L ⊂ Zm iff

∑m
i=1 liai = 0. We will denote by S0 the n-dimensional torus Spec C[N ] with coordinates

y1, . . . , yn and by W ′ the m-dimensional affine space Spec C[⊕mi=1Nai] with coordinates w1, . . . , wm. We
are slightly pedantic in this latter definition in order to make a clear difference with the dual space,
called W , which will appear later.
An important point in the arguments used below will be to consider the following set of extended
vectors: Put Ñ := Z × N ∼= Zn+1, ãi := (1, ai) ∈ Ñ for all i = 1, . . . ,m and ã0 := (1, 0) ∈ Ñ . Write

Ã = (ã0, ã1, . . . , ãm). Notice that the module of relations of Ã is isomorphic to L, any l = (l1, . . . , lm) ∈ L
gives in a unique way rise to the relation (−

∑m
i=1 li)ã0 +

∑m
i=1 liãi = 0. By abuse of notation, we also

write L for the module of relations of Ã. As another piece of notation, we put l :=
∑m
i=1 li. Let

V ′ = Spec C[⊕mi=0Nãi] with coordinates w0, . . . , wm and V the dual space, with coordinates λ0, . . . , λm.
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We also need the m-dimensional torus S1 := Spec C [(⊕mi=1Zai)
∨], with inclusion map j : S1 ↪→ W .

Moreover, put V̂ := Spec C[Nã0] ×W and T̂ := Spec C[Nã0] × S1, we still denote the map T̂ ↪→ V̂ by

j. We put τ = −w0 so that (τ, λ1, . . . , λm) gives coordinates on V̂ resp. T̂ . We will also write Cτ for
Spec C[Nã0] and C∗τ for Spec C[Zã0]. Later we will consider algebraic DV̂ - (resp. DT̂ )-modules which
are localized along τ = 0, and in this case we also use the variable z := τ−1. Sometimes we will implicitly
identify such modules with their restriction to C∗τ ×W resp. to C∗τ × S1.
The first geometric statement about these data is the following proposition.

Proposition 2.1. 1. Consider the map

k : S0 −→ W ′

(y1, . . . , yn) 7−→ (w1, . . . , wm) := (ya1 , . . . , yam),

where yai :=
∏n
k=1 y

aki
k . Suppose that 0 lies in the interior of Conv(a1, . . . , am), where for any

subset K ⊂ N , Conv(K) denotes the convex hull of K in NR. Then k is a closed embedding.

2. Suppose that a1, . . . , am are defined by toric data. In particular, the completeness of ΣA implies that

0 is an interior point of Conv(a1, . . . , am). Let NÃ =
∑m
i=0Nãi, then NÃ is a normal semigroup,

i.e. it satisfies Ñ ∩ C(Ã) = NÃ and positive, i.e., the origin is the only unit in NÃ. Here for a

finite set {x̃1, . . . , x̃k} we write C({x̃1, . . . , x̃k}) for the cone
∑k
j=1R≥0x̃j. The associate semigroup

ring Spec C[NÃ] is normal, Cohen-Macaulay and Gorenstein.

Proof. 1. The condition that the origin is a interior point of the convex hull of the vectors ai translates
into the existence of a relation l = (l1, . . . , lm) ∈ L∩Zm>0 between a1, . . . , am consisting of positive
integers. On the other hand, the closure of the image of the map k is contained in the vanishing
locus of the so-called toric ideal

I =

( ∏
i:li<0

w−lii −
∏
i:li>0

wlii

)
l∈L

⊂ OW ′ .

From the existence of l ∈ L ∩ Zm>0 we deduce that the function
∏m
i=1 w

li
i − 1 lies in I. This shows

that for any point w = (w1, . . . , wm) ∈ Im(k) ⊂ V (I) ⊂W ′, we have wi 6= 0, i.e., w ∈ Im(k).

2. First we show the normality property: Consider any integer vector x̃ = (x0, x1, . . . , xn) ∈ C(Ã)∩Ñ .
We have

C(Ã) ∩ ({1} ×NR) =
⋃

λi∈R≥0;
∑m
i=0 λi=1

λiãi = {1} × Conv(a1, . . . , am) (1)

Now define
P (ΣA) =

⋃
〈ai1 ,...,ain 〉∈ΣA(n)

Conv(0, ai1 , . . . , ain)

We have the following reformulation of the weak Fano condition (see, e.g., [Wís02, page 268]):

−KXΣA
is nef ⇐⇒ P (ΣA) is convex.

Hence by assumption we know that P (ΣA) is convex. We claim that P (ΣA) = Conv(a1, . . . , am).
The inclusion ⊂ follows from the fact 0, ai1 , . . . , ain ∈ Conv(a1, . . . , am) for 〈ai1 , . . . , ain〉 ∈ ΣA(n).
The other inclusion follows from a1, . . . , am ∈ P (ΣA) and the convexity of P (ΣA). From the claim

and equality (1) we get the following decomposition of the cone C(Ã):

C(Ã) =
⋃

〈ai1 ,...,ain 〉∈ΣA(n)

C({ã0, ãi1 , . . . , ãin})

Using this decomposition, we see that x̃ lies in a cone C(ã0, ãj1 , . . . , ãjn), that is, there are
λ0, λj1 , . . . , λjn ∈ R≥0 such that x̃ = λ0ã0 +

∑n
k=1 λjk ãjk . Notice that ã0, ãj1 , . . . , ãjn is Z-basis
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of Ñ , as aj1 , . . . , ajn is a Z-basis of N which follows from the smoothness of ΣA. From this

follows x̃ ∈ NÃ. Notice also that the “exterior boundary” ∂C(ã0, ãj1 , . . . , ãjn) ∩ ∂C(Ã) equals∑n
k=1R≥0ãik so that x̃ ∈ Int(C(Ã)) precisely iff the coefficient λ0 in the above sum is positive.

From the fact that NÃ is normal it follows that Spec C[NÃ] is Cohen-Macaulay by a classical result

due to Hochster ([Hoc72, theorem 1]). That NÃ is positive is equally easy to see: it follows (see,

e.g., [MS05, lemma 7.12]) from the fact that C(Ã) is pointed, i.e., that the vectors (ãi)i=0,...,m are
contained in the half-space {x̃ ∈ Rn+1 | x̃0 > 0}.
It remains to show that Spec C[NÃ] is Gorenstein: We use [BH93, corollary 6.3.8] stating that this
property is equivalent, for normal positive semigroup rings, to the fact that that there is a vector
c̃ ∈ Int(NÃ) with

Int(NÃ) = c̃+NÃ.

From the above proof of the normality of NÃ we see that Int(NÃ) = Ñ ∩ Int(C(Ã)). On the other

hand, the map Ñ → Ñ which sends x̃ to x̃ + (1, 0) induces a bijection from C(Ã) to Int(C(Ã)),

this follows from the characterization of C(Ã) given above.

In order to state our first main result, we will associate (several variants of) a D-module) to the set of
vectors a1, . . . , am above. This construction is a special case of the well-known A-hypergeometric systems
(also called hypergeometric D-modules or GKZ-systems). We recall first the general definition.

Definition 2.2 ([GKZ90], [Ado94]). Consider a lattice Zt and vectors b1, . . . , bs ∈ Zt which we also
write as a matrix B = (b1, . . . , bs). Moreover, let β = (β1, . . . , βt) ∈ Ct. Write (as above) L for the
module of relations of B and DCs for the sheaf of rings of algebraic differential operators on Cs (where
we choose x1, . . . , xs as coordinates). Define

Mβ
B := DCs/

(
(�l)l∈L + (Zk)k=1,...t

)
,

where
�l :=

∏
i:li<0 ∂

−li
xi −

∏
i:li>0 ∂

li
xi

Zk :=
∑s
i=1 bkixi∂xi + βk

Mβ
B is called hypergeometric system.

We will use at several places in this paper the Fourier-Laplace transformation for algebraic D-modules.
In order to introduce a convenient notation for this operation, let X be a smooth algebraic variety, and
M a DCs×X -module, where we have coordinates (x1, . . . , xs) on Cs. Then we write FL

y1,...,ys
x1,...,xsM for the

D(Cs)∨×X -module, which is the same as M as a DX -module, and where yi acts as −∂xi and ∂yi acts as
xi, here y1, . . . , ys are the dual coordinates on (Cs)∨. One could also work with the functor FLy1,...,ys

x1,...,xs ,
where yi acts as ∂xi and ∂yi acts as −xi, this would lead to slightly uglier formulas.

Definition 2.3. Let DV , DV̂ and DT̂ be the sheaves of algebraic differential operators on V , V̂ and T̂ ,
respectively.

1. Consider the hypergeometric system Mβ

Ã
associated to the vectors ã0, ã1, . . . , ãm. More explicitly,

Mβ

Ã
:= DV /I, where I is the sheaf of left ideals in DV defined by

I := DV (�l)l∈L +DV (Zk)k∈{1,...,n} +DV E,

where
�l := ∂lλ0

·
∏

i:li<0

∂−liλi
−

∏
i:li>0

∂liλi if l ≥ 0,

�l :=
∏

i:li<0

∂−liλi
− ∂−lλ0

·
∏

i:li>0

∂liλi if l < 0,

Zk :=
∑m
i=1 akiλi∂λi + βk,

E :=
∑m
i=0 λi∂λi + β0,
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here ai = (a1i, . . . , ani) when seen as a vector in Zn.

2. Let M̂β

Ã
be the DV̂ -module FL

w0

λ0
(Mβ

Ã
)[τ−1]. In other words, M̂β

Ã
= DV̂ [τ−1]/Î, where Î is the

left ideal generated by the Fourier-Laplace transformed operators �̂l, Ẑk and Ê, i.e.,

�̂l := τ l ·
∏

i:li<0

∂−liλi
−
∏

i:li>0

∂liλi = z−l ·
∏

i:li<0

∂−liλi
−
∏

i:li>0

∂liλi ,

Ẑk :=
∑m
i=1 akiλi∂λi + βk,

Ê :=
∑m
i=1 λi∂λi − τ∂τ − 1 + β0,=

∑m
i=1 λi∂λi + z∂z − 1 + β0.

3. Define M̂β,loc

Ã
:= j∗M̂β

Ã
to be the restriction of M̂β

Ã
to T̂ . We will use the presentations DT̂ [τ−1]/Î ′

and DT̂ [τ−1]/Î ′′ of M̂β,loc

Ã
where Î ′ resp. Î ′′ is the sheaf of left ideals generated by �̂′l, Ẑk and Ê

resp. �̂′′l , Ẑk and Ê, where

�̂′l := z
∑
i:li>0 li · �̂l and �̂′′l :=

∏
i:li>0

(z · λi)li · �̂l,

so that
�̂′l =

∏
i:li<0

(z∂λi)
−li −

∏
i:li>0

(z∂λi)
li ,

and, using the formula λji∂
j
λi

=
∏j−1
ν=0(λi∂λi − ν),

�̂′′l =

m∏
i=1

λlii ·
∏
i:li<0

−li−1∏
ν=0

(zλi∂λi − νz)−
∏
i:li>0

li−1∏
ν=0

(zλi∂λi − νz) .

Notice that obviously Î ′ = Î ′′, but we will later need the two different explicit forms of the generators
of this ideal, for that reason, two different names are appropriate.

4. Write MÃ :=M(1,0)

Ã
, M̂Ã := M̂(1,0)

Ã
and M̂loc

Ã
:= M̂(1,0),loc

Ã
.

In order to avoid too heavy notations, we will sometimes identify M̂β

Ã
resp. M̂β,loc

Ã
with the corresponding

modules over either C∗τ ×W resp. C∗τ × S1 or P1
z ×W resp. P1

z × S1, here P1
z is P1 with 0 defined by

z = 0.

The first main result is a comparison of these D-modules to some Gauß-Manin systems associated to
families of Laurent polynomials. When this paper was written, a similar result appeared in [AS10]. The
techniques of loc.cit. are not too far from those used in the proof of the next theorem, however, it seems
not to be more efficient to translate their result into our situation than to give a direct proof.

Theorem 2.4. Let a1, . . . , am ∈ N such that
∑m
i=1Zai = N . Consider the family of Laurent polynomials

ϕ : S0 ×W → Ct ×W defined by

ϕ((y1, . . . , yn), (λ1, . . . , λm)) = (

m∑
i=1

λiy
ai , λ) =

(
m∑
i=1

λi

n∏
k=1

yakik , (λ1, . . . , λm)

)
=: (t, λ1, . . . , λm) .

Then there is an isomorphism

φ : M̂Ã −→ FL
τ

t (H0ϕ+OS0×W )[τ−1] =: G

of DV̂ -modules.

Before entering into the proof, let us recall the following well-known description of the Fourier-Laplace
transformation of the Gauß-Manin system.
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Lemma 2.5. Write ϕ = (F, π), where F : S0 ×W → Ct, (y, λ) 7→
∑m
i=1 λiy

ai and π : S0 ×W → W is
the projection. Then there is an isomorphism of DV̂ -modules

G ∼= H0
(
π∗Ω

•+n
S0×W/W [z±], d− z−1 · dF∧

)
,

where d is the differential in the relative de Rham complex π∗Ω
•
S0×W/W . The structure of a DV̂ -module

on the right hand side is defined as follows

∂z(ω · zi) := i · ω · zi−1 − z−2F · ω · zi,

∂λi(ω · zi) := ∂λi(ω) · zi + ∂λiF · ω · zi−1 = ∂λi(ω) · zi + yai · ω · zi−1,

where ω ∈ ΩnS0×W/W .

Proof. The identification of both objects as DV̂ /DW -modules is well-known (see, e.g., [DS03, proposition
2.7], where the result is stated, for a proof, one uses [Sai89, lemma 2.4]). The proof of the formulas for
the action of the vector fields ∂λi can be found, in a similar situation, in [Sev11, lemma 7].

Proof of the theorem. Throughout the proof, we will use the following notation: Let X be a smooth
algebraic variety, and f a meromorphic function on X with pole locus D := g−1(∞) ⊂ X, then we denote
by OX(∗D) ·ef the locally free OX(∗D)-module of rank one with connection operator ∇ := d+df∧. The
DX -module thus obtained has irregular singularities along D, notice that this irregularity locus may lay
in a boundary of a smooth projective compactification X of X if f ∈ OX . For any DX -module M, we
write M · ef for the tensor product M⊗OX OX(∗D) · ef .

Put T0 := Spec C[Ñ ] with coordinates y0, y1, . . . , yn, and define

k̃ : T0 −→ C∗ ×W ′ ⊂ V ′

(y0, y1, . . . , yn) 7−→
(
w0 := y0, (wi := y0 · yai)i=1,...,m

)
,

where, as before, we write yai for the product
∏n
k=1 y

aki
k . It is an obvious consequence of the first

point of proposition 2.1, that k̃ is again a closed embedding from T0 to C∗ ×W ′. Write moreover p for
the projection C∗τ × S0 ×W � C∗τ ×W . We identify T0 with C∗τ × S0 by the map (y0, y1, . . . , yn) 7→
(−y0, y1, . . . , yn) = (τ, y1, . . . , yn).
First we claim that

G ∼= H0p+

(
OC∗τ×S0×W · e−τ

∑m
i=1 λiy

ai
)
. (2)

As p is a projection, the direct image p+ of any module is nothing but its relative de Rham complex, i.e.

H0p+

(
OC∗τ×S0×W · e−τ

∑m
i=1 λiy

ai
)
∼= H0

(
p∗Ω

•+n
C∗τ×S0×W/C∗τ×W

, d− τ · dF∧
)
,

and this module is the same as G, using lemma 2.5. It follows from the projection formula ([HTT08,
corollary 1.7.5]) that(

(k̃ × idW )+OT0×W

)
· e
∑m
i=1 λiwi = (k̃ × idW )+

(
OT0×W · ey0

∑m
i=1 λiy

ai
)
.

This can also be shown by a direct calculation, in fact, both modules are quotients of DC∗τ×W ′×W . Now
consider the following diagram

C∗τ ×W ′ ×W
π1

wwww

π2

'' ''
T0

k̃ // C∗τ ×W ′ C∗τ ×W,

where π1 and π2 are the obvious projections. As π2 ◦ (k̃ × idW ) = p, we obtain that

H0p+

(
OS0×C∗τ×W · e

−τ
∑m
i=1 λiy

ai
)

= H0π2,+

(
((k̃ × idW )+OT0×W ) · e

∑m
i=1 λiwi

)
.
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On the other hand, we obviously have that (k̃ × idW )+OT0×W = π∗1 k̃+OT0
, hence

H0π2,+

(
((k̃ × idW )+OT0×W ) · e

∑m
i=1 λiwi

)
= H0π2,+

(
(π∗1 k̃+OT0

) · e
∑m
i=1 λiwi

)
,

Now we use the following well-known description of the Fourier-Laplace transformation:

H0π2,+

(
((π1)∗k̃+OT0

) · e
∑m
i=1 λiwi

)
= FL

−λ1,...,−λm
w1,...,wm

(
k̃+OT0

)
.

We are thus left to show that the latter module equals M̂Ã. In order to do so, notice that the DT0
-module

OT0 can be written as a quotient of DT0 . The natural choice would be to mod out the left ideal generated
by (yk∂yk)k=0,...,n, however, we will rather write

OT0
=

DT0

(y0∂y0
) + (yk∂yk + 1)k=1,...,n

, (3)

which we abbreviate as OT0
·
∏n
k=1 y

−1
k . Now notice that k̃ is a closed embedding, hence a calculation sim-

ilar to the proof of [SW09, proposition 2.1], using the (DT0
, k̃−1DC∗τ×W ′)-transfer bimodule DT0→C∗τ×W ′

shows that the direct image k̃+OT0
is given by

k̃+OT0 =
DC∗τ×W ′(∏

i:li<0(w−1
0 wi)−li −

∏
i:li>0(w−1

0 wi)li
)
l∈L + (

∑m
i=1 aki∂wiwi)k=1,...,n

+ (w0∂w0 +
∑m
i=1 ∂wiwi)

.

Now as w0 = −τ and ∂λi = −wi in FL
−λ1,...,−λm
w1,...,wm k̃+OT0

, we obtain that the latter module equals

DC∗τ×W(∏
i:li<0(τ−1∂λi)

−li −
∏
i:li>0(τ−1∂λi)

li
)
l∈L + (

∑m
i=1 akiλi∂λi)k=1,...,n

+ (w0∂w0
−
∑m
i=1 λi∂λi)

.

so that finally

FL
−λ1,...,−λm
w1,...,wm k̃+OT0

=
DV̂ [τ−1]

τ l
(∏

i:li<0 ∂
−li
λi
−
∏
i:li>0 ∂

li
λi

)
l∈L

+(
∑m
i=1 akiλi∂λi)k=1,...,n

+(τ∂τ−
∑m
i=1 λi∂λi)

= M̂(1,0)

Ã
= M̂Ã.

In the following proposition, we comment upon the more general case where the vectors a1, . . . , am only
generate NQ over Q. Let as before A = (a1, . . . , am) where ai are seen as vectors in Zn. Then it is a
well-known fact that A can be factorized as B1 ·C ·B2 where B1 resp. B2 is in Gl(n,Z) resp. Gl(m,Z)
and C has the forme1

. . . 0
en

 =

e1

. . .

en

 ·
1

. . . 0
1

 = D · E

where ei are natural numbers called elementary divisors. Set A′ := E ·B2, then A = B1 ·D ·A′ and the
columns of A′ generate N over Z.

Proposition 2.6. We have the following isomorphism

FL
τ

t (H0ϕ+OS0×W )[τ−1] '
⊕
j∈In

M̂(1,j1/e1,...,jn/en)

Ã
.

where j = (j1, . . . , jn) ∈ Nn and In =
∏n
k=1([0, ek − 1] ∩N) ⊂ Nn.
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Proof. First notice that the morphism ϕ can be factorized into ϕ′◦(Φ×idS1
), where Φ is the automorphism

of S0 defined by B1 ∈ Gl(n,Z). Hence ϕ+OS0×W = ϕ′+OS0×W , so that we can assume that B1 = idZn ,
i.e., that A = D · A′. Now one checks that the arguments in the proof of theorem 2.4 showing that

FL
λ1,...,λm
w1,...,wm

(
k̃+OT0

)
' FL

τ

t (H0ϕ+OS0×W )[τ−1] are still valid under the more general hypothesis that

A = D ·A′ where only the columns of A′ do generate N over Z. Hence we need to compute the module

FL
λ1,...,λm
w1,...,wm

(
k̃+OT0

)
.

The factorization ofA corresponds to a factorization k̃ = k̃′◦c, where c : (y0, y1, . . . , yn) 7→ (y0, y
e1
1 , . . . y

en
n )

is a covering map and k̃′ is a closed embedding defined by the matrix A′. Let us first compute the direct
image of OT0 under c. To do so, we look at the one-dimensional case, i.e. a map ck : yk 7→ yekk . We have

ck,+OC∗ ' ck,+DC∗/(yk∂yk) '
ek−1⊕
j=0

DC∗/(yk∂yk + 1− j/ek),

and moreover c+OT0
= OC∗ � c1,+OC∗ � . . .� cn,+OC∗ so that we get

c+OT0
'
⊕
j∈In

DT0

y0∂y0
+ (yk∂yk + 1− jk/ek)k=1,...,n

.

In the next step we compute the direct image under the closed embedding k̃′. Similar as above, we
obtain for the direct image

k̃′+

(
DT0

y0∂y0
+ (yk∂yk + 1− jk/ek)k=1,...,n

)
=

DC∗τ×W ′(∏
i:li<0(w−1

0 wi)−li −
∏
i:li>0(w−1

0 wi)li
)
l∈L + (

∑m
i=1 aki∂wiwi − jk/ek)

k=1,...,n
+ (w0∂w0 +

∑m
i=1 ∂wiwi)

(4)

The Fourier-Laplace transformation in the variables w1, . . . , wm yields

FL
−λ1,...,−λm
w1,...,wm

(
k̃′+

(
DT0

y0∂y0
+ (yk∂yk + 1− jk/ek)k=1,...,n

))
= M̂β

Ã

where β = (1, j1/e1, . . . , jn/en). Taking the direct sum this gives

FL
τ

t (H0ϕ+OS0×W )[τ−1] ' FL
−λ1,...,−λm
w1,...,wm

(
k̃+OT0

)
=
⊕
j∈In

M̂(1,j1/e1,...,jn/en)

Ã
.

In the following proposition, we collect some properties of the hypergeometric D-modules introduced
above. An important tool will be the notion of non-degeneracy of a Laurent polynomial, recall (see, e.g.,
[Kou76] or [Ado94]) that f : (C∗)t → C, f = µ1x

bs + . . .+µsx
bs is called non-degenerate if for any proper

face τ of Conv(0, b1, . . . , bs) ⊂ Rt not containing 0, fτ =
∑
bi∈τ

µix
bi has no critical points in (C∗)t.

Proposition 2.7. 1. Mβ

Ã
(resp. M̂β

Ã
, M̂β,loc

Ã
) is a coherent and holonomic DV -module (resp. DV̂ -

module, DT̂ -module). Moreover, Mβ

Ã
has only regular singularities, included at infinity.

2. Let as before F : S0 ×W → Ct, (y1, . . . , yn, λ1, . . . , λm) 7→
∑m
i=1 λi · yai . Define

S0
1 := {(λ1, . . . , λm) ∈ S1 |F (−, λ) is non-degenerate with respect to its Newton polyhedron}.

Moreover, consider the following extended family

F̃ : T0 × V −→ C

((y0, y1, . . . , yn), (λ0, λ1, . . . , λm)) 7−→ y0 ·
(
λ0 +

∑m
i=1 λi · yai

)
10



and put

V 0 := {(λ0, λ1, . . . , λm) ∈ C×S1 | F̃ (−, λ) is non-degenerate with respect to its Newton polyhedron}.

Both S0
1 and V 0 are Zariski open subspaces of S1 resp. C×S1 (as well as of W resp. V ). We have

(a) The characteristic variety of the restriction of Mβ

Ã
to V 0 is the zero section of T ∗V 0, i.e.,

Mβ

Ã
is smooth on V 0.

(b) Suppose that a1, . . . , am are defined by toric data and moreover, that the the projective variety
XΣA is genuine Fano, i.e., that its anti-canonical class is ample (and not only nef). Then
V \V 0 ⊂ ∆(F ) ∪

⋃m
i=1{λi = 0} ⊂ V , where

∆(F ) :=
{

(−t, λ1, . . . , λm) ∈ V |F (−, λ)−1(t) is singular
}

is the discriminant of the family −F .

(c) The restriction of M̂β,loc

Ã
to C∗τ × S0

1 is smooth.

3. Suppose that a1, . . . , am are defined by toric data. Then the generic rank of both Mβ

Ã
and M̂β

Ã

is equal to n! · vol(Conv(a1, . . . , am))) = (n+ 1)! · vol(Conv(0̃, ã1, . . . , ãm)), where the volume of a
hypercube [0, 1]t ⊂ Rt is normalized to one, and where 0̃ denotes the origin in Zn+1.

Before entering into the proof, we need the following lemma.

Lemma 2.8. Suppose that a1, . . . , am are the primitive integral generators of the rays of a fan ΣA
defining a smooth toric Fano manifold XΣA . Then the family F : S0 × S1 → Ct is non-degenerate for
any (λ1, . . . , λm) ∈ S1.

Proof. If XΣA is Fano, then it is well known (see, e.g., [CK99, lemma 3.2.1]) that ΣA is the fan over the
proper faces of Conv(a1, . . . , am). Let τ be a face of codimension n + 1− s and σ the corresponding s-
dimensional cone over τ . As ΣA is regular, the primitive generators aτ1 , . . . , aτs are linearly independent.
We have to check that

Fτ (λ, y) = λτ1y
aτ1 + . . .+ λτsy

aτs

has no singularities on S0 for any (λτ1 , . . . , λτs) ∈ (C∗)s. The critical point equations yk∂ykFτ = 0 can
be written in matrix notation as(aτ1)1 (aτ2)1 . . . (aτs)1

...
...

...
(aτ1)n (aτ2)n . . . (aτs)n

 ·
λτ1 · y

aτ1

...
λτs · yaτs

 = 0 .

This matrix has maximal rank and therefore can only have the trivial solution, contradicting the fact
that (λτ1 , . . . , λτs) ∈ (C∗)s and y ∈ S0. Hence there is no solution at all and F is non-degenerate for all
λ ∈ S1.

Proof of the proposition. 1. The holonomicity statement for Mβ

Ã
is [Ado94, Theorem 3.9] (or even

the older result [GKZ90, Theorem 1], as the vectors ã0, ã1, . . . , ãm lie in an affine hyperplane

of Ñ). Then also M̂β

Ã
and M̂β,loc

Ã
are holonomic as this property is preserved under (partial)

Fourier-Laplace transformation. The regularity of Mβ

Ã
has been shown, e.g., in [Hot98, section 6].

2. (a) This is shown in [Ado94, lemma 3.3].

(b) By lemma 2.8, F̃τ :=
∑
i:ãi∈τ

λi
∏n
k=0 y

ãki
k can have a critical point in T0 only in the case that

τ = Conv(ã0, ã1, . . . , ãm), i.e., we have the following system of equations

y0∂y0
F̃ = y0 (λ0 +

∑m
i=1 λi ·

∏n
k=1 y

aki
k )

!
= 0,(

yk∂yk F̃ = y0

∑m
i=1 λi · aki

∏n
k=1 y

aki
k

!
= 0

)
k=1,...,n

.

The first equation yields λ0 = −t, where t denotes the value of the family F , and the second
one is the critical point equation for F .
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(c) We know that char(M̂β

Ã
) is included in the variety cut out by the ideal(

σ(�̂l)
)
l∈L

+ (σ(Ẑk))k=1,...,n + σ(Ê).

Write y resp. µi for the cotangent coordinates on T ∗(C∗τ × S0
1) corresponding to z resp. λi.

As σ(Ê) = zy +
∑n
i=1 λiµi, it suffices to show that the sub-variety of C∗τ × T ∗S0

1 defined by
the ideal (

σ(�̂l)
)
l∈L

+ (σ(Ẑk))k=1,...,n

equals the zero section. Write β = (β0, β
′) with β′ ∈ NC. Notice that for any l ∈ L, if l 6= 0,

then either σ(�̂l) or σ(zl�̂l) belongs to C[µ1, . . . , µm] and equals the symbol of one of the

operators defining Mβ′

A . Similarly, if l = 0, then already �l itself is independent of z and

equal to an operator from Mβ′

A . This shows that [Ado94, lemma 3.1 to lemma 3.3] holds for

M̂β

Ã
, and hence M̂β

Ã
is smooth on C∗τ × S0

1 .

3. For the DV -moduleMβ

Ã
this is [Ado94, corollary 5.21] as Spec C[NÃ] is Cohen-Macaulay by propo-

sition 2.1, 2., notice that the Cohen-Macaulay condition is needed only for the ring Spec C[NÃ],
not for any of its subrings as the only face τ occurring in loc.cit. that does not contain the origin
is the one spanned by the vectors ã0, ã1 . . . , ãm.

Similarly, [Ado94, corollary 5.21] shows that the generic rank ofMβ′

A equals n!·vol(Conv(a1, . . . , am)):
Here we have to use the fact that all cones σ ∈ ΣA are smooth, so that the semigroup rings gener-
ated by their primitive integral generators are normal and Cohen-Macaulay. Now it follows from
the calculation of the characteristic variety from 2(c) that this is then also the generic rank of M̂β

Ã
.

For later purpose, we need a precise statement on the regularity resp. irregularity of the module M̂β

Ã
,

at least in the case of main interest where a1, . . . , am are defined by toric data. As a preliminary step,

we show in the following proposition a finiteness result for the singular locus of Mβ

Ã
.

Proposition 2.9. Suppose that a1, . . . , am are defined by toric data. Let p : V → W be the projection
forgetting the first component. Then for any λ = (λ1, . . . , λm) ∈ S0

1 , there is a small analytic neighborhood
Uλ ⊂ S0,an

1 such that the restriction

p|∆(F )an∩p−1(Uλ) : ∆(F )an ∩ p−1(Uλ) −→ Uλ

is finite, i.e., proper with finite fibres. In particular p|∆(F )∩p−1(S0
1) : ∆(F ) ∩ p−1(S0

1)→ S0
1 is finite.

Proof. Write Pλ for the restriction p|∆(F )an∩p−1(Uλ). The quasi-finiteness of Pλ is obvious, as for any

λ ∈ S0
1 , F (−, λ) has only finitely many critical values. Hence we need to show that Pλ is proper. Take any

compact subset K in Uλ. Suppose that P−1
λ (K) is not compact, then it must be unbounded in V ∼= Cm+1

for the standard metric. Hence there is a sequence (λ
(i)
0 , λ(i)) ∈ P−1

λ (K) with limi→∞ |λ(i)
0 | =∞, as K is

closed and bounded in W ∼= Cm. Consider the projection π : V → P(V ) = Proj C[λ0, λ1, . . . , λm], then

(possibly after passing to a subsequence), we have limi→∞ π(λ
(i)
0 , λ(i)) = (1 : 0 : . . . : 0).

In order to construct a contradiction, we will need to consider a partial compactification of the family
F , or rather of the morphism ϕ : S0 × S1 → Ct × S1. This is done as follows (see, e.g., [DL91] and
[Kho77]): Write XB for the projective toric variety defined by the polytope Conv(a1, . . . , am) (under
the assumption that XΣA is weak Fano, this is a reflexive polytope in the sense of [Bat94]) then XB

embeds into P(V ′) and contains the closure of the image of the morphism k from proposition 2.1. Write
Z = {

∑m
i=0 λi ·wi = 0} ⊂ P(W ′)×P(W ) for the universal hypersurface and put ZB := (XB × P(W ))∩Z.

Consider the map π : XB × (Ct×S1)→ XB ×P(W ), let Z̃B := π−1(ZB), and write φ for the restriction

of the projection XB × (Ct × S1) � Ct × S1 to Z̃B . Then φ is proper, and restricts to ϕ on S0 × S1
∼=

Γϕ ⊂ Z̃B . There is a natural stratification of XB by torus orbits and this gives a product stratification

on XB × (Ct × S1). Now consider the restriction φ′ of φ to Z̃ ′B := φ−1(Ct × S0
1), then one checks that

the non-degeneracy of F on S0
1 is equivalent to the fact that Z cuts all strata of (XB\S0) × (Ct × S0

1)
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transversal. Hence we have a natural Whitney stratification Σ on (the analytic space associated to) Z̃ ′B .
If we write CritΣ(φ′) for the Σ-stratified critical locus of φ′, i.e., CritΣ(φ′) :=

⋃
Σα∈Σ Crit(φ′|Σα), then

we have CritΣ(φ′) = Crit(ϕ′), where ϕ′ := ϕ|S0×S0
1
. On the other hand, Whitney’s (a)-condition implies

that CritΣ(φ′) is closed in Z̃ ′B , and so is Crit(ϕ′).

Now consider the above sequence (λ
(i)
0 , λ(i)) ∈ P−1

λ (K) ⊂ ∆(F )an, then the fact that the projection from

the critical locus of ϕ to the discriminant is onto shows that there is a sequence ((w
(i)
0 , w(i)), (λ

(i)
0 , λ(i)) ∈

Crit(ϕ′) ⊂ S0 × K projecting under ϕ′ to (λ
(i)
0 , λ(i)). Consider the first component of the sequence

π((w
(i)
0 , w(i)), (λ

(i)
0 , λ(i))), then this is a sequence (w

(i)
0 , w(i)) inXB which converges (after passing possibly

again to a subsequence) to a limit (0 : wlim
1 , . . . , wlim

m ) (this is forced by the incidence relation
∑m
i=0 wiλi =

0), in other words, this limit lies in XB\S0. However, we know that limi→∞((w
(i)
0 , w(i)), (λ

(i)
0 , λ(i)) exists

in CritΣ(φ′) as the latter space is closed. This is a contradiction, as we have seen that φ is non-singular
outside S0 × (Ct × S1), i.e., that CritΣ(φ′) = Crit(ϕ′) ⊂ S0 × S0

1 .

Now the regularity result that we will need later is the following.

Lemma 2.10. Consider M̂β

Ã
as a DP1

z×W
-module, where W is a smooth projective compactification of

W . Then M̂β

Ã
is regular outside ({z = 0} ×W ) ∪ (P1

z × (W\S0
1)).

Proof. It suffices to show that any λ = (λ1, . . . , λm) ⊂ S0
1 has a small analytic neighborhood Uλ ⊂ S0,an

1

such that the partial analytization M̂β,loc

Ã
⊗OC∗τ×S1

OanUλ [τ, τ−1] is regular on Cτ ×Uλ (but not at τ =∞).

This is precisely the statement of [DS03, theorem 1.11 (1)], taking into account the regularity of Mβ

Ã

(i.e., proposition 2.7, 1.), the fact that on Cλ0
× Uλ, the singular locus of Mβ

Ã
coincides with ∆(F )

(see the proof of proposition 2.7, 2(b)) as well as the last proposition (notice that the non-characteristic
assumption in loc.cit. is satisfied, see, e.g., [Pha79, page 281]).

2.2 Brieskorn lattices

The next step is to study natural lattices that exist in G and in M̂β

Ã
. To avoid endless repetition of

hypotheses, we will assume throughout this subsection that our vectors a1, . . . , am are defined by toric

data. In order to discuss lattices in M̂β

Ã
, we start with definition.

Definition 2.11. 1. Consider the ring

R := C[λ±1 , . . . , λ
±
m, z]〈z∂λ1 , . . . , z∂λm , z

2∂z〉,

i.e. the quotient of the free associative C[λ±1 , . . . , λ
±
m, z]-algebra generated by z∂λ1

, . . . , z∂λm , z
2∂z

by the left ideal generated by the relations

[z∂λi , z] = 0, [z∂λi , λj ] = δijz, [z2∂z, λi] = 0,

[z2∂z, z] = z2, [z∂λi , z∂λj ] = 0, [z2∂z, z∂λi ] = z · z∂λi .

Write R for the associated sheaf of quasi-coherent OCz×S1-algebras which restricts to DC∗τ×S1 on

{(z 6= 0}. We also consider the subring R′ := C[λ±1 , . . . , λ
±
m, z]〈z∂λ1 , . . . , z∂λm〉 of R, and the

associated sheaf R′. The inclusion R′ ↪→ R induces a functor from the category of R-modules to
the category of R′-modules, which we denote by Forz2∂z (“forgetting the z2∂z-structure”).

2. Choose β ∈ ÑC, consider the ideal I := R(�̂′l)l∈L + R(z · Ẑk)k=1,...,n + R(z · Ê) in R and write

0M̂β,loc

Ã
for the quotient R/I. We have Forz2∂z (0M̂β,loc

Ã
) = R′/((�̂′l)l∈L + (z · Ẑk)k=1,...,n), and the

restriction of 0M̂β,loc

Ã
to C∗τ × S1 equals M̂β,loc

Ã
. Again we put 0M̂loc

Ã
:= 0M̂(1,0),loc

Ã
.

Corollary 2.12. Consider the restriction of the isomorphism φ from theorem 2.4 to C∗τ × S1.

1. φ sends the class of the section 1 in M̂loc
Ã

to class of the (relative) volume form ω0 := dy1/y1 ∧
. . . ∧ dyn/yn ∈ ΩnS0×S1/S1

.
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2. The morphism φ maps 0M̂loc
Ã

isomorphically to

G0 :=
π∗Ω

n
S0×S1/S1

[z]

(zd− dF∧)π∗Ω
n−1
S0×S1/S1

[z]
.

Proof. 1. Following the identifications in the proof of theorem 2.4, this is evident, if one takes into
account that due to the choice in formula (3), we have actually computed

G|C∗τ×S1
= FL

τ

t

(
H0ϕ+OS0×S1

1

y1 · . . . · yn

)
= FL

τ

t

(
H0ϕ+

DS0×S1

DS0×S1(yk∂yk + 1)k=1,...,n

)

2. First notice that due to 1. and the formulas in lemma 2.5, we have φ
(

0M̂loc
Ã

)
⊂ G0. To see that

it is surjective, take any representative s =
∑
i≥0 ω

(i)zi of a class in G0. As an element of G, s

has a unique preimage under φ, which is an operator P ∈ M̂loc
Ã

and we have to show that actually

P ∈ 0M̂loc
Ã

. By linearity of φ, it is sufficient to do it for the case where ω(0) 6= 0. There is a

minimal k ∈ N such that zkP ∈ 0M̂loc
Ã

, and then the class of zkP in 0M̂loc
Ã
/z · 0M̂loc

Ã
does not

vanish. Suppose that k > 0, then the class of φ(zkP ) = zks vanishes in G0/zG0, which contradicts

the next lemma. Hence k = 0 and P ∈ 0M̂loc
Ã

.

Lemma 2.13. 1. The quotient 0M̂loc
Ã
/z · 0M̂loc

Ã
is the sheaf of commutative OS1

-algebras associated
to

C[λ±1 , . . . , λ
±
m, µ1, . . . , µm]

(
∏
li<0 µ

−li
i −

∏
li>0 µ

li
i )l∈L + (

∑m
i=1 akiλiµi)k=1,...,n

2. The induced map

[φ] : 0M̂loc
Ã
/z · 0M̂loc

Ã
−→ G0/zG0

∼= π∗Ω
n
S0×S1/S1

/dyF ∧ π∗Ωn−1
S0×S1/S1

is an isomorphism.

Proof. 1. Letting µi be the class of z∂λi in 0M̂loc
Ã
/z · 0M̂loc

Ã
, we see that the commutator [µi, λi]

vanishes in this quotient.

2. This can be shown along the lines of [Bat93, theorem 8.4]. Namely, consider the morphism of
C[λ±1 , . . . , λ

±
1 ]-algebras

ψ : C[λ±1 , . . . , λ
±
m, µ1, . . . , µm] −→ C[λ±1 , . . . , λ

±
m, y

±
1 , . . . , y

±
n ]

µi 7−→ yai

From the completeness and smoothness of ΣA we deduce that ψ is surjective. Moreover, we have
ker(ψ) = (

∏
li<0 µ

−li
i −

∏
li>0 µ

li
i )l∈L (for a proof, see, e.g., [MS05, theorem 7.3]), and obviously

ψ(
∑m
i=1 akiλiµi) = yk∂ykF for all k = 1, . . . , n. One easily checks that the induced map

ψ :
C[λ±1 , . . . , λ

±
m, µ1, . . . , µm]

(
∏
li<0 µ

−li
i −

∏
li>0 µ

li
i )l∈L + (

∑m
i=1 akiλiµi)k=1,...,n

−→ C[λ±1 , . . . , λ
±
m, y

±
1 , . . . , y

±
n ]

(yk∂ykF )k=1,...,n

coincides with the map [φ] induced by φ, notice that

C[λ±1 , . . . , λ
±
m, y

±
1 , . . . , y

±
n ]

(yk∂ykF )k=1,...,n

∼=
π∗Ω

n
S0×S1/S1

dF ∧ π∗Ωn−1
S0×S1/S1

.

by multiplication with the relative volume form dy1/y1 ∧ . . . ∧ dyn/yn.
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Following the terminology of [Sab06] and [DS03] (going back to [Sai89], and, of course, to [Bri70]), we

call G0 (and, using the last result, also 0M̂loc
Ã

) the (family of) Brieskorn lattice(s) of the morphism ϕ.

For the case of a single Laurent polynomial Fλ := ϕ(−, λ) : S0 → C, it follows from the results of [Sab06]
that the module ΩnS0

[z]/(zd−dFλ∧)Ωn−1
S0

[z] is C[z]-free provided that λ ∈ S0
1 , recall that S0

1 denotes the
Zariski open subset of S1 of parameter values λ such that F (−, λ) is non-degenerate with respect to its
Newton polyhedron. However, this does not directly extend to a finiteness (and freeness) result for the
Brieskorn lattice G0 of the family ϕ : S0×S0

1 → Ct×S0
1 . We can now prove this freeness using corollary

2.12.

Theorem 2.14. The module OCz×S0
1
⊗OCz×S1

0M̂loc
Ã

(and hence also the module OCz×S0
1
⊗OCz×S1

G0)
is OCz×S0

1
-locally free.

Proof. The main argument in the proof is very much similar to the proof of proposition 2.7, 2.c). It is

actually sufficient to show that OCz×S0
1
⊗OCz×S1

0M̂loc
Ã

is OCz×S0
1
-coherent. Namely, we know that the

restriction OS0
1
⊗OS1

(
0M̂loc

Ã
/z · 0M̂loc

Ã

)
equals the Jacobian algebra of ϕ|S0×S0

1
, which is OS0

1
-locally free

of rank equal to the Milnor number of ϕ|S0×S0
1
, that it, equal to n! · vol(Conv(a1, . . . , am)), see [Kou76,

théorème 1.16]. Moreover, the restriction OC∗τ×S0
1
⊗OCz×S1

0M̂loc
Ã

= OC∗τ×S0
1
⊗OC∗τ×S1

M̂Ã is locally free

of the same rank and equipped with a flat structure, so that 0M̂loc
Ã
⊗OCz×S1

OCz×S0
1

can only have the
same rank everywhere, provided that it is coherent.
It will be sufficient to show the coherence of N := OCz×S0

1
⊗OCz×S1

Forz2∂z (0M̂loc
Ã

) only, as this is the

same as OCz×S0
1
⊗OCz×S1

0M̂loc
Ã

when considered as an OCz×S0
1
-module. Let us denote by F• the natural

filtration on R′ defined by

FkR′ :=

P ∈ R′
∣∣∣∣∣∣P =

∑
|α|≤k

gα(z, λ)(z∂λ1
)α1 · . . . · (z∂λm)αr

 .

This filtration induces a filtration F• on N which is good, in the sense that FkR′ · FlN = Fk+lN .
Obviously, for any k, FkN is OCz×S0

1
-coherent, so that it suffices to show that the filtration F• become

eventually stationary. The ideal generated by the symbols of all operators in the ideal defining N , that
is, by the highest order terms with respect to the filtration F•, cut out a subvariety of Cz × T ∗S0

1 , and
it suffices to show that this subvariety equals Cz × S0

1 , then by the usual argument the filtration F•
stabilizes for some sufficiently large index. However, for any of the operators �̂′l and Ẑk in I ′, its symbol

with respect to the above filtration F• is precisely the same as the symbol of �̂l, Ẑk with respect to the

ordinary filtration on M̂loc
Ã

, hence, the same argument as in the proof of proposition 2.7, 2.c) (that is,

the arguments in [Ado94, lemma 3.1 to lemma 3.3]) shows that the above mentioned subvariety is the
zero section C∗ × S0

1 .

2.3 Duality and Filtrations

In this section, we discuss the holonomic dual of the hypergeometric systemMÃ, from which we deduce

a self-duality property of the module M̂Ã. Moreover, we study the natural good filtration on MÃ by
order of operators, and show that it is preserved, up to shift, by the duality isomorphism. We obtain an
induced filtration on M̂loc

Ã
by OS1

[z]-modules (which is not a good filtration on this module). Its zeroth

step turns out to coincide with the lattice 0M̂loc
Ã

considered in the last subsection. This shows that we

obtain a non-degenerate pairing on 0M̂loc
Ã

, a fact that we will need later in the construction of Frobenius
structures.
We start by describing the holonomic dual of the DV -moduleMÃ. This description is based on the local

duality theorem for the Gorenstein ring Spec C[NÃ]. If we were only interested in the description of this
dual module, we could simply refer to [Wal07, proposition 4.1], however, as we need later a more refined
version taking into account filtrations, we recall the techniques using Euler-Koszul homology that leads
to this duality result.
We suppose throughout this section that the vectors a1, . . . , am are defined by toric data.
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Theorem 2.15. 1. For any holonomic left DV -module N , write DN for the left DV -module associ-
ated to the right DV -module Extm+1

DV (N ,DV ), where we use, as V is an affine space, the canonical

identification OV ∼= Ωm+1
V given by multiplying functions with the volume form dλ0 ∧ . . . ∧ dλm.

Then we have

DMβ

Ã
=M−β+(1,0)

Ã
,

in particular

DMÃ =M(0,0)

Ã
,

2. We have the following isomorphisms of holonomic left DV̂ - (resp. DT̂ )-modules

M̂Ã
∼= ι∗DM̂Ã

M̂loc
Ã

∼= ι∗DM̂loc
Ã
,

here ι : V̂ → V̂ resp. ι : T̂ → T̂ is the automorphism sending (z, λ1, . . . , λm) to (−z, λ1, . . . , λm).

Before giving the proof of this result, we need to introduce some notations. The basic ingredient for the
proof is an explicit resolution of Mβ

Ã
by the so-called Euler-Koszul complex. We recall the description

of this complex from [MMW05]. In order to be consistent with the notations used in loc.cit., we will
rather work with rings and modules than with sheaves. Therefore, put R = C[w0, . . . , wm] and S = R/I
where I is the toric ideal of ã0, ã1, . . . , ãm, i.e., the ideal generated by

wl0 ·
∏

i:li<0

w−lii −
∏

i:li>0

wlii for any l ∈ L with l ≥ 0

∏
i:li<0

w−lii − wl0 ·
∏

i:li>0

wlii for any l ∈ L with l < 0

Both rings are Zn+1-graded, where deg(wi) := −ãi ∈ Zn+1 (more invariantly, they are Ñ -graded),

notice that the homogeneity of I follows from the fact that L is the kernel of the surjection Zm+1 � Ñ
given by the matrix Ã. We write D = Γ(V,DV ) for the ring of algebraic differential operators on V .
However, using the Fourier-Laplace isomorphism D ∼= Γ(V ′,DV ′) given by ∂λi 7→ −wi and λi 7→ ∂wi ,
we can also view D as the ring of differential operators on the dual space, and we shall do so if D-
modules are considered as R-modules. We have a natural Zn+1-grading on D defined by deg(λi) = ãi
and deg(∂λi) = −ãi, and the Fourier-Laplace isomorphism gives rise to an injective Zn+1-graded ring
homomorphism R ↪→ D sending wi to −∂λi . Again in order to match our notations with those from
[MMW05], let us put E0 :=

∑m
i=0 λi∂λi ∈ D and Ek :=

∑m
i=1 akiλi∂λi ∈ D for all k = 1, . . . , n. Let P be

any Zn+1-graded D-module, and α ∈ Cn arbitrary, then by putting (Ek−αk)◦y := (Ek−αk−degk(y))(y)
for k = 0, . . . , n and for any homogeneous element y ∈ P and by extending C-linearly, we obtain a D-
linear endomorphism of P . We also have that the commutator [(Ei − αi)◦, (Ej − αj)◦] vanishes for any
i, j ∈ {0, . . . ,m}. Hence we can define the Euler-Koszul complex K•(E − α, P ), a complex of Zn+1-
graded left D-modules, to be the Koszul complex of the endomorphisms (E0 − α0)◦, . . . , (En − αn)◦ on
P . Notice that here E is an abbreviation for the vector (E0, E1, . . . , En) and should not be confused

with the single vector field
∑m
i=0 λi∂λi + β0 used in the definition of the modules Mβ

Ã
. The definition

of the Euler-Koszul complex applies in particular to the case P := D ⊗R T , where T is a so-called toric
R-module (see [MMW05, definition 4.5]), in which case we also write K•(E −α, T ) for the Euler-Koszul
complex. Similarly one defines the Euler-Koszul cocomplex, denoted by K•(E−α, P ) resp. K•(E−α, T ),
where Ki(E − α, P ) = Kn+1−i(E − α, P ) and the signs of the differentials are changed accordingly. In
particular, we have Hi(K•(E − α, P )) = Hn+1−i(K•(E − α, P )). We will mainly use the construction
of the Euler-Koszul complex resp. cocomplex in the case of the toric R-module S, or for shifted version
S(̃c), where c̃ ∈ Zn+1.

The main result on the Euler-Koszul homology and holonomic duality that we need is the following.
For any D-module M , consider a D-free resolution L• �M , then we write DM for the complex of left
D-modules associated to HomD(L•, D).
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Lemma 2.16 ([MMW05, theorem 6.3]). Put εã :=
∑m
k=0 ãi ∈ Zn+1. Then there is a spectral sequence

Ep,q2 = Hq(K•(E + α,ExtpR(S, ωR))(−εã) =⇒ Hp+qD
(
Hp+q−(m+1)(K•(E − α, S))

)−
. (5)

Here (−)− is the auto-equivalence of D-modules induced by the involution λi 7→ −λi and ∂λi 7→ −∂λi .
Notice that it is shown in [MMW05, lemma 6.1] that ExtpR(S, ωR) is toric. Notice also that the dualizing
module ωR is nothing but the ring R, placed in Zn+1-degree εã (see, e.g., [MS05, definition 12.9 and
corollary 13.43] or [BH93, corollary 6.3.6] for this).

In our situation, the relevant Ext-group occurring in the spectral sequence of this lemma is actually
rather simple to calculate, as the next result shows.

Lemma 2.17. There is an isomorphism of Zn+1-graded R-modules Extm−nR (S, ωR) ∼= ωS ∼= S((1, 0)).

Proof. First it follows from a change of ring property that Extm−n(S, ωR) = ωS (see [BH93, proposition
3.6.12]). We are thus reduced to compute a canonical module for the ring S. Remark that S is nothing

but the semigroup ring C[NÃ] from proposition 2.1 (see again [MS05, theorem 7.3]), and its canonical

module is the ideal in S generated by the monomials corresponding to the interior points of NÃ. We
have seen in proposition 2.1, 2., that the set of these interior points is given as (1, 0) +NÃ, i.e., we have
that ωS = S((1, 0)), recall that S is a quotient of R = C[w0, w1, . . . , wm] and that deg(wi) = −ãi.

Proof of the theorem. In order to use lemma 2.16 for the computation of the holonomic dual of Mβ

Ã
,

write Mβ

Ã
:= H0(V,Mβ

Ã
) and notice that the homology group H0(K•(E − α, S)), seen both as a R-

module and a D-module, is nothing but Γ(V ′,FL
w0,...,wm
λ0,...,λm (M−α

Ã
)). Hence by putting α := −β, we have

an equality DMβ

Ã
= Hm+1(DH0(K•(E+β, S)))− of D-modules. Notice that the duality functor and the

Fourier-Laplace transformation commutes only up to a sign (see, e.g., [DS03, paragraph 1.b]), for this
reason, the right hand side of the last formula is twisted by the involution (−)−.

1. As the ring S is Cohen-Macaulay, ExtpR(S, ωR) can only be non-zero if p = codimR(S) = m +
1 − (n + 1) = m − n. This implies that the spectral sequence (5) degenerates at the E2-term,

so that Em−n,q2 = Hm−n+qD
(
H(m−n)+q−(m+1)(K•(E − α, S))

)−
. On the other hand, we deduce

from lemma 2.17 that

Em−n,q2 = Hq(K•(E + α, S((1, 0)))) ∼= Hn+1−q(K•(E + α+ (1, 0), S))(1, 0).

where we have used the equality

K•(E + α, S(̃c)) = K•(E + α+ c̃, S)(̃c)

of complexes of Zn+1-graded D-modules. As noticed in [MMW05, remark 6.4] the CM-property of
S also implies that the Euler-Koszul complex K•(E−α, S) can only have homology in degree zero,
hence Em−n,q2 = 0 unless q = n+ 1. This is consistent with the fact that due to the holonomicity

of Mβ

Ã
, the right hand side of the spectral sequence (5) can only be non-zero for p + q = m + 1.

Summarizing, we obtain an isomorphism of Zn+1-graded D-modules

Hm+1(DH0(K•(E − α, S)))− = H0(K•(E + α+ (1, 0), S))(1, 0),

from which we deduce an isomorphism of sheaves of DV -modules (recall that α = −β)

DMβ

Ã
∼=M−β+(1,0)

Ã
,

as required.

2. Put β = (1, 0) ∈ Zn+1 ∼= Ñ , then it follows from 1. that we have a morphism

φ : Mβ

Ã
−→ DMβ

Ã

m 7−→ a · ∂λ0
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WriteD[∂−1
λ0

] for the partial (polynomial) microlocalization C[λ0, λ1, . . . , λm]〈∂λ0 , ∂
−1
λ0
, ∂λ1 , . . . , ∂λm〉.

Then φ induces an isomorphism D[∂−1
λ0

]⊗DMβ

Ã

∼=→ D[∂−1
λ0

]⊗D (DMβ

Ã
). On the other hand, it follows

from the D-flatness of D[∂−1
λ0

] that Extm+1

D[∂−1
λ0

]
(M,D[∂−1

λ0
]) = Extm+1

D (M,D) ⊗ D[∂−1
λ0

] for any left

D-module M , hence we obtain an isomorphism

D[∂−1
λ0

]⊗D Mβ

Ã

∼=−→ D(D[∂−1
λ0

]⊗D Mβ

Ã
)

where the symbol D on the right hand side denotes the composition of Extm+1

D[∂−1
λ0

]
(−, D[∂−1

λ0
]) with

the transformation of right D[∂−1
λ0

] to left D[∂−1
λ0

]-modules. Performing a partial Fourier-Laplace
transformation, we obtain an isomorphism (still denoted by φ)

φ : FL
τ

λ0
(Mβ

Ã
)[τ−1]

∼=−→ FL
τ

λ0

(
D(D[∂−1

λ0
]⊗D Mβ

Ã
)
)
,

which is given by right multiplication with τ = z−1. On the other hand, it is known (see, e.g.,
[DS03, paragraph 1.f]) that for any D[∂−1

λ0
]-module N , we have an isomorphism FL

τ

λ0
(DN) ∼=

ι∗D(FL
τ

λ0
(N)) which gives us

FL
τ

λ0
(Mβ

Ã
)[τ−1]

∼=−→ ι∗D
(

FL
τ

λ0
(D[∂−1

λ0
]⊗D Mβ

Ã
)
)
∼= ι∗D

(
FL

τ

λ0
(Mβ

Ã
)[τ−1]

)
from which we deduce the isomorphism M̂Ã

∼= ι∗DM̂Ã of DV̂ -modules resp. the isomorphism

M̂loc
Ã
∼= ι∗DM̂loc

Ã
of DT̂ -modules.

The next step is to investigate a natural good filtration defined on the sheaf Mβ

Ã
. We write Mβ

Ã
:=

H0(V,Mβ

Ã
) which is isomorphic to H0(K•(E + β, S)) as a D-module.

Proposition 2.18. 1. Write F• for the natural filtration on D by order of ∂λi-operators and denote

the induced filtration on Mβ

Ã
also by F•. There is a resolution L• of Mβ

Ã
by free D-modules which

is equipped with a strict filtration FL•• and we have a filtered quasi-isomorphism (L•, F
L•) �

(Mβ

Ã
, F•).

2. Consider the case β = (1, 0), i.e., Mβ

Ã
= MÃ. Write FD

• DMÃ for the dual filtration of F•MÃ, i.e.,

D(MÃ, F•) = (DMÃ, F
D
• ) (see, e.g., [Sai94, page 55]), then we have

FkM
(0,0)

Ã
= FD

k−n+(m+1)DMÃ.

3. For any β ∈ Zn+1, F•M
β

Ã
induces a filtration Gβ• by OCz×S1

-modules on the DT̂ -module M̂β,loc

Ã
and we have an isomorphism of OCz×S1

-modules

G0M̂β,loc

Ã
∼= 0M̂β,loc

Ã
,

in particular
G0M̂loc

Ã
∼= 0M̂loc

Ã
.

Moreover, for any k, OCz×S0
1
⊗OCz×S1

GkM̂loc
Ã

is OCz×S0
1
-locally free.

For β = (1, 0) we obtain from the dual filtration FD
• on DMÃ a filtration GD

• by OCz×S1
-modules

on M̂(0,0)

Ã
.

4. Consider the isomorphism

φ : FL
w0

λ0
(MÃ)[τ−1] = M̂Ã −→ ι∗ FL

w0

λ0
(DMÃ)[τ−1] = M̂(0,0)

Ã

from the proof of theorem 2.15, 2., which is given by multiplication with z−1. Then we have

φ(G•) = GD
•+m+2−nM̂

(0,0)

Â
.
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Proof. 1. The free resolution L• � Mβ

Ã
is obtained as in the proof of [MMW05, theorem 6.3] as

the total complex Tot K•(E + β,F•) of a resolution of the Euler-Koszul complex obtained from a
R-free Zn+1-graded resolution F• of S. In particular, this resolution is Z-graded for the grading
of R = C[w0, w1, . . . , wm] = C[∂λ0

, ∂λ1
, . . . , ∂λm ] for which deg(wi) = deg(∂λi) = 1. On the

other hand, the differentials of the Euler-Koszul complex are constructed from linear differential
operators. Hence by putting on each term of the above total complex (which is D-free) a filtration
which is on each factor of such a module the order filtration on D, shifted appropriately, we obtain
a strict resolution of (Mβ

Ã
, F•).

2. From the construction of the resolution L• � MÃ, from point 1., we see that Lk = 0 for all
k > m+ 1 (notice that we write this resolution such that d : Lk → Lk−1 so that MÃ = H0(L•, d))
and Lm+1 = D. We have seen that the filtration on Lm+1 is the order filtration on D, shifted
appropriately and we have to determine this shift. It is the sum of the length of the Euler-Koszul
complex (i.e., n + 1) and the degree (with respect to the grading of R for which deg(∂λi) = 1) of
Extn−mR (S, ωR). The latter is equal to m, which is the first component of the difference between
the canonical degree of R (i.e., εA) and the canonical degree of S (i.e., (1, 0)). Hence the filtration
on Lm+1 is F•−(n+m+1)D. Now by definition (see, e.g., [Sai94, page 55]), we have

D(MÃ, F•) = Hm+1HomD

(
(L•, F

L•
• ), ((D ⊗ Ωm+1

V )∨, F•−2(m+1)D ⊗ (Ωm+1
V )∨)

)
and this implies the formula for FD

• DMÃ.

3. We will consider the ∂−1
λ0

-saturation of the filtration steps FkMÃ. More precisely, consider again

MÃ[∂−1
λ0

] := D[∂−1
λ0

] ⊗D MÃ, and the natural localization morphism l̂oc : MÃ → MÃ[∂−1
λ0

]. Put

FkMÃ[∂−1
λ0

] :=
∑
j≥0 ∂

−j
λ0

l̂oc(Fk+jMÃ). Then we easily see that

FkMÃ[∂−1
λ0

] = Im
(
∂kλ0
C[λ0, λ1, . . . , λm]〈∂−1

λ0
, ∂−1
λ0
∂λ1

, . . . , ∂−1
λ0
∂λm〉

)
in MÃ[∂−1

λ0
].

The filtration F•MÃ[∂−1
λ0

] induces a filtration G• on M̂ loc
Ã

= Γ(T̂ ,M̂loc
Ã

), with

GkM̂
loc
Ã

= Im
(
z−kC[z, λ±1 , . . . , λ

±
m]〈z∂λ1

, . . . , z∂λm , z
2∂z〉

)
in M̂ loc

Ã

Hence we obtain a filtration G• on the sheaf M̂loc
Ã

and we have G0M̂loc
Ã

= 0M̂loc
Ã

, as required.

Moreover, zk· : GpM̂loc
Ã

∼=−→ Gp−kM̂loc
Ã

, and it follows from theorem 2.14 that OCz×S0
1
⊗OCz×S1

G0M̂loc
Ã

, and hence all OCz×S0
1
⊗OCz×S1

GpM̂loc
Ã

are OCz×S0
1
-locally free. Notice however that

G• is in general not a good filtration on M̂ loc
Ã

, as ∂zGkM̂
loc
Ã
⊂ Gk+2M̂

loc
Ã

whereas ∂λiGkM̂
loc
Ã
⊂

Gk+1M̂
loc
Ã

.

Concerning the filtration GD
• , notice that due to the definition of FkMÃ[∂−1

λ0
], the strictly filtered

resolution of (MÃ, F•) from part 2 from above yields a strictly filtered resolution of the filtered

module (MÃ[∂−1
λ0

], F•MÃ[∂−1
λ0

]), and the dual complex is then also strictly filtered and defines a

filtration GD
• on D(MÃ[∂−1

λ0
]), which is nothing but the ∂−1

λ0
-saturation of the dual filtration FD

•

from point 2. from above. Hence we obtain a filtration G• by OCz×S1
-modules on DM̂Ã = M̂(0,0)

Ã
.

4. This is a direct consequence of 2. and 3.

As a consequence, we obtain the existence of a non-degenerate pairing on the lattice 0M̂loc
Ã

considered
above.

Corollary 2.19. 1. There is a non-degenerate flat (−1)n-symmetric pairing

P :
(
OC∗τ×S0

1
⊗OCτ×S1

M̂loc
Ã

)
⊗ ι∗

(
OC∗τ×S0

1
⊗OCτ×S1

M̂loc
Ã

)
→ OC∗τ×S0

1
.
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2. We have that P (0M̂loc
Ã
, 0M̂loc

Ã
) ⊂ znOCz×S1 , and P is non-degenerate on OCz×S0

1
⊗OCz×S1

0M̂loc
Ã

,
i.e., it induces a non-degenerate symmetric pairing

[z−nP ] :

[
OS0

1
⊗OS1

0M̂loc
Ã

z · 0M̂loc
Ã

]
⊗

[
OS0

1
⊗OS1

0M̂loc
Ã

z · 0M̂loc
Ã

]
→ OS0

1
.

Proof. 1. The statement can be reformulated as the existence of an isomorphism

ψ :
(
OC∗τ×S0

1
⊗OCτ×S1

M̂loc
Ã

) ∼=−→ ι∗
(
OC∗τ×S0

1
⊗OCτ×S1

M̂loc
Ã

)∗
where (−)∗ denotes the dual meromorphic bundle with its dual connection. We deduce from

[DS03, lemma A.11] (see also [Sai89, 2.7]) that D(OC∗τ×S0
1
⊗OCτ×S1

M̂loc
Ã

)(∗({0,∞} × S0
1)) =

(OC∗τ×S0
1
⊗OCτ×S1

M̂loc
Ã

)∗. On the other hand, theorem 2.15, 2. gives an isomorphismOC∗τ×S0
1
⊗OCτ×S1

M̂loc
Ã
∼= ι∗D(OC∗τ×S0

1
⊗OCτ×S1

M̂loc
Ã

) so that the latter module is already localized, i.e., equal to

(OC∗τ×S0
1
⊗OCτ×S1

M̂loc
Ã

)∗, which gives the existence of the isomorphism ψ from above.

2. We have seen in point 1. that the duality isomorphism

φ = z−1· : FL
w0

λ0
(MÃ)[τ−1] −→ FL

w0

λ0
(DMÃ)[τ−1]

yields an isomorphism

ψ :
(
OC∗τ×S0

1
⊗OCτ×S1

M̂loc
Ã

) ∼=−→ ι∗
(
OC∗τ×S0

1
⊗OCτ×S1

M̂loc
Ã

)∗
of meromorphic bundles with connection. Now it follows from [Sai89, formula 2.7.5] that we have

HomO
Cz×S0

1

(
OCz×S0

1
⊗OCz×S1

GkM̂loc
Ã
,OCz×S0

1

)
= OC∗τ×S0

1
⊗OCz×S1

GD
k+(m+2)M̂

(0,0),loc

Ã
.

Hence by proposition 2.18, 4. from above we conclude that ψ sends the module

OCz×S0
1
⊗OCz×S1

G0M̂loc
Ã

= OCz×S0
1
⊗OCz×S1

0M̂loc
Ã

isomorphically into

HomO
Cz×S0

1

(
OCz×S0

1
⊗OCz×S1

G−nM̂loc
Ã
,OCz×S0

1

)
= znHomO

Cz×S0
1

(
OCz×S0

1
⊗OCz×S1

G0M̂loc
Ã
,OCz×S0

1

)
= znHomO

Cz×S0
1

(
OCz×S0

1
⊗OCz×S1

0M̂loc
Ã
,OCz×S0

1

)
,

which is equivalent to the statement to be shown.

3 D-modules with logarithmic structure and good bases

In this section we apply the results of section 2 to study hypergeometric D-modules on a subtorus of
the m-dimensional torus S1. We suppose that our vectors a1, . . . , am are defined by toric data. In this
situation, the subtorus is defined as S2 := Spec C[L], where, as before, L is the module of relations
between a1, . . . , am. Following standard terminology, we call this torus the complexified Kähler moduli
space of XΣA . We will consider a subfamily of Laurent polynomials of the morphism ϕ : S0×W → Ct×W
from the last section, parameterized by S2 and we will show that the associated Gauß-Manin system also
has a hypergeometric structure.
For a good choice of coordinates on S2 embedding it into some affine space Cr, we will construct an
extension of this hypergeometric modules to a certain lattice with logarithmic poles along the boundary
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divisor Cr\S2. This “D-module with logarithmic structure” will play a crucial role in the next section:
on the one hand, we will see that it equals the so-called Givental connection defined by the quantum
cohomology of the variety XΣA , on the other hand, we will use it to construct logarithmic Frobenius
structures and express the mirror correspondence in terms of them. For that purpose, we will show that
this logarithmic extension is still a free module, and can be extended to a family of trivial bundle over
P1 ×Cr (or at least outside the locus where the family of mirror Laurent polynomials is degenerate) on
which the connection extends with a logarithmic pole at infinity. This structure is the key ingredient to
construct a logarithmic Frobenius manifold, this will be done in section 4.

3.1 Landau-Ginzburg models and hypergeometric D-modules on Kähler mod-
uli spaces

We briefly recall the situation considered in the beginning of the last section, with the more specific
assumption that now the input data we are working with are of toric nature. Hence, let again N be a
free abelian group of rank n which we identify with Zn by chosing a basis. Let ΣA ⊂ NR = N ⊗ R
be a fan defining a smooth projective toric weak Fano variety XΣA . We write ΣA(1) for the set of rays
(i.e., one dimensional cones) of ΣA, we will often denote such a ray by vi. As before, a1, . . . , am are the
primitive integral generators of the rays v1, . . . , vm in ΣA(1). Consider the exact sequence

0 −→ L m−→ ZΣA(1) ∼= Zm
A−→ N −→ 0. (6)

Applying the functor HomZ(−,C∗) yields

1 −→ S0 = Spec C[N ] ∼= (C∗)n −→ (C∗)ΣA(1) ∼= (C∗)m
q−→ S2 := Spec C[L] ∼= L∨ ⊗ C∗ −→ 1. (7)

The middle torus (C∗)ΣA(1) is naturally dual to S1 = Spec C[λ±1 , . . . , λ
±
m], however, we will from now on

identify both (as well as the corresponding affine spaces W and W ′), so that we denote (C∗)ΣA(1) also
by S1. Notice that the composition of the first map of the exact sequence (7) with the open embedding
(C∗)m ↪→ Cm is nothing but the map k from proposition 2.1, which was shown to be closed. Recall
that for smooth toric varieties, L∨ equals the Picard group Pic(XΣA). Inside L∨R := L∨ ⊗R we have the
Kähler cone KΣA , which consists of all classes [a] ∈ L∨R such that a, seen as a piecewise linear function
on NR (linear on each cone of ΣA) is convex. The interior K0

ΣA
of the Kähler cone are the strictly convex

piecewise linear functions on NR. Write Di for the torus invariant divisors of XΣA associated to the ray
generated by ai, then the anti-canonical divisor of XΣA is ρ =

∑m
i=1[Di] ∈ L∨. Recall that XΣA is Fano

resp. weak Fano iff ρ ∈ K0
ΣA

resp. ρ ∈ KΣA . We will choose a basis of L∨ consisting of classes p1, . . . , pr
(with r = m−n) which lie in KΣA and such that ρ lies in the cone generated by p1, . . . , pr. This identifies
S2 with (C∗)r, and we write q1, . . . , qr for the coordinates defined by this identification.
The next definition describes one of the main objects of study of this paper.

Definition 3.1. Consider the linear function W = w1 + . . . + wm : S1 → Ct. The Landau-Ginzburg
model of the toric weak Fano variety XΣA is the restriction of the function W to the fibres of the torus
fibration q : S1

∼= (C∗)m → S2
∼= (C∗)r. We will also sometimes call the morphism

(W, q) : S1
∼= (C∗)m −→ Ct × S2

∼= Ct × (C∗)r

a Landau-Ginzburg model. Notice that the choice of the basis p1, . . . , pr (and hence the choice of coordi-
nates on S2) are part of the data of the Landau-Ginzburg model, which would otherwise only depend on
the set of rays Σ(1), but not on the fan Σ itself.

The choice of a basis p1, . . . , pr of L∨ also determines an open embedding S2 ↪→ Cr. An important issue
in this section will be to extend the various data defined by the Landau-Ginzburg model of XΣA over the
boundaray divisor Cr\S2. As a side remark, notice that the Kähler cone of a toric Fano variety does
not need to be simplicial, the simplest example being the toric del Pezzo surface obtained by blowing up
three points in P2 in generic position. Hence the above chosen basis of L∨ does not necessarily generate
the Kähler cone.
Using the dual basis (p∨a )a=1,...,r of L, the above map m is given by a matrix (mia) with columns
ma and hence the torus fibration q : (C∗)m � (C∗)r is given by q(w1, . . . , wm) = (qa = wma :=
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∏m
i=1 w

mia
i )a=1,...,r. We will also consider the product map (idz, q) : P1

z × S1 � P1 × S2 as well as its
restriction to C∗z × S1. Choose moreover a section g : L∨ → Zm of the projection Zm � L∨, which is
given in the chosen basis p1, . . . , pr of L∨ by a matrix (gia) with rows g

i
, so that

∑m
i=1 giamib = δab. The

map g induces a section of the fibration q, still denoted by g, which is given as

g : S2 −→ S1

(q1, . . . , qr) 7−→ (wi := qgi :=
∏r
a=1 q

gia
a )i=1,...,m

Obviously, g also gives a splitting of the fibration q, see diagram (8) below. Let us notice that the section
g can be chosen such that the entries of the matrix gia are non-negative integers. For this, recall (see,
e.g., [CK99, section 3.4.2]) the description of the Kähler cone as the intersection of cones in L∨⊗R each
of which is generated by the images under Zm � L∨ of some of the standard generators of Zm (the
so-called anti-cones associated to the cones σ ∈ ΣA). Hence, the chosen basis (pa)a=1,...,r of L∨ which
consists of elements of KΣA can be expressed in the generators of any of these cones, and the coefficients
are exactly the entries of the matrix (gia), hence, non-negative. It follows that the section g : S2 → S1

extends to a map g : Cr → W = Spec C[w1, . . . , wm], although the projection map q : S1 � S2 cannot
be extended over the boundary

⋃m
i=1{wi = 0} ⊂ W . In what follows, we will always assume that g is

constructed in such a way.
Write S0

2 := g−1(S0
1) = {(q1, . . . , qr) ∈ S2 | W̃ :=

∑m
i=1 q

g
iyai is Newton non-degenerate }. Finally, we

define g̃ = (idz, g) : P1
z × S2 → P1

z × S1, which is a section of the above projection map (idz, q).

Proposition 3.2. The embedding g̃ is non-characteristic for M̂loc
Ã

on P1
z × S0

1 . Moreover, the inverse

image g̃+M̂loc
Ã

is given as the quotient of DCτ×S2
[τ−1]/Ĩ, where Ĩ is the left ideal generated by

�̃l :=
∏

a:pa(l)>0

qpa(l)
a

∏
i:li<0

−li−1∏
ν=0

(

r∑
a=1

miazqa∂qa − νz)−
∏

a:pa(l)<0

q−pa(l)
a

∏
i:li>0

li−1∏
ν=0

(

r∑
a=1

miazqa∂qa − νz)

for any l ∈ L and by the single operator

z∂z +

r∑
a=1

ρ(p∨a )qa∂qa .

Notice that pa is a linear form on L and that we have
∑m
i=1 giali =

∑
i,b gia(mibpb(l)) = pa(l) ∈ Z.

Proof. The non-characteristic condition is evident as the singular locus of M̂loc
Ã

, seen as a DP1
z×S1

-module

is contained in ({0,∞} × S1) ∪ (P1
z × (S1\S0

1)). In order to calculate the inverse image, consider the
following diagram

S1

Φ−1

||

q

""
S0 × S2

Φ

22

π // S2

(y1, . . . , yn, q1, . . . , qr)
� // (q1, . . . , qr)

(8)

where the coordinate change Φ is given as

Φ(y, q) :=
(
wi = qgi · yai

)
i=1,...,m

As the diagram commutes, the q-component of Φ−1 is qa = wma . Putting Φ̃ : S0 × Cτ × S2 → Cτ × S1,
(y, τ, q) 7→ (τ,Φ(y, q)) and similarly π̃ : S0×Cτ×S2 → Cτ×S2, (y, τ, q) 7→ (τ, q), we consider the module
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Φ̃+M̂loc
Ã

which is (using the presentation M̂loc
Ã

= DT̂ [τ−1]/Î ′′) equal to the quotient of DS0×Cτ×S2 [τ−1]
by the left ideal generated by

∏
a:pa(l)<0

q
pa(l)
a �̃l =

r∏
a=1

q
pa(l)
a

∏
i:li<0

−li−1∏
ν=0

(
∑r
a=1miazqa∂qa − νz)−

∏
i:li>0

li−1∏
ν=0

(
∑r
a=1miazqa∂qa − νz)

Z̃k = yk∂yk

Ẽ = z∂z +
∑r
a=1(

∑m
i=1mia)qa∂qa = z∂z +

∑r
a=1 ρ(p∨a )qa∂qa

In other words, we have

Φ̃+M̂loc
Ã

=
C[z±, y±1 , . . . , y

±
n , q

±
1 , . . . , q

±
r ]〈∂z, ∂q1 , . . . , ∂qr 〉

(�̃l)l∈L + Ẽ

Obviously, the map g̃ is given in the new coordinates by g̃(τ, q) := (τ, 1, q) ∈ Cτ × S0 × S2, hence we
obtain

g̃+M̂loc
Ã

=
C[z±, q±1 , . . . , q

±
r ]〈∂z, ∂q1 , . . . , ∂qr 〉

(�̃l)l∈L + Ẽ

As a consequence of this lemma, and using the comparison result in theorem 2.4, we can interpret this
reduced GKZ-system as a Gauß-Manin-system.

Corollary 3.3. Consider the (restriction of the) Landau-Ginzburg model (W, q) : S0
1 → Ct × S0

2 . Then
there is an isomorphism of DCτ×S0

2
-modules

DCτ×S0
2
[τ−1]/Ĩ ∼= FL

τ

t (H0((W, q)+OS0
1
))[τ−1]

Proof. First notice that due to diagram (8) we have an isomorphism

H0((W, q)+OS0
1
) ∼= H0((W̃ , π)+OS0×S0

2
),

recall that

W̃ (y, q) =

m∑
i=1

yaiqgi =

m∑
i=1

(
n∏
k=1

yakik

)
·

(
r∏
a=1

qgiaa

)
.

Consider the following cartesian diagram

S0 × S0
2

ϕ′:=(W̃ ,π)

��

// S0 × S0
1

ϕ

��
Ct × S0

2

(idCt ,g) // U1 = Ct × S0
1

(9)

Now we use the base change properties of the direct image (see, e.g., [HTT08, section 1.7]), from which
we obtain that

(idCt , g)+H0(ϕ+OS0×S0
1
) ∼= H0(ϕ′+OS0×S0

2
).

This gives
FL

τ

t (idCt , g)+H0(ϕ+OS0×S0
1
)[τ−1] ∼= FL

τ

t H0(ϕ′+OS0×S0
2
)[τ−1],

and as we have
FL

τ

t

(
(idCt , g)+H0(ϕ+OS0×S0

1
)
)
∼= g̃+ FL

τ

t H0(ϕ+OS0×S0
1
),
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we finally obtain

g̃+ FL
τ

t

(
H0(ϕ+OS0×S0

1
)
)

[τ−1] = FL
τ

t

(
H0(ϕ′+OS0×S0

2
)
)

[τ−1],

from which the desired statement follows using proposition 3.2 and theorem 2.4.

As a consequence of the last result, we have the following easy corollary concerning the the family of
Brieskorn lattices resp. the holonomic duality for the Gauß-Manin-system of the Landau-Ginzburg model
(W, q).

Corollary 3.4. 1. The DCτ×S0
2
-module QMloc

Ã
:= OCτ×S0

2
⊗OCτ×S2

(DCτ×S2
[τ−1]/Ĩ) is equipped with

an increasing filtration G• by OCz×S0
2
-modules. Moreover, for any k ∈ N, GkQMloc

Ã
is OCz×S0

2
-

locally free of rank n! · vol(Conv(a1, . . . , am).

2. Write 0QMloc
Ã

for the OCz×S0
2
-module G0QMloc

Ã
, then this is the restriction to Cz ×S0

2 of the sheaf
associated to the module

C[z, q±1 , . . . , q
±
r ]〈z∂q1 , . . . , z∂qr , z2∂z〉

(�̃l)l∈L + (z2∂z +
∑r
a=1 ρ(p∨a )zqa∂qa)

.

3. There is a non-degenerate flat (−1)n-symmetric pairing

P : QMloc
Ã
⊗ ι∗QMloc

Ã
→ OC∗τ×S0

2
.

4. P (0QMloc
Ã
, 0QMloc

Ã
) ⊂ znOCz×S0

2
, and P is non-degenerate on 0QMloc

Ã
.

Proof. As we have seen, the closed embedding g̃|Cz×S0
2

: Cz × S0
2 ↪→ Cz × S0

1 is non-characteristic for

OCz×S0
2
⊗OCz×S2

M̂loc
Ã

. It is actually nothing else but the inverse image in the category of meromorphic

bundles with connections. Hence the increasing filtration OCz×S0
1
⊗ (z−•0M̂loc

Ã
) on M̂loc

Ã
by locally free

OCz×S0
1
-modules pulls back to an increasing filtration G• on QMloc

Ã
by locally free OCz×S0

2
-modules, the

zeroth term of which is given by the formula in 2. All other statements follow from proposition 2.18.

3.2 Logarithmic extensions

In this subsection, we first construct a logarithmic extension of the hypergeometric system QMloc
Ã

on

the Kähler moduli space. Recall from the last subsection that S0
2 is a Zariski open subspace of S2 :=

Spec C[L] consisting of points q such that the Laurent polynomial W̃ (−, q) : S0 → Ct is non-degenerate.
Recall also that we have chosen a basis p1, . . . , pr of L∨ of nef classes, i.e., classes lying in the Kähler
cone K ⊂ L∨R. The corresponding coordinates on S2 are q1, . . . , qr, and define an embedding of S2 into
Cr.
Write ∆S2 := S2\S0

2 and denote by ∆S2 the closure of ∆S2 in Cr. Finally, put S0
2 := Cr\∆S2 . We will

write Za for the divisor {qa = 0} in both Cr and S0
2 , and we define Z =

⋃r
a=1 Za which is a simple

normal crossing divisor in Cr resp. S0
2 .

Lemma 3.5. 1. The origin of Cr is contained in S0
2 .

2. If XΣA is Fano (i.e., ρ ∈ K0
ΣA

), then ∆S2 = ∅, and, hence, S0
2 = Cr.

3. If ∆S2 6= ∅, then there is a ball B := Br(0) ⊂ (S0
2)an with radius equal to r := inf{|q| : q /∈ ∆S2}.

We set B := (Cr)an if ∆S2 = ∅.

Proof. 1. This has been shown in [Iri09a, appendix 6.1].

2. This follows from lemma 2.8.

3. This is clear from 1.
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We proceed with a construction which is a variant of the arguments used in the proof of theorem 2.14,
however, now we also take into account the logarithmic structure along Z. We first define the appropriate
non-commutative algebras, and then show that they are actually locally free O-modules, possibly after
a further restriction to some Zariski open subset of S0

2 .

Definition 3.6. 1. Consider the ring

R̃ := C[q1, . . . , qr, z]〈zq1∂q1 , . . . , zqr∂qr , z
2∂z〉

i.e., the quotient of the free C[q1, . . . , qr, z]-algebra generated by zq1∂q1 , . . . , zqr∂qr , z
2∂z by the left

ideal generated by the relations

[zqa∂qa , z] = 0, [zqa∂qa , qb] = δabzqa, [z2∂z, qa] = 0, [z2∂z, z] = z2,

[zqa∂qa , zqb∂qb ] = 0, [z2∂z, zqa∂qa ] = z · zqa∂qa

Write R̃ for the associated sheaf of quasi-coherent OCz×Cr -algebras, which restricts to DC∗τ×S2
on

{(qa 6= 0)a=1,...,r, z 6= 0}.

We also consider the subring R̃′ := C[q1, . . . , qr, z]〈zq1∂q1 , . . . , zqr∂qr 〉 of R̃, and the associated

sheaf R̃′. The inclusion R̃′ ↪→ R̃ induces a functor from the category of R̃-modules to the category
of R̃′-modules, which we denote by Forz2∂z (“forgetting the z2∂z-structure”).

2. Let Ĩ be the ideal in R̃ generated by the operators �̃l for any l ∈ L and by z2∂z+
∑r
a=1 ρ(p∨a )zqa∂qa

and consider the quotient R̃/Ĩ. We have Forz2∂z (R̃/Ĩ) = (R̃′/(�̃l)l∈L) and R̃/Ĩ equals 0QMloc
Ã

on

Cz × S2 (and hence equals QMloc
Ã

on C∗τ × S2).

The basic finiteness result about the module 0QMÃ is the following.

Theorem 3.7. There is a Zariski open subset U of S0
2 containing the origin in Cr such that the module

0QMÃ := OCz×U ⊗OCz×Cr R̃/Ĩ is OCz×U -coherent. If XΣA is Fano, i.e., if ρ ∈ K0(ΣA), then one can

choose U to be Cr (which equals S0
2 in this case).

There is a connection operator

∇ : 0QMÃ −→ 0QMÃ ⊗ z
−1Ω1

Cz×U (log (({0} × U) ∪ (Cz × Z)))

extending the DC∗τ×(U∩S2)-structure on (QMloc
Ã

)|C∗τ×(U∩S2).

Proof. The arguments used here have some similarities with the proof of theorem 2.14. We first suppose
that XΣA is Fano, then we have to show that 0QMÃ is OCz×Cr -coherent. We will actually show the
coherence of Forz2∂z (0QMÃ), which is sufficient, as 0QMÃ and Forz2∂z (0QMÃ) are equal as OCz×Cr -
modules. Consider the natural filtration on R̃′ given by order of operators, i.e., the filtration F•R̃′ given
on global sections by

FkC[q1, . . . , qr, z]〈zq1∂q1 , . . . , zqr∂qr 〉 :=

P |P =
∑
|s|≤k

gs(z, q)(zq1∂q1)s1 · . . . · (zqr∂qr )sr

 .

This filtration induces a filtration F• on Forz2∂z (0QMÃ) which is good in the sense that

FkR̃′ · FlForz2∂z (0QMÃ) = Fk+lForz2∂z (0QMÃ).

We have a natural identification
grF• (R̃′) = π∗OCz×T∗Cr(log D)

where T ∗Cr(log D) is the total space of the vector bundle associated to the locally free sheaf Ω1
Cr (log D)

and π : Cz × T ∗Cr(log D) � Cz × Cr is the projection. It will be sufficient to show that the subvariety

Cz×S of Cz×T ∗Cr(log D) cut out by the symbols of all operators �̃l for l ∈ L equals Cz×Cr, then by
the usual argument the filtration F• will become eventually stationary, and we conclude by the fact that
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all FkForz2∂z (0QMÃ) are OCz×Cr -coherent. For the proof, we will use some elementary facts from toric
geometry, namely, the notion of primitive collections and primitive relations (see [Bat91] and [CvR09]).
Suppose that l ∈ L corresponds to a primitive relation in the sense of loc.cit., then it follows that
pa(l) ≥ 0 for all a = 1, . . . , r, as a primitive relation lies in the Mori cone of XΣA and as pa is a nef class,
i.e., by definition it takes non-negative values on effective cycles. On the other hand, as XΣA is Fano, we
have that l = ρ(l) > 0, remember that ρ =

∑m
i=1Di is the anti-canonical divisor which by definition lies

in the interior of the Kähler cone. Hence,
∑
i:li>0 li >

∑
i:li<0−li, moreover, for a primitive relation, we

have li = 1 for all i such that li > 0 (see [Bat91, proposition 3.1]). This yields

σ(�̃l) =
∏
i:li=1

(
r∑
a=1

miaσ(zqa∂qa)

)
,

Now identify T ∗Cr(log Z) with the trivial bundle Cr ×X where X is the vector space dual to the space
generated by (σ(zqa∂qa))a=1,...,r. Then the last equation shows that the variety S alluded to above is of
the form Cr×Yred, for some possibly non-reduced subvariety Y ⊂ X. We need to show that Yred = {0}.
First it is clear that Y is homogeneous so that it suffices to show that its Krull dimension is zero. Recall
from [Ful93, section 5.2, page 106] that the classical cohomology ring of XΣA with complex coefficients
is presented as

H∗(XΣA ,C) =
C[(vi)i=1,...,m]

(
∑m
i=1 akivi)k=1,...,n +

(
vi1 · . . . · vip

) (10)

where the tuple vi1 , . . . , vip runs over all primitive collections in ΣA(1). However, it follows from the
exactness of the sequence (6) that the spectrum of this ring equals the above subspace Y , in particular
the latter must be fat point, supported at the origin in the space V . This shows that the variety S is
the zero section of T ∗Cr(log D), as required.
Now suppose only that XΣA is weak Fano, i.e., ρ ∈ KΣA . Then it may happen that for a primitive relation
l, we have l = ρ(l) = 0, which implies that

σ(�̃l) =

r∏
a=1

qpa(l)
a

∏
i:li<0

(
r∑
a=1

miaσ(zqa∂qa)

)−li
−
∏
i:li=1

(
r∑
a=1

miaσ(zqa∂qa)

)
,

as pa(l) ≥ 0 for any primitive relation l. This shows that the fibre of S over the point q1 = 0, . . . , qr = 0
is again the reduced space of the spectrum of the cohomology algebra of XΣA , i.e, it is only the origin
in the fibre of T ∗Cr(logD) over q = 0. In particular, the projection map S � Cr is quasi-finite in a
Zariski open neighborhood U of 0 ∈ Cr. On the other hand, by its very definition, S is homogeneous
with respect to the fibre variables. Hence on U , S is the zero section of the projection T ∗U(logD) � U ,
as required.
The statement concerning the connection follows directly from the definition of 0QMÃ, namely, 0QMÃ is
invariant under the operators ∇zqa∂qa for a = 1, . . . , r and ∇z2∂z .

The next step is to discuss the restriction (0QMÃ)|Cz×{q=0}, this is a coherent OCz -module that we
denote by E. It turns out that it is actually locally free, from which we deduce the freeness of 0QMÃ
and certain extension properties of the pairing P from corollary 3.4, 3.

Lemma 3.8. 1. There is a canonical isomorphism

α : OCz ⊗H∗(XΣA ,C)
∼=−→ E,

hence, E is OCz -free of rank µ := n! · vol(Conv(a1, . . . , am)). It comes equipped with a connection

∇res,q : E −→ E ⊗ z−2Ω1
Cz

induced by the residue connection of ∇ on (0QMÃ)|C∗τ×{q=0} along
⋃r
a=1{qa = 0}.

Let i : Cz ↪→ Cz × U be the inclusion and write π : i−1(0QMÃ) � E for the canonical projection.
Let F = π (C[zq1∂q1 , . . . , zqr∂qr ]) ⊂ E, where we denote abusively by C[zq1∂q1 , . . . , zqr∂qr ] the sheaf
associated to the the image of this ring in Γ(Cz × U, 0QMÃ). Then α(1⊗H∗(XΣA ,C)) = F .

The restriction E|z=0 = (0QMÃ)|(0,0) is canonically isomorphic, as a finite-dimensional commuta-
tive algebra, to the cohomology ring (H∗(XΣA ,C),∪).
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2. 0QMÃ is OCz×U -free of rank µ.

3. Write QMÃ for the restriction (0QMÃ)|C∗τ×U . Then for any a ∈ {1, . . . , r}, the residue endomor-

phisms zqa∂qa ∈ EndOC∗τ
(
(QMÃ)|C∗τ×{0}

)
= E|C∗τ are nilpotent.

4. There is a non-degenerate flat (−1)n-symmetric pairing P : 0QMÃ ⊗ ι
∗

0QMÃ → znOCz×U , i.e., P
is flat on C∗τ×(U∩S2), and the induced pairings P : (0QMÃ/z ·0QMÃ)⊗(0QMÃ/z ·0QMÃ)→ znOU
and P : (0QMÃ/qa · 0QMÃ)⊗ ι∗(0QMÃ/qa · 0QMÃ)→ znOCz×Za are non-degenerate.

5. The induced pairing P : E ⊗ ι∗E → znOCz restricts to a pairing P : F × F → znC. The pairing
z−nP on F coincides, under the identification made in 1., with the Poincaré pairing on H∗(XΣA ,C)
up to a non-zero constant.

Proof. 1. In order to construct the map α notice first that we have

(
�̃l
)
|{q=0}

=



∏
i:li>0

∏li−1
ν=0 (

∑r
a=1miazqa∂qa − νz) if pa(l) ≥ 0 for all a = 1, . . . , r∏

i:li<0

∏−li−1
ν=0 (

∑r
a=1miazqa∂qa − νz) if pa(l) ≤ 0 for all a = 1, . . . , r

0 else

Hence we obtain the following isomorphimsm of OCz -modules

E =
(
Forz2∂z (0QMÃ)

)
|Cz×{q=0}

∼=
C[z, zq1∂q1 , . . . , zqr∂qr ]({(
�̃l
)
|{q=0}

| l ∈ EffXΣA
∩ L
}) ,

where EffXΣA
⊂ LR is the Mori cone of XΣA . Notice that if l ∈ Leff := EffXΣA

∩ L, then any(
�̃l
)
|{q=0}

contains
∏
i:li≥0(

∑r
a=1miazqa∂qa) as a factor. The Mori cone can be characterized as

follows (see, e.g., the discussion in [CK99, 3.4.2]):

EffXΣA
=

∑
σ∈ΣA(n)

Cσ, (11)

where Cσ is the cone generated by elements l ∈ L with li ≥ 0 whenever R≥0ai is not a ray of σ.
It follows that whenever l ∈ Leff\{0}, then the set {ai | li ≥ 0} cannot generate a cone in ΣA, for
otherwise −l would also lie in EffXΣA

, and thus l = 0. As a consequence, for any l ∈ Leff\{0}, the

element (�̃l)|{q=0} contains a factor
∏
i∈I(

∑r
a=1miazqa∂qa) where

∑
i∈I R≥0ai /∈ ΣA.

Now consider the case where l is primitive, in particular, l ∈ Leff. Then (�̃l)|{q=0} is equal to∏
i∈I(

∑r
a=1miazqa∂qa), where {ai | i ∈ I} is a primitive collection. As any set of rays {aj | j ∈

J} which does not generate a cone contains a primitive collection, we conclude from the above
discussion that E is equal to

C[z, zq1∂q1 , . . . , zqr∂qr ]({(
�̃l
)
|{q=0}

| l primitive

}) ∼= C[z]⊗ C[zq1∂q1 , . . . , zqr∂qr ](∏
i∈I(

∑r
a=1miazqa∂qa)

)
I

,

where the index set I in the denominator of the right hand side runs over all subsets of {1, . . . ,m}
such that {ai | i ∈ I} is a primitive collection.

Now to define α we use again the presentation of H∗(XΣA ,C) from formula (10). We conclude
from the above discussion that putting α(vi) :=

∑r
a=1miazqa∂qa yields a well-defined map OCz ⊗

H∗(XΣA ,C)→ E, which is obviously surjective. We have seen in theorem 3.7 that 0QMÃ is coherent,
and its generic rank is that of QMloc

Ã
, i.e., µ. On the other hand, OCz ⊗H∗(XΣA ,C) is OCz -free

of rank µ, hence by semi-continuity and comparison of rank, we obtain that α is an isomorphism.
Then we also have that α(H∗(XΣA ,C)) = F . The pole order property of the connection operator
∇res,q on E follows from the pole order properties of ∇ on 0QMÃ as stated in theorem 3.7.
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2. This is now a standard argument: For any I ⊂ {1, . . . , r}, put Z̃I :=
⋂
a∈I Za and consider the

restriction (0QMÃ)|C∗τ×ZI , where ZI := Z̃I\
(⋃

J)I Z̃J

)
. This restriction is equipped with the

structure of a DC∗τ×ZI -module, so that it must be locally free. Hence it suffices to show freeness of

0QMÃ in a neighborhood of 0 ∈ Cz × U . But this is clear after from point 1.: The dimension of
the fibre at 0 is n! · vol(Conv(a1, . . . , am)), which is also the rank on Cz ×S0

2 . Hence it can neither
be smaller nor bigger at any point in a neighborhood of the origin in Cz × U .

3. Using the isomorphism α from 1., the residue endomorphism [zqa∂qa ] equals IdOC∗τ ⊗ (Da ∪ −) ∈
EndOC∗τ (E|C∗τ ) from which its nilpotency follows easily.

4. Using the OCz×U -freeness of 0QMÃ and point 5. above, this can be shown by an argument similar
to [HS10, lemma 3.4]. Namely, consider the canonical V -filtration (denoted by V•) on QMloc

Ã
along

the normal crossing divisor Z. Then the last point shows that we have V0QMloc
Ã

= QMÃ (recall

that QMÃ is the restriction of 0QMÃ to C∗τ ×U), hence, grV0 (QMÃ) = (QMÃ)|C∗τ×{0}. This implies
immediately (see [HS10, proof of lemma 3.4 and formula 3.4]) that P extends in a non-degenerate
way to QMÃ. Hence we obtain a non-degenerate pairing on the restriction (0QMÃ)|(Cz×U)\({0}×Z).
However, as {0} × Z has codimension two in Cz × U , P necessarily extends to a non-degenerate
pairing on 0QMÃ, as required.

5. The non-degenerate pairing P : E ⊗ ι∗E → znOCz restricts to a pairing P : F × F → znOCz .
Let us show that it actually takes values in znC on F . Set ri = dimH2i(XΣA ,C) and choose a
homogeneous basis

w1,0 = 1, w1,1, . . . , wr1,1, . . . , w1,n−1, . . . , wrn−1,n−1, w1,n

where wi,k ∈ H2k(XΣA ,C) and which is adapted to the Lefschetz decomposition. Recall that the
Hard Lefschetz theorem says the following:

Hm(XΣA ,C) =
⊕
i

LiHm−2i(XΣA ,C)p ,

where Hn−k(XΣA ,C)p = ker(Lk+1 : Hn−k(XΣA ,C)→ Hn+k+2(XΣA ,C)) and the map L is equal to
cup-product with c1(XΣA). It follows from equation 12 that

z∇res,q

∂z
(wi,k) = k · wi,k +

1

z

rk+1∑
m=1

Θm,i,kwm,k+1 for k < n ,

z∇res,q

∂z
(w1,n) = n · w1,n ,

where Θm,i,k := (Ǎ0)u,v with u = m+
∑k
l=1 rl and v = i+

∑k−1
l=1 rl and Ǎ0 is the matrix with respect

to the basis w1,0, . . . , w1,n of the endomorphism −c1(XΣA)∪. The first claim is that P (wi,k, wj,l) =
cikjlz

k+l with cikjl ∈ C. Using the fact that P takes values in znOCz on E, this implies in particular
P (wi,k, wj,l) = 0 for k + l < n. We have

z∂zP (w1,n, w1,n) = 2nP (w1,n, w1,n) ∈ znOCz ,

thus it follows that P (w1,n, w1,n) = c ·z2n for some c ∈ C. Now assume that we have P (wi,s, wj,t) =
cisjtz

s+t for cisjt ∈ C and s+ t ≥ d+ 1. We have for k + l = d

z∂zP (wi,kwj,l) = P (k · wi,k +
1

z
(

rk+1∑
m=1

Θm,i,kwm,k+1), wj,l)

+ P (wi,k, l · wj,l +
1

z
(

rl+1∑
m=1

Θm,j,l wm,l+1))

= (k + l)P (wi,k, wj,l) + c · zd for some c ∈ C ,

where the last equality follows from the inductive assumption for d+ 1 and d+ 2. Thus we have

(z∂z − d)2P (wi,kwj,l) = 0 ,
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which shows P (wi,kwj,l)− c · zd ∈ zdC. This shows the first claim, i.e. P (wi,k, wj,l) = cijklz
k+l for

k + l ≥ n and P (wi,k, wj,l) = 0 for k + l < n.

As a second step we want to show P (wi,k, wj,l) = 0 for k+l > n. We prove this by descending induc-
tion, beginning with the case k+ l = 2n. We first introduce some notation. We say wi,k is primitive
if it is not of the form −c1(XΣA) ∪ v for some v ∈ H2k−2(XΣA ,C). We say qwi,k ∈ H2k−2q(XΣA ,C)
is a q-th primitive of wi,k if (−c1(XΣA))q ∪ qwi,k = wi,k. The Hard Lefschetz Theorem tells us that
for 2k ≥ n the element wi,k is never primitive.

As the base case we have to prove P (w1,n, w1,n) = 0. Let 1w1,n be a first primitive of w1,n. We
have

0 = (z∂z − (2n− 1))P (1w1,n, w1,n) =P ((n− 1) · 1w1,n, w1,n) + P (
1

z
w1,n, w1,n)

+P (1w1,n, n · w1,n)− (2n− 1)P (1w1,n, w1,n)

=
1

z
P (w1,n, w1,n) .

Now assume P (wi,k, wj,l) = 0 for k + l ≥ s + 1. We will prove P (wi,k, wj,l) = 0 for k + l = s by
descending induction on k. Notice that by (−1)w-symmetry we only have to prove this for k ≥ l.
The base case is to show that P (w1,n, wj,s−n) = 0 for j ∈ {1, . . . , rs−n} (recall that n+1 ≤ s < 2n).
We have to distinguish two cases:

I. case: wj,s−n is not primitive. Thus there exists 1wj,s−n with −c1(XΣA) ∪ 1wj,s−n = wj,s−n. We
calculate

0 = (z∂z − (s− 1))P (w1,n, 1wj,s−n)

= P (n · w1,n, 1wj,s−n) + P (w1,n, (s− n− 1)1wj,s−n) + P (w1,n,
1

z
wj,s−n)− (s− 1)P (w1,n, 1wj,s−n)

= −1

z
P (w1,n, wj,s−n).

II. case: wj,s−n is primitive. This means that

wj,s−n ∈ H2s−2n(XΣA ,C)p = ker
(
c1(XΣA)3n−2s+1 : H2s−2n(XΣA ,C)→ H4n−2s+2(XΣA ,C)

)
.

We have

0 =(z∂z − (s− 1))P (1w1,n, wj,s−n)

=P ((n− 1) · 1w1,n, wj,s−n) + P (
1

z
w1,n, wj,s−n) + P (1w1,n, (s− n) · wj,s−n)

+P (1w1,n,
1

z
(−c1(XΣA)) ∪ wj,s−n)− (s− 1)P (1w1,n, wj,s−n)

=P (
1

z
w1,n, wj,s−n) + P (1w1,n,

1

z
(−c1(XΣA)) ∪ wj,s−n) ,

which gives P (w1,n, wj,s−n) = P (1w1,n, c1(XΣA) ∪ wj,s−n). Notice that 3n− 2s < n. Because w1,n

has an n− th-primitive (this follows from the Hard Lefschetz theorem: c1(XΣA)n : H0(XΣA ,C)
'−→

H2n(XΣA ,C)), we can repeat this step 3n− 2s+ 1 times to get

P (w1n , wj,s−n) = P ((3n−2s+1)w1,n, (−c1(XΣA))3n−2s+1 ∪ wj,s−n) = 0.

This shows the second case.

We now assume that P (wi,k, wj,l) = 0 for k ≥ t + 1 and k + l = s as well as P (wi,k, wj,l) = 0 for
k + l ≥ s + 1. We have to prove P (wi,t, wj,s−t) = 0 for i ∈ {1, . . . rt} and j ∈ {1, . . . , rt−s} and
t ≥ s− t (the last restriction is allowed because of the (−1)w-symmetry of P ).
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I. case: wj,s−t is not primitive: Thus there exists 1wj,s−t with −c1(XΣA) ∪ 1wj,s−t = wj,s−t. We
calculate

0 =(z∂z − (s− 1))P (wi,t, 1wj,s−t)

=P (t · wi,t, 1wj,s−t) + P (
1

z
(−c1(XΣA) ∪ wi,t), 1wj,s−t) + P (wi,t, (s− t− 1) · 1wj,s−t)

+P (wi,t,
1

z
wj,s−t)− (s− 1)P (wi,t, 1wj,s−t)

=P (
1

z
(−c1(XΣA) ∪ wi,t), 1wj,s−t) + P (wi,t,

1

z
wj,s−t)

=P (wi,t,
1

z
wj,s−t).

Notice that P (c1(XΣA) ∪ wi,t, 1wj,s−t) vanishes because c1(XΣA) ∪ wi,t is a linear combination of
{wi,t+1} and P (wi,t+1, 1wj,s−t) vanishes for every i ∈ {1, . . . , rt+1} by the induction hypothesis.

II. case: wj,s−t is primitive. This means that

wj,s−t ∈ H2s−2t(XΣA ,C)p = ker
(
c1(XΣA)n+2t−2s+1 : H2s−2t(XΣA ,C)→ H2n−2s+2t+2(XΣA ,C)

)
.

Notice that wi,t has a (2t − n)-th primitive and we have 2t − n ≥ n + 2t − 2s + 1, because of
s ≥ n+ 1. We calculate

0 =(z∂z − (s− 1))P (1wi,t, wj,s−t)

=P ((t− 1) · 1wi,t, wj,s−t) + P (
1

z
wi,t, wj,s−t) + P (1wi,t, (s− t) · wj,s−t)

+P (1wi,t,
1

z
(−c1(XΣA)) ∪ wj,s−t)− (s− 1)P (1wi,t, wj,s−t)

=P (
1

z
wi,t, wj,s−t) + P (1wi,t,

1

z
(−c1(XΣA)) ∪ wj,s−t)

which gives P (wi,t, wj,s−t) = P (1wi,t, (−c1(XΣA)) ∪wj,s−t). As wi,t has a (2t− n)-th primitive we
can repeat this step n+ 2t− 2s+ 1 times to get

P (wi,t, wj,s−t) = P (n+2t−2s+1wi,t, (−c1(XΣA))n+2t−2s+1 ∪ wj,s−t) = 0 .

This finishes the induction over t. Thus we have shown that P (wi,k, wj,l) = 0 if k + l = s ≥ n+ 1
and k ≥ l. The case k ≤ l follows by symmetry and this finishes the induction over s. This means
that the pairing P : F × F −→ znOCz takes values in znC.

It remains to show that the pairing z−nP coincides, under the isomorphism α : 1⊗H∗(XΣA ,C)→ F
and possibly up to a non-zero constant, with the Poincaré pairing on the cohomology algebra.
First notice that by construction, z−nP , seen as defined on H∗(XΣA ,C) is multiplication invariant,
i.e., P (a, b) = P (1, a ∪ b) for any two classes a, b ∈ H∗(XΣA ,C). This can be deduced from the
flatness of P on QMloc

Ã
, more precisely, by considering the restriction of P defined on the family

of commutative algebras 0QMÃ/z · 0QMÃ. Notice however that this argument holds a priori only
modulo z, and in order to obtain the multiplication invariance of z−nP on 1 ⊗ H∗(XΣA ,C) one
first needs to know that it takes constant values on that space. It suffices now to show that P (1, a)
equals the value of the Poincaré pairing on 1 and a. But as we have seen above, P (1, a) can only be
non-zero if a ∈ H2n(XΣA ,C), so that the P on H∗(XΣA ,C) is entirely determined by the non-zero
complex number P (1,PD([pt ])).

Remark: The value of the pairing P at the point (0, 0) ∈ Cz×U is determined, by the above argument,
up to multiplication by a non-zero complex number. In order to simplify the statements of the subsequent
results, we will without further mentioning assume that this number is chosen such that P corresponds
under the above identifications exactly to the Poincaré pairing on H∗(XΣA ,C). Such a choice is always

possible by changing the morphism φ : MÃ = M
(1,0)

Ã
→ DMÃ = M

(0,0)

Ã
from the proof of theorem 2.15

by multiplication by a non-zero complex number (and these are the only non-trivial morphisms between
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these two modules, due to [Sai01, theorem 3.3(3)]).

We now show how to construct a specific basis of 0QMÃ defining an extension to a family of trivial
P1 parameterized by an analytic neighborhood of the origin in U and such that the connection has a
logarithmic pole at z =∞. As already mentioned in the introduction, the method goes back to [Gue08],
namely, we first construct an extension of E = (0QMÃ)|Cz×{0} to P1

z ×{0} and then show that it can be
extended to a family of P1-bundles restricting to 0QMÃ outside z =∞. At any point q near the origin in
U this yields a solution to the Birkhoff problem (in other words, a good base in the sense of [Sai89]) of
the restriction of (0QMloc

Ã
)|Cz×{q}, but it also gives an extension of the whole family 0QMÃ taking into

account the logarithmic degeneration behavior at D.

Proposition 3.9. Consider the OCz -module E with the connection ∇res,q and the subspace F ⊂ E from
lemma 3.8.

1. The connection operator ∇res,q : E → z−2 · E sends F into z−2F ⊕ z−1 · F .

2. Let Ê := OP1
z×{0} · F be an extension of E to a trivial P1-bundle. Then the connection ∇res,q has

a logarithmic pole at z =∞ with spectrum (i.e., set of residue eigenvalues) equal to the (algebraic)
degrees of the cohomology classes of H∗(XΣA ,C). This logarithmic extension corresponds to an

increasing filtration F• on the local system Ean,∇res,q

|C∗τ
by subsystems which are invariant under

the monodromy of ∇res,q. Let jτ : C∗τ ↪→ (P1
z\{0}), and put E∞ := ψτ jτ,!(E

an)∇
res,q

|C∗τ
, where

ψτ is Deligne’s nearby cycle functor. Then F• is defined on E∞, and there is an isomorphism
H0(P1

z, Ê) = F → E∞.

3. Write Na for the nilpotent part of the monodromy of (QMloc
Ã

)an,∇ around C∗τ × Za, then Na acts
on E∞ and satisfies NaF• ⊂ F•−1.

4. The pairing P on E extends to a non-degenerate pairing P : Ê ⊗O
P1 ι
∗Ê → OP1(−n, n), where

OP1(a, b) is the subsheaf of OP1(∗{0,∞}) consisting of meromorphic functions with a pole of order
a at 0 and a pole of order b at ∞.

Proof. 1. Let w1, . . . , wµ be a C-basis of F which consists of monomials in zqa∂qa . We will show that

(z2∇res,q
z )(w) = w · (A0 + zA∞), (12)

where A0, A∞ ∈M(µ×µ,C) and that the eigenvalues of A∞ are exactly the set (counted with multi-
plicity) of the (algebraic) degrees of the cohomology classes of XΣA . First notice that under the iden-
tification of H∗(XΣA ,C) with the quotient C[(vi)i=1,...,m]/

(
(
∑m
i=1 akivi)k=1,...,n + (vi1 · . . . · vip)

)
in

formula (10), a ray vi is mapped to the cohomology class in H2(XΣA ,C) of the torus invariant divisor
it determines.

From the definition of 0QMloc
Ã

we see that

(z2∇res,q
z )(zqbi∂qbi )

ki = (z2∂z) · (zqbi∂qbi )
ki

= (zqbi∂qbi )
ki · (z2∂z) + ki · z · (zqbi∂qbi )

ki

=

[
−

r∑
a=1

ρ(p∨a )zqa∂qa

]
· (zqbi∂qbi )

ki + ki · z · (zqbi∂qbi )
ki

(13)

Hence A∞ is diagonal with eigenvalues equal to the algebraic cohomology degrees of H∗(XΣA ,C).

As a by-product of the above calculation, we also see that the endomorphism of E/z ·E represented
by the matrix A0 is the multiplication with −c1(XΣA), and hence, is nilpotent. With a little more
work, this shows that ∇res,q has a regular singularity at z = 0 on E. However, as we are not going
to use this fact in the sequel, we will not give the complete proof here. In any case, we see that
[A∞, A0] = A0.
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2. Formula (12) and formula (13) show that the connection ∇res,q has a logarithmic pole at z =∞ on

Ê with residue eigenvalues equal to the algebraic cohomology degrees of the cohomology classes of
H∗(XΣA ,C). The correspondence between logarithmic extensions of flat bundles over a divisor and
filtrations on the corresponding local system is a general fact, see, e.g., [Sab02, III.1.ab] or [Her02,
lemma 7.6 and lemma 8.14]. The isomorphism F → E∞ is explicitly given by multiplication by
z−A∞ · z−A0 .

3. We have seen in the proof of theorem 3.8, 4., that E|C∗τ
∼= grV0 QMÃ as flat bundles. Na naturally

acts on the latter one, and is flat with respect to the residue connection ∇res,q, hence it acts on
Ean,∇res,q

|C∗τ
and thus on E∞. Under the identification of 2., the filtration F• is induced by

Fp =
∑
|k|≥−p

C
(
(zq1∂q1)k1 · . . . · (zqr∂qr )kr

)
.

Notice that the only non-trivial filtration steps are those for p ∈ [−n, 0], which corresponds to the

residue eigenvalues of z−1∇z−1 = −z∇z on Ê at z =∞ (see formula (13) above). By definition, Na,
seen as defined on F is simply the multiplication by zqa∂qa , from which it follows that NaF• ⊂ F•−1.

4. This follows directly from lemma 3.8, 4. and from the definition of Ê.

The next result gives an extension of 0QMÃ to a family of trivial P1-bundles, possibly after restricting
to a smaller open subset inside U .

Proposition 3.10. There is an analytic open subset U0 ⊂ Uan still containing the origin of Cr and a

holomorphic bundle 0̂QMÃ → P1
z × U0 (notice that here ̂ signifies an extension to z = ∞, this should

not be confused with notation for the partial Fourier-Laplace transformation used before) such that

1. (0̂QMÃ)|Cz×U0 ∼= (0QMan
Ã

)|Cz×U0

2. (0̂QMÃ)|P1
z×{0}

∼= Ê

3. 0̂QMÃ is a family of trivial P1
z-bundles, i.e., 0̂QMÃ = p∗p∗(0̂QMÃ), where p : P1

z ×U0 → U0 is the
projection.

4. The connection ∇ has a logarithmic pole along Ẑ on 0̂QMÃ, where Ẑ is the normal crossing divisor
({z =∞} ∪

⋃r
a=1{qa = 0}) ∩ P1

z × U0.

5. The given pairings P : 0QMÃ ⊗ ι
∗

0QMÃ → znOCz×U and P : Ê ⊗O
P1
z
ι∗Ê → OP1

z
(−n, n) extend to

a non-degenerate pairing P : 0̂QMÃ ⊗OP1
z×U

0 ι
∗

0̂QMÃ → OP1
z×U0(−n, n), where the latter sheaf is

defined as in point 4. of proposition 3.9.

6. The residue connection

∇res,τ : 0̂QMÃ/τ · 0̂QMÃ −→ 0̂QMÃ/τ · 0̂QMÃ ⊗ Ω1
{∞}×U0(log({∞} × Z)).

has trivial monodromy around {∞}×Z and any element of F ⊂ H0(P1
z ×U0, 0̂QMÃ) is horizontal

for ∇.

Proof. Recall that QMÃ is the restriction of 0QMÃ to C∗τ ×U . The strategy of the proof is to show that

there is a holomorphic bundle Q̂MÃ on (P1
z\{0})× B (where B is the analytic neighborhood of 0 ∈ Cr

which was defined in lemma 3.5) which is an extension of (QMan
Ã

)|C∗τ×B over z =∞ with a logarithmic

pole along Ẑan ∩ (P1
z × B) and such that the bundle obtained by gluing this extension to 0QMÃ is a

family of trivial P1
z-bundles, possibly after restricting to some open subset P1

z × U0 of P1
z ×B.

A logarithmic extension of (QMloc
Ã

)an|C∗τ×(B∩San2 ) over Ẑan ∩ (P1
z × B) is given by a Zr+1-filtration on

the local system L = (QMloc
Ã

)an,∇ which is split iff the extension is locally free (see [Her02, lemma

8.14]). In our situation, the bundle QMÃ already yields a logarithmic extension over C∗τ ×Z and we are
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seeking a bundle Q̂MÃ → (P1
z\{0})×B restricting to QMan

Ã
on C∗τ ×B. Moreover, the Zr-filtration P•

corresponding to QMan
Ã

is trivial, as this bundle is a Deligne extension due to lemma 3.8, 4. It follows

that if we choose an extra single filtration F• on L (this will be the one which define the extension Q̂MÃ

over {z =∞}), then the corresponding Zr+1-filtration P̃• := (F•, P•) will automatically be split. Write
L∞ for the space ψτ (ψq1(. . . (ψqr (j!L) . . .))), where j : C∗τ × (U\Z)an ↪→ (P1

z\{0})× Uan i.e., L∞ is the
space of multivalued flat sections of QMloc

Ã
. The basic fact used in order to construct F• is that we have

L∞ = ψτ jτ,!

(
(QMan

Ã
)∇

res,q

|C∗τ×{0}

)
. This is again due to lemma 3.8, 4. More precisely, we have already seen

that V0QMloc
Ã

= QMÃ, i.e., grV0 (QMÃ) = (QMÃ)|C∗τ×{0} = E|C∗τ , where V• is the canonical V -filtration

on QMloc
Ã

along the normal crossing divisor Z, and then the statement follows from the comparison
theorem for nearby cycles.
Now we have already constructed an extension of (QMÃ)|C∗τ×{0} to (P1

z\{0}) × {0}: namely, the chart

at z = ∞ of the bundle Ê from proposition 3.9, and we have seen in point 3 of this proposition that it

is encoded by a filtration F• on ψτ jτ,!

(
(QMan

Ã
)∇

res,q

|C∗τ×{0}

)
. Hence we obtain a filtration F• on L∞ that

we are looking for. As explained above, this yields a split Zr+1-filtration P̃• giving rise to a bundle

Q̂MÃ →
(
(P1

z\{0})×B
)

with logarithmic poles along Ẑan ∩ (P1
z ×B), and by construction this bundle

restricts to QMÃ on C∗τ × B and to Ê|(P1
z\{0})×{0} on (P1

z\{0}) × {0}. Hence we can glue Q̂MÃ and

0QMan
Ã

on C∗τ ×B to a holomorphic P1
z×B-bundle. Its restriction to P1

z×{0} is trivial, namely, it is the

bundle Ê constructed in proposition 3.9. As triviality is an open condition, there exists an open subset
(with respect to the analytic topology) U0 ⊂ B such that the restriction of this bundle to P1

z×U0, which

we call 0̂QMÃ, is fibrewise trivial, i.e., satisfies 0̂QMÃ = p∗p∗0̂QMÃ. This shows the points 1. to 4.
Concerning the statement on the pairing, notice that the flat pairing P defined on L∞ gives rise to

a pairing on ψτ jτ,!

(
(QMan

Ã
)∇

res,q

|C∗τ×{0}

)
. Then the pole order property of P on Ê at z = ∞ can be

encoded by an orthogonality property of the filtration F• with respect to that pairing (the one defined

on ψτ jτ,!

(
(QMan

Ã
)∇

res,q

|C∗τ×{0}

)
) see, e.g., [Her03, theorem 7.17 and definition 7.18]. Hence the very same

property must hold for P and F•, seen as defined on L∞, so that we conclude that we obtain P :

0̂QMÃ ⊗OP1
z×U

0 ι
∗

0̂QMÃ → OP1
z×U0(−n, n), as required.

Finally, let us show the last statement: It follows from the correspondence between monodromy in-
variant filtrations and logarithmic poles used above that the residue connection ∇res,τ along z = ∞
on 0̂QMÃ/z

−1
0̂QMÃ has trivial monodromy around Z if for any a = 1, . . . , r, the nilpotent part Na of

the monodromy of ∇ on the local system (QMloc
Ã

)∇ kills grF• , i.e., NaF• ⊂ F•−1. Now by the above

identification, we can see F• as defined on ψτ jτ,!

(
(QMan

Ã
)∇

res,q

|C∗τ×{0}

)
, and then NaF• ⊂ F•−1 has been

shown in proposition 3.9, 3. It follows directly from the above construction that all elements of F , seen
as global sections over P1

z × U0 are horizontal for ∇res,τ .

Remark: If the algebraic subset ∆S2
= S2\S0

2 , i.e., the subspace on which the Laurent polynomial
W (−, q) : S0 → Ct is degenerate, is a divisor, then additional monodromy phenomena may occur. For
this reason, the bundle 0QMÃ cannot in general be extended as an algebraic bundle over a Zariski open
subset of P1 × U . Such an extension a priori can only be defined on some covering space of a Zariski
open subset of P1 × U . The choice of this covering space depends on the structure of the fundamental
group of U , which is not a priori known. We therefore restrict ourselves to the construction of an analytic

extension parameterized by the ball B. Notice however that if XΣA is Fano, then 0̂QMÃ exists as an
algebraic family of P1

z-bundles on some Zariski open subset of Cr.

At this point it is convenient to introduce the so-called I-function of the toric variety XΣA . We follow
the definition of Givental (see [Giv98]), and relate this function to the hypergeometric module QMloc

Ã
discussed above.

Definition 3.11. Define I resp. Ĩ to be the H∗(XΣA ,C)-valued formal power series

I = eδ/z ·
∑
l∈L

ql ·
m∏
i=1

∏0
ν=−∞ ([Di] + νz)∏li
ν=−∞ ([Di] + νz)

∈ H∗(XΣA ,C)[z][[q1, . . . , qr]][[z
−1, t1, . . . , tr]].
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resp. Ĩ = z−ρ ·zµ ·I. Here we have set ql =
∏r
a=1 q

pa(l)
a and (t1, . . . , tr) are the coordinates on H2(XΣA ,C)

induced by the basis (p1, . . . , pr) of L∨ which were chosen at the beginning of subsection 3.1. Notice that
δ =

∑r
a=1 tapa is a cohomology class in H2(XΣA ,C). Later we will set qi = eti for i = 1, . . . , r. As before

ρ =
∑m
i=1[Di] ∈ L∨ is the anti-canonical class of XΣA and we write µ ∈ Aut(H∗(XΣA ,C)) for the grading

automorphism which take the value k · c on a homogeneous class c ∈ H2k(XΣA ,C).

We collect the main properties of the I-function that we will need in the sequel. Most of the statements
of the next proposition are well-known, but rather scattered in the literature.

Proposition 3.12. 1. We have

Ĩ = Γ(TXΣA) · eδ · z−ρ ·
∑
l∈L

ql · z−l∏m
i=1 Γ(Di + li + 1)

, (14)

where Γ(TXΣA) :=
∏m
i=1 Γ(1 +Di). Moreover,

e−δ/z · I, zρ · e−δ · Ĩ ∈ H∗(XΣA ,C)[[q1, . . . , qr, z
−1]], (15)

that is, these series are univalued and have no poles in {z =∞} ∪
⋃r
a=1{qa = 0}.

2. I has the development
I = 1 + γ(q1, . . . , qr) · z−1 + o(z−1)

where γ = δ + γ′(q1, . . . , qr) lies in δ +H2(XΣA ,C)[[q1, . . . , qr]]. If XΣA is Fano, then γ′ = 0.

3. There is an open neighborhood S of 0 in Cr,an such that both e−δ/z · I and zρ · e−δ · Ĩ are elements
in H∗(XΣA ,C) ⊗ OanC∗τ×S∗ , where S∗ := S ∩ S0

2 . In particular, if we put κ := q · eγ′ then κ lies in

(OanS )r and defines a coordinate change on S. Notice that in the Fano case, κ is the identity, in
general it is called the mirror map. It will reappear in theorem 4.7 and proposition 4.10.

4. Write π : ( ˜C∗τ × S∗)an → (C∗τ × S∗)an for the universal cover, then for any linear function h ∈
(H∗(XΣA ,C))∨, we have

h ◦ Ĩ ∈ H0
(

( ˜C∗τ × S∗)an, π∗Sol•(QMloc
Ã

)
)

= H0
(

( ˜C∗τ × S∗)an, π∗HomDC∗τ×S∗ (QMloc
Ã
,OC∗τ×S∗)

)
5. For all h ∈ (H∗(XΣA ,C))∨, if h ◦ Ĩ = 0, then h = 0, in other words, Ĩ yields a fundamental system

of solutions of (QMloc
Ã

)|C∗τ×S∗ .

Proof. 1. From zµ · δ/z = δ · zµ and zµ ·Di/z = Di · zµ we deduce

z−ρ · zµ · I = z−ρ · eδ ·
∑
l∈L

ql ·
m∏
i=1

∏0
ν=−∞ z ([Di] + ν)∏li
ν=−∞ z ([Di] + ν)

= eδ · z−ρ ·
∑
l∈L

ql ·
∏
li≥0

Γ(Di + 1)

Γ(Di + 1) ·
∏li
ν=1 z (Di + ν)

·
∏
li<0

Γ(Di + 1) ·
∏0
ν=li+1 z · (Di + ν)

Γ(Di + 1)

= eδ · z−ρ ·
m∏
i=1

Γ(Di + 1) ·
∑
l∈L

ql
∏
li≥0

1

Γ(Di + li + 1) · zli ·
∏
li<0

z−li

Γ(Di + li + 1)
.

The identity
∏m
i=1 Γ(Di + 1) = Γ(TXΣA) yields

Ĩ = Γ(TXΣA) · eδ · z−ρ ·
∑
l∈L

ql · z−l∏m
i=1 Γ(Di + li + 1)

For the second point, notice first that

Ĩ = Γ(TXΣA) · eδ · z−ρ ·
∑

l∈L∩EffXΣA

ql · z−l∏m
i=1 Γ(Di + li + 1)

,
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where again EffXΣA
⊂ LR denotes the Mori cone of classes of effective curves in XΣA . Indeed, we

will see that for any l0 outside Leff = L∩EffXΣA
, the term ql

0
·z−l

0∏m
i=1 Γ(Di+l0i+1)

vanishes in H∗(XΣA ,C).

Assume the contrary, and first notice that for l0i < 0 the factor 1
Γ(Di+l0i+1)

is divisible by Di. For

ql
0
·z−l

0∏m
i=1 Γ(Di+l0i+1)

to be non-zero, there must be a maximal cone σ0 containing the set of all ai such

that l0i < 0, as otherwise the term
∏
i:l0i<0Di which occurs as a factor in ql

0
·z−l

0∏m
i=1 Γ(Di+l0i+1)

is zero

in H∗(XΣA ,C). We use again (see formula (11)) that EffXΣA
=
∑
σ∈ΣA(n) Cσ, where Cσ is the

cone generated by elements l = (l1, . . . , lm) with li ≥ 0 whenever R≥0ai is not a ray of σ. Thus
l0 ∈ Cσ0 ⊂ EffXΣA

, which shows the claim. Now remember from the proof of theorem 3.7 that

for all l ∈ Leff we have l ≥ 0 as XΣA is weak Fano, hence, z−l has no poles at z = ∞. Moreover,
by the same argument pa(l) is non-negative for l ∈ Leff, which gives that ql has no poles along

∪ra=1{qa = 0}. Hence we obtain e−δ/z · I, zρ · e−δ · Ĩ ∈ H∗(XΣA ,C)[[q1, . . . , qr, z
−1]].

2. After what has been said before, it is evident that the I-function can be written as

I = eδ/z ·
∑
l∈Leff

ql · z−l ·
m∏
i=1

∏0
ν=−∞

(
[Di]
z + ν

)
∏li
ν=−∞

(
[Di]
z + ν

) .
Let us calculate the first terms in the z−1-development of this expression: The constant term
can only get contributions from elements l ∈ Leff with l = 0. The zero relation l = 0 gives the
cohomology class 1, on the other hand, for any l 6= 0 with l = 0, there must be at least one

i ∈ {1, . . . ,m} with li < 0, and then constant coefficient in the product

∏0
ν=−∞

(
[Di]

z +ν
)

∏li
ν=−∞

(
[Di]

z +ν
) gets a

factor ν = 0, i.e., is zero. By a similar argument, the coefficient γ of the z−1-term cannot have
a H0(XΣA ,C)-component. One also sees immediately that γ has no components in H>2(XΣA ,C).
Hence we are left to show that γ(q1, . . . , qr) = δ + γ′(q1, . . . , qr). We have

I =
(
1 + δ/z + o(z−1)

)
·
∑
l∈Leff

ql · z−l ·
m∏
i=1

∏0
ν=−∞

(
[Di]
z + ν

)
∏li
ν=−∞

(
[Di]
z + ν

) .
For the coefficient γ, we have a contribution from the δ/z-term in the first factor, and if XΣA is
Fano, this is the only term as then l > 0 for all l ∈ Leff\{0}. In the weak Fano case, any l ∈ Leff\{0}
with l = 0 give some extra contribution from the [Di]/z-terms, but this part is multiplied by ql ,
i.e., a univalued function in q1, . . . , qr.

3. As a first step, we show that there is a constant L > 0 such that for any x = (x1, . . . , xm) ∈ Cm,
the expression ∑

l∈Leff

ql · z−l∏m
i=1 Γ(xi + li + 1)

=
∑
l∈Leff

z−l
∏r
a=1 q

pa(l)
a∏m

i=1 Γ(xi + li + 1)

is convergent on {(z, q1, . . . , qr) | |z| ≥ 1, |qa| ≤ L} ∩ C∗τ × S0
2 . Using [BH06, Lemma A.4] we have∣∣∣∣∣z−l

∏r
a=1 q

pa(l)
a∏m

i=1 Γ(xi + li + 1)

∣∣∣∣∣ ≤ A(x)(4m)||l|| · e−l·log |z|+
∑r
a=1 pa(l)·log |qa|

Let ε > 0, the series is absolutely and uniformly convergent if

‖l‖ · log(4m)− l · log |z|+
r∑
a=1

pa(l) · log |qa| ≤ −ε||l|| (16)

for all l ∈ Leff. This gives the condition

l · log |z|+
r∑
a=1

pa(l) · (− log |qa|) ≥ (ε+ log(4m)) · ||l||
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Let ||M || be the norm of the matrix (mia). For |z| ≥ 1 and q ∈ S0
2 we have

l · log |z|+
r∑
a=1

pa(l) · (− log |qa|) ≥
r∑
a=1

pa(l) · (− log |qa|)

≥
r∑
a=1

pa(l) · min
a=1,...,r

(− log |qa|) ≥
1

||M ||
· ||l|| · min

a=1,...,r
(− log |qa|)

where we have used
∑r
a=1miapa(l) = li and pa(l) ≥ 0 for l ∈ Leff. Thus condition (16) is satisfied

for
max
a=1,...r

|qa| ≤ e−||M ||(ε+log(4m)) =: L

This shows convergence of
∑
l∈Leff

ql ·z−l∏m
i=1 Γ(xi+li+1) on S̃∗ := {(z, q1, . . . , qr) | |z| ≥ 1, |qa| ≤ L} ∩

C∗τ × S0
2 . From the nilpotency of the operators Di∪ ∈ End(H∗(XΣA ,C) we see that

∑
l∈Leff

ql · z−l∏m
i=1 Γ(Di + li + 1)

∈ H∗(XΣA ,C)⊗Oan
S̃∗
.

For the readers convenience, we recall next how to derive the identities

�̃l(Ĩ) = 0 ∀l ∈ L

(z∂z +
∑r
a=1 ρ(p∨a )qa∂qa) (Ĩ) = 0.

(17)

Write �̃l0 := �̃−
l0
− �̃+

l0
where

�̃−
l0

:=
∏

a:pa(l0)>0

q
pa(l0)
a

∏
i:l0i<0

−l0i−1∏
ν=0

(
∑r
a=1miazqa∂qa − νz)

�̃+
l0

:=
∏

a:pa(l0)<0

q
−pa(l0)
a

∏
i:l0i>0

l0i−1∏
ν=0

(
∑r
a=1miazqa∂qa − νz)

Using the fact that zqa∂qa Ĩ = z(pa + pa(l)) · Ĩ we get

�̃−
l0
Ĩ = Γ(TXΣA) · eδ · z−ρ ·

∑
l∈L

 ∏
a:pa(l0)>0

qpa(l0)
a

∏
i:l0i<0

z−l
0
i

0∏
ν=l0i+1

(Di + li + ν)

 ∏r
a=1 q

pa(l)
a · z−l∏

i Γ(Di + li + 1)

= Γ(TXΣA) · eδ · z−ρ ·
∑
l∈L

∏
a:pa(l)>0 q

pa(l+l0)
a ·

∏
a:pa(l)<0 q

pa(l)
a · z−l−

∑
i:l0
i
<0

l0i∏
i:l0i<0 Γ(Di + li + l0i + 1) ·

∏
i:li≥0 Γ(Di + li + 1)

= Γ(TXΣA) · eδ · z−ρ ·
∑
l∈L

∏
a:pa(l)>0 q

pa(l)
a ·

∏
a:pa(l)<0 q

pa(l−l0)
a · z−l+

∑
i:l0
i
>0

l0i∏
i:l0i<0 Γ(Di + li + 1) ·

∏
i:li≥0 Γ(Di + li − l0i + 1)

= Γ(TXΣA) · eδ · z−ρ ·
∑
l∈L

 ∏
a:pa(l0)<0

qpa(l0)
a

∏
i:l0i>0

zl
0
i

0∏
ν=1−l0i

(Di + li + ν)

 ∏r
a=1 q

pa(l)
a · z−l∏

i Γ(Di + li + 1)

= �̃+
l0
Ĩ (18)

which shows �̃l(Ĩ) = 0. The second one of the equations (17) follows from(
z∂z +

r∑
a=1

ρ(p∨a )qa∂a

)
Ĩ =

(
(−ρ− l) +

r∑
a=1

ρ(p∨a )(pa + pa(l))

)
Ĩ = 0
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Now we conclude by a classical argument from the theory of ordinary differential equations (see, e.g.,

[CL55, Theorem 3.1]): Fix q0 ∈ S0
2 with |q0

a| < L, then Ĩ(z−1, q0) satisfies a system of differential

equations in z−1 with a regular singularity at z−1 = 0. Hence Ĩ(z−1, q0) is a multivalued analytic

function on all of C∗τ×{q0
}, that is, Ĩ is (multivalued) analytic in C∗τ×S∗, with S = {q ∈ Cr | |qa| <

L}, this implies the statement on e−δ/z · I and zρ · e−δ · Ĩ and obviously also the convergence of
the coordinate change κ.

4. This is a direct consequence of the equations (17).

5. We follow the argument in [BH06, proposition 2.19]. Let h ∈ (H∗(XΣA ,C))∨\{0} be given, and
let c = pk1

1 · . . . · pkrr ∈ H∗(XΣA ,C) be a monomial cohomology class of maximal degree such that

h(c) 6= 0. Consider Ĩ as a multivalued section of the trivial bundle H∗(XΣA ,C) × (C∗τ × S∗) �
C∗τ ×S∗, then as e−δ · Ĩ is univalued, the monodromy operator Ma corresponding to a loop around

qa = 0 sends Ĩ to e2πipa · Ĩ. Hence we have(
log(M1)k1 ◦ . . . ◦ log(Mr)

kr
)
h(Ĩ) = h((2πi)r · pk1

1 · . . . · pkrr · Ĩ),

and it suffices to show that the right hand side of this equation is not the zero function as then
h(Ĩ) itself cannot be identically zero. We have

h(pk1
1 · . . . · pkrr · Ĩ) =

∑
l∈Leff

ql · z−l · h
(
pk1

1 · . . . · pkrr ·
Γ(TXΣA) · eδ∏m

i=1 Γ(Di + li + 1)
· z−ρ

)
The contribution of l = (0, . . . , 0) ∈ Leff is

h

(
pk1

1 · . . . · pkrr ·
Γ(TXΣA)·∏m
i=1 Γ(Di + 1)

· eδ · z−ρ
)

= h
(
pk1

1 · . . . · pkrr · eδ · z−ρ
)

= h
(
pk1

1 · . . . · pkrr · (1 + c̃)
)
.

where c̃ ∈ H>0(XΣA ,C)[log(z), log(q1), . . . , log(qr)]. As h is zero on any cohomology class of degree

strictly bigger than pk1
1 · . . . · pkrr , we get h

(
pk1

1 · . . . · pkrr · (1 + c̃)
)
6= 0. On the other hand, this

term cannot be killed by a contribution from any l ∈ Leff\{0}, as for such an l, eδ(l) will have
positive degree.

As an easy consequence, we obtain the following interpretation of the I- resp. the Ĩ-function.

Corollary 3.13. For any homogeneous basis T0, T1, . . . , Ts of H∗(XΣA ,C), write Ĩ =
∑s
t=0 Ĩt · Tt, so

that Ĩt ∈ H0
(

( ˜C∗τ × S∗)an, π∗Sol•(QMloc
Ã

)
)

by proposition 3.12, 3. Moreover, (Ĩ0, . . . , Ĩs) is a basis of

H0
(

( ˜C∗τ × S∗)an, π∗Sol•(QMloc
Ã

)
)

by proposition 3.12, 4. Using the natural duality

H0
(

( ˜C∗τ × S∗)an, π∗Sol•(QMloc
Ã

)
)

!
=

(
H0
(

( ˜C∗τ × S∗)an, π∗DR•(QMloc
Ã

)
))∨

= H0
(

( ˜C∗τ × S∗)an, π∗HomDC∗τ×S∗ (OC∗τ×S∗ ,QM
loc
Ã

)
)∨

,

let (f0, . . . , fs) ∈
(
H0
(

( ˜C∗τ × S∗)an, π∗DR•(QMloc
Ã

)
))s+1

be the dual basis, then we have

id =

s∑
t=0

ft ◦ Ĩt ∈ H0
(

(C∗τ × S∗)an, EndD(C∗τ×S
∗)an (QMloc

Ã
)
)
.

In particular, seeing Ĩt (or, more precisely Ĩt(1)) as a multivalued function in OC∗τ×S∗ , we obtain a
representation

1 =

s∑
t=0

Ĩt(z
−1, q1, . . . , qr) · ft (19)

of the element 1 ∈ QMloc
Ã

, where ft are multivalued sections of the local system ((QMloc
Ã

)an|C∗τ×S∗
)∇.
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3.3 Logarithmic Frobenius structures

We derive in this subsection the existence of a Frobenius manifold with logarithmic poles associated to
the Landau-Ginzburg model of XΣA . This extends, for the given class of functions, the construction
from [DS03], in the sense that we obtain a family of germs of Frobenius manifolds along the space U0

from the last subsection, with a logarithmic degeneration behavior at the divisor Z. For the readers
convenience, we first recall briefly the notion of a Frobenius structure with logarithmic poles, and one
of the main result from [Rei09], which produces such structures starting from a set of initial data with
specific properties. In contrast to the earlier parts of the paper, all objects in this subsection are analytic,
unless otherwise stated.

Definition-Lemma 3.14. Let M be a complex manifold of dimension bigger or equal to one, and Z ⊂M
be a simple normal crossing divisor.

1. Suppose that (M\Z, ◦, g, e, E) is a Frobenius manifold. Then we say that it has a logarithmic pole
along Z (or that (M,Z, ◦, g, e, E) is a logarithmic Frobenius manifold for short) if ◦ ∈ Ω1

M (log Z)⊗2⊗
ΘM (log Z), g ∈ Ω1

M (log Z)⊗2, E, e ∈ Θ(log Z) and if g is non-degenerate on ΘM (log Z).

2. A log-trTLEP(n)-structure on M is a holomorphic vector bundle H → P1
z×M such that p∗p∗H = H

(where p : P1
z ×M �M is the projection) which is equipped with an integrable connection ∇ with

a pole of type 1 along {0} ×M and a logarithmic pole along (P1
z × Z) ∪ ({∞} ×M) and a flat,

(−1)n-symmetric, non-degenerate pairing P : H⊗ ι∗H → OP1
z×M (−n, n).

3. Any logarithmic Frobenius manifold gives rise to a log-trTLEP(n)-structures on M , basically by
setting H := p∗Θ(log Z), ∇ := ∇LC − 1

z ◦+
(U
z − V

)
dz
z , where ∇LC is the Levi-Civita connection

of g on Θ(log Z), U := E◦ ∈ End(Θ(log Z)) and V := ∇LC
• E − Id ∈ End(Θ(log Z)) (see [Rei09,

proposition 1.7 and proposition 1.10] for more details).

Under certain conditions, a given log-trTLEP(n)-structure can be unfolded to a logarithmic Frobenius
manifold. This is summarized in the following theorem which we extract from [Rei09, theorem 1.12],
notice that a non-logarithmic version of it was shown in [HM04], and goes back to earlier work of
Dubrovin and Malgrange (see the references in [HM04]).

Theorem 3.15. Let (N, 0) be a germ of a complex manifold and (Z, 0) ⊂ (N, 0) a normal crossing
divisor. Let (H, 0) be a germ of a log-trTLEP(n)-structure on N . Suppose moreover that there is a
global section ξ ∈ H0(P1 ×N,H) whose restriction to {∞} ×N is horizontal for the residue connection
∇res,τ : H/τH → H/τH⊗ Ω1

{∞}×N (log ({∞} × Z)) and which satisfies the following three conditions

1. The map from Θ(log Z)|0 → p∗H|0 induced by the Higgs field [z∇•](ξ) : Θ(log Z) → p∗H is
injective (injectivity condition (IC)),

2. The vector space p∗H|0 is generated by ξ|(0,0) and its images under iteration of the elements of
End(p∗H|0) induced by U and by [z∇X ] ∈ for any X ∈ Θ(log Z) (generation condition (GC)),

3. ξ is an eigenvector for the residue endomorphism V ∈ EndO{∞}×N (H/z−1H) (eigenvector condition
(EC)).

Then there exists a germ of a logarithmic Frobenius manifold (M, Z̃), which is unique up to canonical

isomorphism, a unique embedding i : N ↪→ M with i(M) ∩ Z̃ = i(Z) and a unique isomorphism H →
(idP1

z
×i)∗p∗ΘM (log Z̃) of log-trTLEP(n)-structures.

Using proposition 3.10, we show now how to associate a logarithmic Frobenius manifold to the Landau-
Ginzburg model (W, q) of the toric manifold XΣA .

Theorem 3.16. 1. Let XΣA be a smooth toric weak Fano manifold, defined by a fan ΣA. Let (W, q) :
S1 → Ct × S2 be the Landau-Ginzburg model of XΣA and let q1, . . . , qr be the coordinates on S2

defined by the choice of a nef basis p1, . . . , pr of L∨. Consider the tuple (0̂QMÃ,∇, P ) associ-

ated to (W, q) by proposition 3.10. Then the corresponding analytic object (0̂QMÃ,∇, P )an is a
log-trTLEP(n)-structure on U0,an.
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2. There is a canonical Frobenius structure on (U0,an × Cµ−r, 0) with a logarithmic pole along (Z ×
Cµ−r, 0), where, as before, Z =

⋃r
a=1{qa = 0} ⊂ U0,an ⊂ Cr.

Proof. 1. This follows directly from the properties of 0̂QMÃ, ∇ and P as described in proposition
3.10.

2. We apply theorem 3.15 to the germ (N, 0) := (U0,an, 0) and the germ of the log-trTLEP(n)-

structure (0̂QMÃ,∇, P )an. Define the section ξ to be the class of 1 in F ⊂ H0(P1
z × U0, 0̂QMÃ),

recall that F ∼= H0(P1 × {0}, (Q̂MÃ)|P1
z×{0}) was defined as the subspace of E ∼= (0QMÃ)|Cz×{0}

generated by monomials in (zqa∂qa)a=1,...,r. The ∇res,τ -flatness of ξ follows from proposition
3.10, 6. Conditions (IC) and (GC) are a consequence of the identification of (0QMÃ)|(0,0) with
(H∗(XΣA ,C),∪) (lemma 3.8, 1.) and the fact that the latter algebra is “H2-generated”, i.e., from
the description given by formula (10). More precisely, the action of the logarithmic Higgs fields

[zqa∂qa ] on H0(P1
z, Ê) ∼= F ∼= (0QMÃ)(0,0) correspond, under the isomorphism α from lemma

3.8 exactly to the multiplication with the divisors classes Da ∈ H2(XΣA ,C) on H∗(XΣA ,C), and
H2-generation implies that the images under iteration of these multiplications generate the whole
vector space (0QMÃ)|(0,0). Finally, condition (EC) follows from proposition 3.9, 2. Hence the
conditions of theorem 3.15 are satisfied and yield the existence of a Frobenius structure on a germ
(N × Cµ−r, 0), which is canonical in the sense that it does not depend on any further choice, and
which is universal for chosen section ξ by the universality property of theorem 3.15.

Remark: It follows from conditions (GC) and (EC) that ξ is a primitive and homogeneous section in
the sense of [DS03] (this notion goes back to the theory of “primitive forms” of K. Saito). In particular,
for a representative U0,an of the germ (U0,an, 0) and any point q ∈ U0,an\Z, the Frobenius structure
from theorem 3.15, 2., is one of those constructed in loc.cit. It is a natural to ask the following

Question 3.17. Is the (restriction of the) Frobenius structure from above to a small neighborhood of

q ∈ U0,an\Z the canonical Frobenius structure of the map W̃ (−, q) : S0 → Ct from [DS03] (see also
[Dou09])?

Notice that for XΣA = Pn, it follows from the computations done in [DS04] (which concern the more
general case of weighted projective spaces), that this question can be answered in the affirmative.

4 The quantum D-module and the mirror correspondence

We start this section by recalling for the readers convenience some well-known constructions from quan-
tum cohomology of smooth projective varieties, mainly in order to fix the notations. In particular, we
explain the so-called quantum D-module (resp. the Givental connection) and the J-function. We next

show that the quantum D-module can be identified with the object 0̂QMÃ constructed in the last section.
This identification uses the famous I=J-theorem of Givental and can be seen as the essence of the mirror
correspondence for smooth toric weak Fano varieties. As a consequence, using the results of subsection
3.3, we obtain a mirror correspondence as an isomorphism of logarithmic Frobenius manifolds.

4.1 Quantum cohomology and Givental connection

We review very briefly some well known constructions from quantum cohomology of smooth projective
complex varieties and explain the the so-called quantum D-module, also called Givental connection.

Definition-Lemma 4.1. Let X be smooth and projective over C with dimC(X) = n. Choose once
and for all a homogeneous basis T0, T1, . . . , Tr, Tr+1, . . . , Ts of H2∗(X,C), where T0 = 1 ∈ H0(X,C),
T1, . . . , Tr are nef classes in H2(X,Z) (here and in what follows, we consider without mentioning only
the torsion free parts of the integer cohomology groups) and Ti ∈ H2k(X,C) with k > 2 for all i > r. If
X = XΣA is toric and weak Fano, then we suppose moreover that Ti = pi, i.e, that the basis T0, . . . , Ts
extends the basis of L∨ ∼= H2(XΣA ,C) chosen at the beginning of section 3.1. We write t0, . . . , ts for the
coordinates induced on the space H2∗(X,C). We denote by (−,−) the Poincaré pairing on H2∗(X,C)
and by (T k)k=0,...,s the dual basis with respect to (−,−).
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1. For any effective class β ∈ H2(X,Z)/Tors denote by M0,n,β(X) the Deligne-Mumford stack of
stable maps f : C → X from rational nodal pointed curves C to X such that f∗([C]) = [β]. For any
i = 1, . . . , n, let ωπ be the relative dualizing sheaf of the “forgetful” morphism π :M0,n+1,β(X)→
M0,n,β(X) (i.e., the morphism forgetting the i-th point and stabilizing if necessary) which represents
the universal family. Define a Cartier divisor Li := x∗i (ωπ) onM0,n,β(X), where xi :M0,n,β(X)→
M0,n+1,β(X) is the i-th marked point, and put ψi = c1(Li).

2. For any tuple α1, . . . , αn ∈ H2∗(X,C), let

〈ψi11 α1, . . . , ψ
in
n αn〉0,n,β :=

∫
[M0,n,β(X)]virt

ψi11 ev1(α1) ∪ . . . ∪ ψinn evn(αn)

and put 〈α1, . . . , αn〉0,n,β := 〈ψ0
1α1, . . . , ψ

0
nαn〉0,n,β. Here evi :M0,n,β(X)→ X is the i-th evalua-

tion morphism evi([C, f, (x1, . . . , xn)]) := f(xi) and [M0,n,β(X)]virt is the so-called virtual funda-
mental class of M0,n,β(X), which has dimension dimC(X) +

∫
β
c1(X) + n− 3. 〈α1, . . . , αn〉0,n,β is

called a Gromov-Witten invariant and 〈ψi11 α1, . . . , ψ
in
n αn〉0,n,β is a Gromov-Witten invariant with

gravitational descendent.

3. Let α, γ, τ ∈ H2∗(X,C) be given, write τ = τ ′ + δ where δ ∈ H2(X,C) and τ ′ ∈ H0(X,C) ⊕
H>2(X,C). Define the big quantum product to be

α ◦τ γ : =
∑

β∈EffX

∑
n,k≥0

1

n!
〈α, γ, τ, . . . , τ︸ ︷︷ ︸

n−times

, Tk〉0,n+3,βT
kQβ

=
∑

β∈EffX

∑
n,k≥0

eδ(β)

n!
〈α, γ, τ ′, . . . , τ ′︸ ︷︷ ︸

n−times

, Tk〉0,n+3,βT
kQβ ∈ H2∗(X,C)⊗ C[[t]][[EffX ]] (20)

where EffX is the semigroup of effective classes in H2(X,Z), i.e., the intersection of H2(X,Z)
with the Mori cone in H2(X,R). Notice that in order to obtain the last equality, we have used the
divisor axiom for Gromov-Witten invariants, see, e.g., [CK99, section 7.3.1].

The Novikov ring C[[EffX ]] was introduced to split the contribution of the different β ∈ EffX ,
as otherwise the formula above would not be a formal power series. However, if one knows the
convergence of this power series, one can set Q = 1.

4. Suppose that as before α, γ ∈ H2∗(X,C) and that δ ∈ H2(X,C). Define the small quantum product
by

α ?δ γ :=

s∑
k=0

∑
β∈EffX

eδ(β)〈α, γ, Tk〉0,3,βT kQβ ∈ H2∗(X,C)⊗OanH2(X,C)[[EffX ]].

As we have seen, the quantum product exists as defined only formally near the origin in H2∗(X,C).
However, we will need to consider the asymptotic behavior of the quantum product in another limit
direction inside this cohomology space. For that purpose we will use the following

Theorem 4.2 ([Iri07, theorem 1.3]). The quantum product for a projective smooth toric variety is
convergent on a simply connected neighborhood W of{

τ = τ ′ + δ ∈ H2∗(X,C) | <(δ(β)) < −M ∀β ∈ EffX\{0}, ‖τ ′‖ < e−M
}

for some M � 0, here ‖ · ‖ can be taken to be the standard hermitian norm on H2∗(X,C) induced by the
basis T0, . . . , Ts.

If α and γ are seen as sections of the tangent bundle of the cohomology space, we also write α ◦ γ for
the quantum product, which is also a section of TH2∗(X,C).
The next step is to define the Givental connection, also known as the quantum D-module. For a smooth
toric weak Fano manifold, this is the object that we will compare to the various hypergeometric differential
systems constructed in the last section from the Landau-Ginzburg model of this variety.
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Definition-Lemma 4.3. 1. Write p : P1
z×W �W for the projection, and let Fbig := p∗TW be the

pull-back of the tangent bundle of W . Define a connection with a logarithmic pole along {∞}×W
and with pole of type 1 along {0} ×W on Fbig by putting for any s ∈ H0(P1

z ×W,Fbig)

∇Giv
∂tk

s := ∇res,z−1

∂tk
(s)− 1

z · Tk ◦ Tl

∇Giv
∂z

s := 1
z

(
E◦s
z + µ(s)

) (21)

where µ ∈ EndC(H2∗(X,C)) is the grading operator already used in definition 3.11,

E :=

s∑
i=0

(
1− deg(Ti)

2

)
+

r∑
a=1

ka∂Ta

is the so-called Euler field which is defined by
∑r
a=1 kaTa = c1(X) and where ∇res,z−1

is the
connection on TW defined by the affine structure on H2∗(X,C). Notice that by its very definition,

the residue connection of ∇Giv along z−1 = 0 is ∇res,z−1

, whence its name. We have that (∇Giv )2 =
0, and this integrability condition encodes many of the properties of the quantum product (most
notably its associativity, which is expressed by a system of partial differential equations, known as
Witten-Dijkgraaf-Verlinde-Verlinde equations). We sometimes use the dual Givental connection,
which is defined by ∇̂Giv := ι∗∇Giv , recall that ι(z, t) = (−z, t).

2. Define the pairing
P : Fbig ⊗ ι∗Fbig −→ OP1

z×W (−n, n)

(a, b) 7−→ zn(a(z), b(−z))
(22)

3. The tuple (Fbig ,∇Giv , P ) is a trTLEP(n)-structure on W in the sense of [HM04, definition 4.1]
(i.e., the non-logarithmic version of definition-lemma 3.14, 2.). We call it the quantum D-module
or Givental connection of H2∗(X,C).

4. Write W ′ := {τ ∈ W | τ ′ = 0} and let F := p∗(TH2∗(X,C)|W ′). We equip F with a con-
nection and a pairing defined by formulas (21) and (22). Then (F ,∇Giv , P ) is a trTLEP(n)-
structure on W ′ ⊂ H2(X,C), which we call the small quantum D-module. We have (F ,∇Giv , P ) =
(Fbig ,∇Giv , P )|P1

z×W ′ .

Next we show that the small quantum D-module can be considered in a natural way as a bundle over
the partial compactification of the Kähler moduli space that we already encountered in the last section.

Lemma 4.4. 1. Consider the natural action of 2πiH2(X,Z) on H2∗(X,C) by translation. Then
the set W is invariant under this action. Write V0 for the quotient space, and π : W � V0

for the projection map. Then there is a trTLEP(n)-structure (Gbig ,∇Giv , P ) on V0 such that
π∗(Gbig ,∇Giv , P ) = (Fbig ,∇Giv , P ). (Gbig ,∇Giv , P ) is also called quantum D-module of X.

2. The algebraic quotient of H2(X,C) by 2πiH2(X,Z) is the torus Spec C[H2(X,Z)], which we call
S2 to be consistent with the notation of the previous section in case that X is toric weak Fano.
Then the small quantum D-module descends to V ′0 = San2 ∩ V0, i.e, there is a vector bundle G
on P1

z × V ′0 , a connection ∇Giv and a pairing P such that (G,∇Giv , P ) is a trTLEP(n)-structure
on V ′0 and such that π∗(G,∇Giv , P ) = (F ,∇Giv , P ), where π : W ′ � V ′0 is again the projection
map. We also call (G,∇Giv , P ) the small quantum D-module. Obviously, we have again that
(G,∇Giv , P ) = (Gbig ,∇Giv , P )|P1

z×V ′0 .

If X is Fano, then (G,∇Giv , P ) has an algebraic structure, i.e., it is defined as an algebraic bundle
over P1

z × S2.

Proof. The first statement and the first part of the second one are immediate consequences of the divisor
axiom already mentioned above. If X is Fano, then as

∫
β
c1(X) > 0 for all β ∈ EffX , for fixed n only

finitely many Gromov-Witten invariants can be non-zero, this implies the algebraicity of G.

41



Corollary 4.5. Using the choice of the nef basis T1, . . . , Tr of H2(X,Z) (consisting of the classes
p1, . . . , pr ∈ L∨ if X = XΣA is toric weak Fano), we obtain an embedding H2(X,C)/2πiH2(X,Z) ↪→ Cr,
with complement a normal crossing divisor Z =

⋃r
a=1{qa = 0}, if qa = eta for a = 1, . . . , r. Denote

by V ′ the closure of the image of V ′0 under this embedding. Then there is an extension (G, ∇̂Giv , P ) of
(G, ∇̂Giv , P ) to a log-trTLEP(n)-structure on V ′. Moreover, consider the partial compactification

V :=
{

(t0, q1, . . . , qr, tr+1, . . . , ts} | ‖q‖ < e−M , ‖(t0, tr+1, . . . , ts)‖ < e−M
}

⊂ H0(X,C)⊕ Cr ⊕
⊕

k>1H
2k(X,C)

of V0, then there is a structure of a logarithmic Frobenius manifold on V restricting to the germ of a
Frobenius manifold defined by the quantum product at any point (t0, q1, . . . , qr, tr+1, . . . , ts) ∈ H0(X,C)⊕
H2(X,C)/2πiH2(X,Z)⊕

⊕
k>1H

2k(X,C).

Proof. Both statements follow from [Rei09, section 2.2, proposition 1.7 and proposition 1.10].

4.2 J-function, Givental’s theorem and mirror correspondence

In order to compare the quantum D-module G to the hypergeometric system 0̂QMÃ from the last section,
we will use a particular multivalued section of G, called the J-function. Givental has shown in [Giv98]
that I = J for Fano varieties and that equality holds after a change of coordinates in the weak Fano
case. We use this equality to identify the two log-trTLEP(n)-structures and deduce an isomorphism of
Frobenius manifolds with logarithmic poles.
Actually, Givental’s theorem is broader as it also treats the case of nef complete intersections in toric
varieties, however, the B-model has a different shape for those varieties, the most prominent example
being the quintic hypersurface in P4. In this case (this is true whenever the complete intersection is
Calabi-Yau) the mirror is an ordinary variation of pure polarized Hodge structures, whereas in our
situation the Landau-Ginzburg model gives rise to a non-commutative Hodge structure as discussed in
section 5. We plan to discuss the relation between the B-model of a (weak) Fano variety and that of its
subvarieties in a subsequent paper.
We start with the definition of the J-function. It is convenient to introduce at the same time an
endomorphism valued series which is closely related J . We suppose from now on that X = XΣA is a
smooth toric weak Fano variety.

Definition 4.6. 1. Define a End(H∗(XΣA ,C))-valued power series in z−1, t1, . . . , tr by

L(δ, z−1)(Ta) := e−δ/zTa −
∑

β∈EffXΣA
\{0}

j=0,...,s

eδ(β)

〈
e−δ/zTa
z + ψ1

, Tj

〉
0,2,β

T j ,

here the gravitational descendent GW-invariant 〈 Tj
z+ψ1

, 1〉0,2,β has to be understood as the formal

sum −
∑
k≥0(−z)−k−1〈ψk1Tj , 1〉0,2,β.

2. Define the H∗(XΣA ,C)-valued power series J by

J(δ, z−1) := e
δ
z ·

1 +
∑

β∈EffXΣA
\{0}

j=0,...,s

eδ(β)

〈
Tj

z − ψ1
, 1

〉
0,2,β

T j

 .

Notice that any product of cohomology classes appearing in the definition of L and J is the cup product.

Observe that L has the factorization L = S ◦ (e−δ/z) where S is the following End(H∗(XΣA ,C))-valued
power series

S(δ, z−1)(Ta) := Ta −
∑

β∈EffXΣA
\{0}

j=0,...,s

eδ(β)

〈
Ta

z + ψ1
, Tj

〉
0,2,β

T j ,
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The main tool we are going to use to identify the quantum D-module with a hypergeometric system
from the last chapter is the following famous result of Givental.

Theorem 4.7 ([Giv98, theorem 0.1]). The coordinate change κ from 3.12, 3., transforms the I-function
into the J-function, i.e., we have I = (idCτ ×κ)∗J . In particular, it follows from proposition 3.12, 3.
that J defines a (multivalued) holomorphic mapping from Cτ × S∗ to H∗(XΣA ,C). If XΣA is Fano, then
I = J .

Denote by S the matrix-valued function which represents the endomorphism function S with respect to
the basis T0, . . . , Ts. Similarly, Ki is the constant matrix representing the cup product with Ti, Ωi is the
connection matrix of ∇̂Giv

zqi∂qi
and V the matrix diag(deg(T0), . . . ,deg(Ts)). We have the following

Lemma 4.8 ([Iri06, lemma 2.1,2.2]). 1. The matrix-valued function S satisfies the following differ-
ential equations:

zqi
∂S

∂qi
− S ·Ki + Ωi · S = 0 ,(

2z
∂

∂z
+

r∑
i=1

(deg qi)qi
∂

∂qi

)
S + [V,S] = 0 .

2. The End(H∗(XΣA ,C))-valued power series S satisfies S∗(δ, z−1) · S(δ,−z−1) = id, where (−)∗

denotes the adjoint with respect to the Poincaré pairing. In particular S is invertible.

The main properties of the J-function and of the endomorphism function L are summarized in the
following proposition.

Proposition 4.9. 1. For any α ∈ H∗(XΣA ,C), we have

∇̂Giv
∂tk

L · α = ∇̂Giv
qk∂qk

L · α = 0

∇̂Giv
z2∂z

L · α = L · (zµ− c1(XΣA)∪) · α

2. The endomorphism-valued function L is invertible.

3. We have J = L−1(T0) =
∑s
t=0(st, T0)Tt, with st = L(Tt):

4. Both L and J are convergent on P1
z \ {0} × (S∗ ∩ V ′0).

Proof. 1. The first formula can be found in [Pan98, equation (25)] and the second follows from lemma
4.8 by a straightforward calculation.

2. This follows from the second point of 4.8.

3. See, e.g. [CK99, lemma 10.3.3].

4. The multivalued functions (st, T0) are holomorphic in Cτ × S∗ as this is true for J by theorem 4.7
and proposition 3.12, 3. Using the formula ∇̂Giv

qa∂qa
(st, Tl) = (st, Ta ◦ Tl) we conclude that st is a

multivalued section of G which is holomorphic in Cτ × (S∗ ∩ V ′0), because monomials of the form
Tn1

1 ◦ . . . ◦ Tnrr are a basis of G in this domain.

Next we will define a twist of the endomorphism-valued function L to produce truly flat sections of the
Givental connection. Define L̃ = L ◦ z−µ ◦ zρ = S ◦ e−δ/z ◦ z−µ ◦ zρ. If we set s̃t = L̃(Tt), where as before
ρ = c1(XΣA) ∈ H2(XΣA ,C) = L∨, then it is a straightforward computation to see that ∇̂Giv s̃t = 0 for

t = 0, . . . , s. As L resp. L̃ is invertible, we obtain that s̃t is a basis of multivalued flat sections.
We also need to define a twisted J-function, namely J̃ :=

∑t
t=0 J̃tTt :=

∑s
t=0(s̃t, T0)Tt = L̃−1(T0). This

yields, similarly to equation (19), the following formula

1 = T0
!
=

s∑
t=0

J̃ts̃t ∈ H0(C∗τ × V ′0 ,G) (23)
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The following proposition uses all the previous results to identify the differential systems defined on both
sides of the mirror correspondence.

Proposition 4.10. Let W0 be a sufficiently small open neighborhood of 0 ∈ Cr,an which is contained in
S ∩ V ′ ∩ U0,an and such that κ induces an automorphism of W0. There is an isomorphism

φ : (0̂QMÃ)an|P1
z×W0

−→ (idP1
z
×κ)∗G|P1

z×W0

of log-trTLEP(n)-structures on W 0.

Proof. Define a morphism of vector bundles with connection

ϕ :
(

(0QMÃ)an|Cz×W 0 ,∇
)
−→ (idCz ×κ)∗

(
G|Cz×W 0 , ∇̂Giv

)
1 7−→ 1 = T0,

where the connection operator ∇ on the left hand side is the one from theorem 3.7. The first task
is to show that ϕ is well-defined, i.e., that the following holds: Put �̃′l := (idCz ×κ)∗�̃l and Ẽ′ :=

(idCz ×κ)∗(z
2∂z +

∑r
a=1 ρ(p∨a )zqa∂qa), then we have to show that

�̃′l(q1, . . . , qr, z, ∇̂Giv
zq1∂q1

, . . . , ∇̂Giv
zqr∂qr

)(1) = 0 ∀l ∈ L

Ẽ′
(
q1, . . . , qr, z, ∇̂Giv

z2∂z
, ∇̂Giv

zq1∂q1
, . . . , ∇̂Giv

zqr∂qr

)
(1) = 0.

Obviously, the objects on the left hand side of these equations are sections of (idCz ×κ)∗G|Cz×W 0 , i.e., they
cannot have support on a proper subvariety, hence, it suffices to show that they are zero on C∗τ×(W0∩S0

2).

On that subspace we can use the presentation 1 =
∑s
t=0 J̃t · s̃t from equation (23). As the multivalued

sections s̃t are flat for ∇̂Giv it follows that we have to show that

�̃′l(J̃t) = �̃l((idC∗τ ×κ)∗J̃t) = 0

Ẽ′(J̃t) =
(
z2∂z +

∑r
a=1 ρ(p∨a )zqa∂qa

)
((idC∗τ ×κ)∗J̃t) = 0.

This is obvious by theorem 4.7 and by the equations (17) in the proof of proposition 3.12. Hence we
obtain that ϕ is a well-defined morphism of locally free sheaves compatible with the connection operators
on both sides.
Next we show the the surjectivity of ϕ: As we are allowed to replace W0 by a smaller open neighborhood
of 0 ∈ Cr, one easily sees that it suffices to show that ϕ is surjectiv on the germs at (0, 0) of both
modules. Namely, we have flat structures on C∗τ × (W0 ∩S0

2) and on C∗τ ×Za for all a = 1, . . . , r, so that
if ϕ is surjective at some point in C∗τ × (W0 ∩ S0

2) resp. at some point in C∗τ × Za, it will be surjective
on all of C∗τ × (W0 ∩ S0

2) resp. C∗τ × Za. By Nakayama’s lemma, surjectivity on the germs at (0, 0) is
guaranteed once we have surjectivity at the fibre at (0, 0), which is evident as both fibres are canonically
isomorphic to H∗(XΣA ,C) (for G|(0,0), this isomorphism holds by definition, and for (0QMÃ)an|(0,0), this is

lemma 3.8, 1.). Now by comparison of ranks, we obtain that ϕ is an isomorphism.
It remains to show that ϕ can be extended to an isomorphism of log-trTLEP(n)-structures on W0.

First notice that ϕ yields an identification of the local systems (QMloc
Ã

)∇|C∗τ×(W0∩S0
2)

and G∇̂Giv

|C∗τ×(W0∩S0
2)

.

In particular, it follows then from lemma 3.8, 3. that the monodromy of G∇̂Giv

|C∗τ×(W0∩S0
2)

around Za =

{qa = 0} is unipotent (this can also be shown by a direct calculation). Hence by using the the same

arguments as in proposition 3.10 it suffices to identify the punctual trTLEP(n)-structures (Q̂MÃ)|P1×{0}
and G|P1×{0}. We already have such an identification on Cz × {0} by restricting the above isomorphism
ϕ to Cz × {0}. Moreover, consider a basis w1, . . . , wµ of (0QMÃ)|Cz×{0} as in the proof of proposition
3.9, 1., which extends the basis T0, T1, . . . , Tr, Tr+1, . . . , Ts of H∗(XΣA ,C) = (0QMÃ)|(0,0). Then by the
definition of the Givental connection and of the morphism ϕ, the restriction ϕ|Cz×{0} maps this basis is

to T0, . . . , Ts ∈ G|Cz×{0} ∼= ⊕st=0OCzTt. Remark also that the connection matrices in these bases of ∇ on

(0QMÃ)|Cz×{0} resp. ∇̂Giv on G|(0,0) are equal, this follows from formula (13) resp. formula (21). Hence
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ϕ extends to an isomorphism of P1
z-bundles φ̃ : (Q̂MÃ)|P1

z×{0} → G|P1
z×{0} =

(
(idP1

z
×κ)∗G

)
|P1
z×{0}

,

compatible with the connections. By the same argument, this isomorphism also respects the pairings P
on both sides, as it restricts to the identity at z = 0.
As discussed above, we obtain from ϕ and φ̃ an isomorphism

φ : (0̂QMÃ)an|P1
z×W0

−→ (idP1
z
×κ)∗G|P1

z×W0

of log-trTLEP(n)-structures on W 0, as required.

As a consequence, we can now deduce an isomorphism of logarithmic Frobenius structures defined by
the quantum product resp. by the Landau-Ginzburg model (through the construction from subsection
3.3) of XΣA .

Theorem 4.11. There is a unique isomorphism germ Mir : (W0 × Cµ−r, 0) → (V, 0) which maps
the logarithmic Frobenius manifold from corollary 4.5 (A-side) to that of theorem 3.16 (B-side) and
whose restriction to W0 corresponds to the isomorphism φ of log-trTLEP(n)-structures from above. In
particular, it induces the identity on the tangent spaces at the origin, i.e., on (H∗(XΣA ,C),∪).

Proof. This is a direct consequence of the uniqueness statement in theorem 3.15, using the last proposi-
tion.

5 Non-commutative Hodge structures

In this section we will use the results from the previous parts of the paper to show, via the fundamental
theorem [Sab08, theorem 4.10], that the quantum D-module on the Kähler moduli space underlies a
variation of pure polarized non-commutative Hodge structures. Moreover, we study the asymptotic
behavior near the large radius limit point and show that the associated harmonic bundle is tame in the
sense of Mochizuki and Simpson (see, e.g., [Moc02, definition 4.4]) along the boundary divisor. We start
by recalling briefly the necessary definitions.

Definition 5.1 ([Her03, definition 2.12],[HS10, definition 2.1],[KKP08, definition 2.7]). Let M be a
complex manifold and n ∈ Z be an integer. A variation of TERP-structures on M of weight n consists
of the following set of data.

1. A holomorphic vector bundle H on Cz×M with an algebraic structure in z-direction, i.e., a locally
free OM [z]-module.

2. A R-local system L on C∗z ×M , together with an isomorphism

iso : L ⊗R OanC∗z×M → H
an
|C∗z×M

such that the connection ∇ induced by iso has a pole of type 1 along {0}×M and a regular singularity
along {∞} ×M .

3. A polarizing form P : L ⊗ ι∗L → inRC∗z×M , which is (−1)n-symmetric and which induces a non-
degenerate pairing

P : H⊗OCz×M ι∗H → znOCz×M ,
here non-degenerate means that we obtain a non-degenerate symmetric pairing [z−nP ] : H/zH ×
H/zH → OM .

We also recall the notions of pure and pure polarized TERP-structures.

Definition 5.2. Let (H,L, P, n) be a variation of TERP-structures on M . Write γ : P1 × M →
P1 ×M for the involution (z, x) 7→ (z−1, x) and consider γ∗H, which is a holomorphic vector bundle

over (P1\{0}) ×M . Define a locally free OP1CanM -module Ĥ, where OP1CanM is the subsheaf of Can
P1×M

consisting of functions annihilated by ∂z by gluing H and γ∗H via the following identification on C∗z×M .
Let x ∈M and z ∈ C∗z and define

c : H|(z,x) −→ (γ∗H)|(z,x)

a 7−→ ∇-parallel transport of z−n · a.
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Then c is an anti-linear involution and identifies H|C∗z×M with γ∗H|C∗z×M . Notice that c restricts to the

complex conjugation (with respect to L) in the fibres over S1 ×M .

1. (H,L, P, n) is called pure iff Ĥ = p∗p∗Ĥ, where p : P1 ×M � M . A variation of pure TERP-
structures is also called variation of (pure) non-commutative Hodge structures (ncHodge struc-
ture for short).

2. Let (H,L, P, n) be pure, then by putting

h : p∗Ĥ ⊗CanM p∗Ĥ −→ CanM

(s, t) 7−→ z−nP (s, c(t))

we obtain a hermitian form on p∗Ĥ. We call (H,L, P, n) a pure polarized TERP resp. ncHodge
structure if this form is positive definite (at each point x ∈M).

Remarks: We comment on the differences between this definition and those in [HS10] resp. [KKP08].

1. One may want, depending on the actual geometric situation to be considered, the local system L
to be defined over Q (as in [KKP08]) or even over Z. This corresponds to the notion of real resp.
rational Hodge structures and to the choice of a lattice for them in ordinary Hodge theory.

2. The reason for considering TERP-structures, and not only ncHodge structures, which are pure
by definition (this condition is called opposedness condition in [KKP08]) is that there are natural
examples of TERP-structures which are not pure (see, e.g., [HS10, section 9]).

3. A ncHodge structure in the sense of [KKP08] does not contain any polarization data. However, the
structures we are considering, i.e., those defined by (families of) algebraic functions are polarizable
in a natural way, so that it seems reasonable to include these data in the definition.

4. We did not put the Q-structure axiom from [KKP08] in the definition of an ncHodge structure.
This property, roughly stating that the Stokes structure defined by the pole of ∇ along z = 0 (in
case it is irregular) is already defined on the local system L, and not only on its complexification
L⊗R C was part of the definition of a mixed TERP-structure in [HS07]. It turns out that in some
situations (see, e.g., [Moc08a, section 8]), this property is actually something to be proved, which
is why we exclude this condition from the definition of a ncHodge structure. Notice however that
in the geometric situations we are studying, this condition will always be satisfied.

The following theorem is the first result of this section.

Theorem 5.3. The restriction to Cz × (W0 ∩ S0
2) of the quantum D-module G underlies a variation of

(pure) polarized ncHodge structures of weight n on W0 ∩ S0
2 .

Proof. We will show that 0QMloc
Ã

is a polarized ncHodge structure on S0
2 , then the statement follows

from proposition 4.10. We first show that 0QMloc
Ã

is equipped with structures as in definition 5.1, that

is, that it underlies a variation of TERP-structures. Then we deduce from [Sab08] that this structure is
pure and polarized.
It follows from corollary 3.4 that 0QMloc

Ã
is a locally free OCz×S0

2
-module, equipped with a connection

operator with a pole of type 1 along {0} × S0
2 and that moreover we have a non-degenerate pairing

P : 0QMloc
Ã
⊗ ι∗0QMloc

Ã
→ znOCz×S0

2
. Recall also from the proof of theorem 2.4 and of corollary 3.3

that the DP1
z×S0

2
-module QMloc

Ã
⊗O

P1
z×S2

OP1
z×S0

2
equals FL

τ

t (H0(W, q)+OS0
1
). Now the Riemann-Hilbert

correspondence gives DR•(H0(W, q)+OS0
1
) = pH0R•(W, q)∗CS0

1
, where pH• is the perverse cohomology

functor (see, e.g., [Dim04]). Hence DR•(H0(W, q)+OS0
1
) carries a real (resp. rational) structure, namely,

pH0R•(W, q)∗RS0
1

(resp. pH0R•(W, q)∗QS0
1

). We then deduce from [Sab97, theorem 2.2] that the the

local system of flat sections of ((QMloc
Ã

)an,∇) is equipped with a real or even rational structure. One

could also invoke the recent preprint [Moc10] and show that H0(W, q)+OS0
1

is a R-(or Q-)holonomic

D-module in the sense of [Moc10, definition 7.6], which holds due to the regularity of H0(W, q)+OS0
1
. It
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then follows from loc.cit., section 9, that this real or rational structure is preserved under the standard
functors (direct image, inverse image, tensor product) in particular, under (partial) Fourier-Laplace
transformation (the elementary irregular rank one module has an obvious real/rational structure). Hence
FL

τ

t (H0(W, q)+OS0
1
) has a real (resp. rational) structure, which shows that 0QMloc

Ã
underlies a variation

of TERP-structures on S0
2 .

It remains to show that this structure is pure and polarized in the sense of definition 5.2. It is sufficient
to do this for the restriction (0QMloc

Ã
)|Cz×{q} for all q ∈ S0

2 . Write Wq for the restriction W| pr−1(q) :

q−1(q) → Ct, then the restriction of the tuple (QMloc
Ã
, 0QMloc

Ã
, P ) to Cz × {q} is exactly the tuple

(G,G0, P̂ ) associated to Wq which was considered in [Sab08, theorem 4.10], where one has to use the
comparison result [Sab11, lemma 5.9] to identify (possibly up to a non-zero constant, see the remark

after the proof of lemma 3.8) the pairing P defined on 0QMloc
Ã

with the pairing P̂ from [Sab08, theorem

4.10]. Then it is shown in loc.cit. that one can associated to (G,G0, P̂ ) an integrable polarized twistor
structure, which means exactly that the variation of TERP-structures (0QMloc

Ã
)|Cz×{q} is pure polarized,

i.e., that it is a variation of (pure) polarized ncHodge structures.

In order to state the second result of this section, recall the following fact (see, e.g., [HS07, lemma 3.12]).

Proposition 5.4. Let (H,L, P ) be a variation of polarized ncHodge structures of weight n on M . Put

E := p∗Ĥ, which is a real-analytic bundle equipped with a holomorphic structure defined by the isomor-
phism E ∼= H/zH ⊗OM CanM , a Higgs field θ := [z∇z] ∈ EndOM (H/zH) ⊗ Ω1

M and the hermitian metric
h from above. Then the tuple (E, ∂, θ, h) (where ∂ is the operator defining the holomorphic structure on
E) is a harmonic bundle in the sense of [Sim88].

Let (E, ∂, θ, h) be the harmonic bundle associated by the last proposition to the ncHodge structure

0QMloc
Ã

on S0
2 (resp. G on W0 ∩ S0

2). The next result concerns the asymptotic behavior of E along the

boundary divisor Z =
⋃r
a=1{qa = 0}.

Theorem 5.5. Put Ũ := (U\Z)an ⊂ S0,an
2 . Then the restriction of the harmonic bundle (E, ∂, θ, h) to

Ũ is tame along Z in the sense of [Moc02, definition 4.4].

Proof. Recall that the tameness property of a harmonic bundle defined by a variation of polarized
ncHodge structures can be expressed in the chosen coordinates q1, . . . , qr as follows: Write the Higgs
field θ ∈ EndOŨ (H/zH)⊗ Ω1

Ũ
as

θ =

r∑
a=1

θa
dqa
qa

with θi ∈ EndOŨ (H/zH). Then (E, ∂, θ, h) is called tame iff the coefficients of the characteristic poly-
nomials of all θi extend to holomorphic functions on Uan. Now consider the locally free OCz×U -module

0QMÃ from theorem 3.7. The connection

∇ : 0QMÃ −→ 0QMÃ ⊗ z
−1Ω1

Cz×U (log (({0} × U) ∪ (Cz × Z)))

induces

θ′ := [z∇] ∈ EndOUan
(

(0QMÃ)an|{0}×Uan
)
⊗ Ω1

Uan(logZ)

As θ′ restricts to θ on Ũ , we see that if we write θ′ =
∑r
a=1 θ

′
a
dqa
qa

, then θ′a is the holomorphic extension
of θa we are looking for.
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