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Abstract

We describe mirror symmetry for weak Fano toric manifolds as an equivalence of filtered D-
modules. We discuss in particular the logarithmic degeneration behavior at the large radius limit
point, and express the mirror correspondence as an isomorphism of Frobenius manifolds with loga-
rithmic poles. The main tool is an identification of the Gau-Manin system of the mirror Landau-
Ginzburg model with a hypergeometric D-module, and a detailed study of a natural filtration defined
on this differential system. We obtain a solution of the Birkhoff problem for lattices defined by this
filtration and show the existence of a primitive form, which yields the construction of Frobenius
structures with logarithmic poles associated to the mirror Laurent polynomial. As a final applica-
tion, we show the existence of a pure polarized non-commutative Hodge structure on a Zariski open
subset of the complexified Kahler moduli space of the variety.
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1 Introduction

In this paper we study the differential systems that occur in the mirror correspondence for smooth toric
weak Fano varieties. On the so-called A-side of mirror symmetry, which is mathematically expressed
as the quantum cohomology of this variety, these systems has been known since quite some time as
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quantum D-modules. A striking fact which makes their study attractive is that the integrability of the
corresponding connection encodes many properties of the quantum product, in particular, the associa-
tivity, usually expressed by the famous WDV V-equations. It is well-known (see, e.g., [Man99]) that the
quantum D-module (or first structure connection) is essentially equivalent to the Frobenius structure
defined by the quantum product on the cohomology space of the variety.

The main subject of this paper is to establish the same kind of structures for the B-side, also called
the Landau-Ginzburg model, of such a variety. This problem is related to more classical objects in the
theory of singularities of holomorphic or algebraic functions: namely, period integrals, vanishing cycles
and the Gauf}-Manin connection in its various forms. A by-now well-known construction going back to
K. Saito and M. Saito endows the semi-universal unfolding space of an isolated hypersurface singularity
f:(C",0) — (C,0) with a Frobenius structure. There are two main ingredients in constructing these
structures: a very precise analysis of the Hodge theory of f, which is done using the the so-called
Brieskorn lattice, and which culminates in a solution of the Birkhoff problem (also called a good basis of
the Brieskorn lattice). The second step is to show that there is a specific section of the Brieskorn lattice,
called primitive and homogeneous (which is also known as the “primitive form”).

However, these Frobenius manifolds will never appear as the mirror of the quantum cohomology of some
variety. Sabbah has shown in a series of papers (partly joint with Douai, see [Sab97], [Sab06], [DS03])
that the above results can be adapted if one starts with an algebraic function f : U — C defined on
a smooth affine variety U. Besides the isolatedness of the critical locus of f, one is forced to impose
a stronger condition, known as tameness. Roughly speaking, it states that no change of the topology
of the fibres comes from critical points at infinity. The need for this condition reflects the fact that
the Gaufl-Manin system of such a function, and other related objects, are not simply direct sums of
the corresponding local objects at the critical points. For tame functions, it is known that the Birkhoff
problem for the Brieskorn lattice always has a solution, similarly to the local case, one uses information
coming from the Hodge theory of f to show this result. One the other hand, the existence of a primitive
(and homogeneous) form is a quite delicate problem which is not known in general. It has been shown for
certain tame polynomials in [Sab06], for convenient and non-degenerate Laurent polynomials in [DS03]
(and later with different methods in [Dou05]) and also for some other particular cases of tame functions
(e.g., [GMS09]). In any case, the outcome of these constructions is a germ of a Frobenius structure
on the deformation space of a single function. The general construction in [DS03| does not give much
information on how these Frobenius manifolds vary for families of, say, Laurent polynomials. Notice also
that the Frobenius structure associated to a Laurent polynomial (or even to a local singularity) is not
at all unique, it depends on both the choice of a good basis and a primitive (and homogeneous) form.
However, there is a canonical choice of a solution of the Birkhoff problem, predicted by the use of Hodge
theory (more precisely, it is defined by Deligne’s IP”>%-splitting of the Hodge filtration associated to f),
but in general Frobenius structure coming from this solution will not behave well in families.

For some special kind of Fano varieties like the projective spaces (see [Bar00]) or, more generally, for
some orbifolds like weighted projective spaces ([Man08], [DMO09]), it is possible to find explicit solutions
to the Birkhoff problem and to carry out the construction of the Frobenius manifold rather directly.
Then one may compare the Brieskorn lattices (or their extension using good bases) to the quantum
D-module by an explicit identification of bases. This yields isomorphisms of Frobenius manifolds and
even some results on their degeneration behavior near the large radius limit (see [DM09]), but of course
this method is limited if one wants to attack more general classes of examples.

In the present paper, we obtain such an identification of Frobenius manifolds for all weak Fano toric
manifolds, using Givental’s I = J-theorem ([Giv98]). We do not rely on the results of [DS03], instead,
we identify the family of Gaufl-Manin systems attached to the Landau-Ginzburg model of our variety
with a certain hypergeometric D-module (also called Gelfand-Kapranov-Zelevinski-(GKZ)-system) by a
purely algebraic argument. This makes available some known results and constructions from the theory
of these special D-modules, and we are able to deduce a finiteness and a duality statement for the
family of Brieskorn lattices. The tameness assumption from above is used via an adaption of a result in
[Ado94], who has calculated the characteristic variety of a hypergeometric D-module. In general, this
tameness will hold on a Zariski open subspace of the parameter space, and we show that if our variety
is genuine Fano, then this is the whole parameter space. An important point in the construction is to
extend the family of Brieskorn lattices on the K&hler moduli space of the variety to a certain partial
compactification including the large radius limit point. This compactification depends on a choice of
coordinates on the complexified Kéhler moduli space, that is, on a choice of a basis of nef classes of the



second cohomology of our variety. Once we have this logarithmic extension, we can apply [Rei09] which
yields the construction of a logarithmic Frobenius manifold, that is, a Frobenius structure on a manifold
which is the complement of a normal crossing divisor, and such that both multiplication and metric
are defined on the sheaf of logarithmic vector fields. At any point inside the Kéhler moduli space, this
restricts to a germ of a Frobenius manifold constructed in [DS03]. In this sense our mirror statement also
generalizes the equivalence of Frobenius structures (at fixed points of the K&hler moduli space) known
in particular cases like P".

Let us give a short overview on the content of this paper: In section [2] we study in some detail various
differential systems associated to toric data defined by a smooth toric weak Fano variety Xy, (where ¥4
is the defining fan), parts of the results hold even more generally for a given set of vectors in a lattice.
In particular, we obtain an identification of a certain hypergeometric D-module with the Gau-Manin
system of a generic family of Laurent polynomials defined by the toric data, more precisely, with a
partial Fourier-Laplace transformation of it (theorem [2.4). We next study a natural filtration of this
GauB-Manin system, prove a finiteness result (theorem [2.14)) and show that it satisfies a compatibility
condition with respect to the duality functor (proposition [2.18]).
The actual Landau-Ginzburg model is a subfamily of the family of generic Laurent polynomials studied
in section [2 parameterized by the Kihler moduli space, i.e., by a dim H?(Xs,, C)-dimensional torus. In
section [3] we first identify the GauB-Manin system of the Landau-Ginzburg model of Xy, with a GKZ-
system on the Kéhler moduli space (corollary . In the second part of this section, we extend this
module to a vector bundle with an integrable connection having logarithmic poles along the boundary
divisor of an appropriate compactification of the K&hler moduli space (theorem |3.7). From this object
we can derive, using a a method which goes back to [Gue08§], a specific basis defining a solution to the
Birkhoff problem in family in the sense of [DS03]. This is a family of P!-bundles which extends the
GKZ-D-module mentioned above. An important new point is that this construction works taking into
account the logarithmic degeneration behavior near the large radius limit point. As a consequence, we
can construct a canonical logarithmic Frobenius manifold associated to the Landau-Ginzburg model of
X5, , which has an algebraic structure on the subspace corresponding to the compactified Kéhler moduli
space (theorem. One may speculate that it restricts to the canonical Frobenius structure considered
in [DS03] in a small neighborhood of any point of the Kéhler moduli space (question [3.17).

In section [d] we first recall very briefly the construction of the quantum D-module of a projective variety,
and then show that it is isomorphic, in the toric weak Fano case, to the family of P!-bundles with
connection constructed in section [3| From this we deduce (theorem an isomorphism of logarithmic
Frobenius manifolds by invoking the main result from [Rei09].

In the final section [5] we show (theorem [5.3), using the fundamental result from [Sab08] that the quan-
tum D-module is equipped with the structure of a variation of pure polarized non-commutative Hodge
structures in the sense of [KKP0S]. As there are several versions of this notion around, we briefly recall
the basic definitions and show how they apply in our context. This result strengthens a theorem of
Iritani ([Tri09b]), who directly shows the existence of tt*-geometry in quantum cohomology, however, he
uses an asymptotic argument, whereas our approach gives the existence of an ncHodge structure wher-
ever the small quantum product is convergent and the mirror map is defined. We also deduce from the
construction of a logarithmic Frobenius manifold that this ¢t*-geometry behaves quite nicely along the
boundary divisor of the Kahler moduli space, namely, that the corresponding harmonic bundle is tame
along this divisor (theorem [5.5]).

We finish this introduction by some remarks on how our work relates to other papers concerning mirror
symmetry for Fano varieties and hypergeometric differential systems: As already mentioned above, our
main result relies on Givental’s I = J-theorem. It is certainly well-known to specialists (and it is briefly
mentioned at some places in [Giv98] and also in subsequent papers) that the I-function is related to
oscillating integrals and hence to the Fourier-Laplace transformation of the Gau3-Manin system of the
mirror Laurent polynomial, but to the best of our knowledge, a thourough treatment of these issues
is missing in the literature. More recently, Iritani has given in [[ri09a] an analytic description of the
differential system associated to the Landau-Ginzburg model and discussed its relation to hypergeometric
D-modules. He considers the more general case of toric weak Fano orbifolds, however, solutions to the
Birkhoff problem resp. Frobenius structures are not treated in loc.cit. Passing through the analytic
category one also looses the algebraic nature of the objects involved, which may be an obstacle in some
situations. As an example, one cannot apply the general results on formal decomposition of meromorphic
bundles with connection from [Moc09] and [Moc08b| for non-algebraic bundles. Nevertheless, some of




the techniques used here are also present in [[ri09al, and at some points our presentation is (without
explicit mentioning) similar to that of loc.cit.

Finally, let us notice that although one may think of an extension of some of our results (like those in
section [2)) to the orbifold case, there is a serious obstacle in the construction of a logarithmic Frobenius
structure associated to the Landau-Ginzburg model of a weak Fano toric orbifold. This is mainly due to
the fact that the “limit” orbifold cup product does not satisfy an “H?2-generation condition”, in contrast
to the case of toric manifolds (see also the preprint [DM09] for a discussion of this phenomenon for the
case of weighted projected spaces).

2 Hypergeometric D-modules and filtered Gauf3-Manin systems

In this section we study Gaufl-Manin systems associated to generic families of Laurent polynomials. We
show that (a partial Fourier-Laplace transformation of) these D-modules always have a hypergeometric
structure, i.e., are isomorphic to (a partial Fourier-Laplace transformation of) a certain GKZ-system.
Moreover, both Gaufl-Manin systems and GKZ-systems carry natural filtrations by O-modules. For the
Gaufl-Manin system, these are the so-called Brieskorn lattices, as studied, for more general polynomial
functions, in [Sab06]. We show that the above identification also works at the level of lattices. As
an application, we prove that if the family of Laurent polynomials is associated to a fan of a smooth
toric weak Fano manifold, then outside a certain “bad part” of the parameter space, the family of
Brieskorn lattices is O-locally free. This will be needed later in the construction of Frobenius manifolds
associated to these special families of Laurent polynomials. Finally, we study the holonomic dual of the
GauB-Manin system and obtain (up to a shift of the homological degree) an isomorphism of this dual
to the Gaufl-Manin system itself. The way of constructing this isomorphism is purely algebraic, using
a resolution called Euler-Koszul complex of the hypergeometric D-module which is isomorphic to the
GauB-Manin system. This proof differs from [Sab06] or [DS03], where the duality isomorphism is obtain
in a topological way. We could also give a topological proof along the lines of the quoted papers, by
using a partial compactifications of the family of Laurent polynomials and a smoothness property at
infinity (see the proof of proposition for a description of this partial compactification). However, our
algebraic approach gives almost for free that the above mentioned filtration is compatible (up to a shift),
with the duality isomorphism. This fact is also needed for the construction of Frobenius structures.

2.1 Hypergeometric systems and Gauf3-Manin systems

We start with the following set of data: Let N be a finitely generated free abelian group of rank n,
for which we choose once and for all a basis which identifies it with Z™. Let a4,...,qa,, be elements
of N, which we also see as vectors of Z". We suppose that a,,...,a,, generates N, if we only have
Z:.L:l Qa;, = Nq := N ® Q, then some of our results can be adapted, see proposition below. In order
to orient the reader, let us point out from the very beginning that the case we are mostly interested
in is when these vectors are the primitive integral generators of the rays of a fan ¥4 in Ng := N ® R
defining a smooth projective toric variety X5, which is weak Fano, that is, such that the anticanonical
divisor —Kx;,, is numerically effective (nef). The Fano case, i.e., when —K Xy, 1s ample is of particular
importance and will sometime be treated apart, as there are cases in which we obtain stronger statements
for genuine Fano varieties. See also the proof of proposition 2.1} the proof of lemma[2:8 and the beginning
of section [3]for toric characterizations of the weak Fano condition. We will abbreviate this case by saying

that aq,...,qa,, are defined by toric data. We write L for the module of relations between a4, ...,qa,,, i.e.,
leLczmiff Y"  l;a;, = 0. We will denote by Sy the n-dimensional torus Spec C[N| with coordinates
Y1, .-, Yn and by W’ the m-dimensional affine space Spec C[®,INg,] with coordinates wy, ..., w,,. We

are slightly pedantic in this latter definition in order to make a clear difference with the dual space,
called W, which will appear later.

An important _point in the arguments used below will be to consider the following set of extended
vectors: Put N := Z x N 2 7" @, := (1,a;) € N for all i = 1,...,m and @, := (1,0) € N. Write
A= (@p, @y, ---,a,,). Notice that the module of relations of A is isomorphic to L, any L = (I1, ..., 1) € L
gives in a unique way rise to the relation (— Y .~ ;)ay + > vy lia; = 0. By abuse of notation, we also
write L for the module of relations of A. As another piece of notation, we put [ := Yol Let
V' = Spec C[®}~,Ng;] with coordinates wy, ..., w,, and V the dual space, with coordinates Ao, ..., Ap.-



We also need the m-dimensional torus S; := Spec C[(®",Za;)"], with inclusion map j : S1 = W.
Moreover, put V= Spec C[INg,] x W and T := Spec C[INg,] x Sl, we still denote the map TV by
j. We put 7 = —wjq so that (7, A1,..., A\m) gives coordinates on 1% resp. T. We will also write C, for
Spec C[INg,| and C; for Spec C[Za,]. Later we will consider algebraic Dyp- (resp. Dz)-modules which
are localized along 7 = 0, and in this case we also use the variable z := 7!, Sometimes we will implicitly
identify such modules with their restriction to C% x W resp. to C% x 5.

The first geometric statement about these data is the following proposition.

Proposition 2.1. 1. Consider the map

kZSQ — W

(W1 yn) (Wi, ., wp) = (Y*, Ly,

where y% := [[,_, yp*'. Suppose that O lies in the interior of Conv(ay,...,a,,), where for any

r=m

subset K C N, Conv(K) denotes the convex hull of K in Ngr. Then k is a closed embedding.

2. Suppose that ay, . ..,qa,, are defined by toric data. In particular, the completeness of ¥4 implies that
0 is an interior point of Conv(a,,...,a,,). Let NA = Yot o Na;, then INA is a normal semigroup,
i.e. it satisfies NN C’(ﬁ) = INA and positive, i.e., the origin is the only unit in INA. Here for a
finite set {Zy,...,Z;} we write C({Zy,...,Z;}) for the cone Zf:l R>oZ;. The associate semigroup

ring Spec C[INZ] is normal, Cohen-Macaulay and Gorenstein.

Proof. 1. The condition that the origin is a interior point of the convex hull of the vectors g, translates
into the existence of a relation { = (I1,...,ln) € LNZZ, between a4, ...,q,, consisting of positive
integers. On the other hand, the closure of the image of the map k is contained in the vanishing
locus of the so-called toric ideal

I:(Hw;li—Hwéi> C Owr.
lel

2:1;<0 2:0;>0
From the existence of [ € LN Z7, we deduce that the function ][, w’ — 1 lies in I. This shows
that for any point w = (w1, ..., wy) € Im(k) C V(I) C W', we have w; # 0, i.e., w € Im(k).

2. First we show the normality property: Consider any integer vector Z = (29, #1, ..., 2n) € C(A)NN
We have

C(A)N ({1} x Ng) = U Xid; = {1} x Conv(ay, ..., a,,) (1)
N€ER>0; ™ ) Ai=1
Now define
P(Xa) = U Conv(0,a;,,--.-,4a;,)
(@, 2, )€84(n)

We have the following reformulation of the weak Fano condition (see, e.g., [Wis02 page 268]):
—Kx,, isnef < P(X4) is convex.

Hence by assumption we know that P(X4) is convex. We claim that P(¥4) = Conv(a,,...,a,,)-
The inclusion C follows from the fact 0,4, ,...,a; € Conv(a,,...,a,,) for (g; ,...,a; ) € Xa(n).
The other inclusion follows from g, ...,q,, € P(EA) and the convexity of P(X4). From the claim
and equality we get the following decomposition of the cone C (A)

C(ﬁ) = U C({EO@ila---@in})

(@ seay, )EXA(N)

Using this decomposition, we see that T lies in a cone C(@O’@jw“‘@jn)’ that is, there are
A0s Ajys -5 Aj, € Rq such that T = Xodg + Y-,y Nj @;, - Notice that ag,d;,,...,d; is Z-basis



of ]\N/', as aj,...,a; is a Z-basis of N which follows from the smoothness of ¥4. From this

follows € INA. Notice also that the “exterior boundary” oC(ay, aj,,---,a;, )N OC(A) equals

> w—1 R>0a;, so that T € Int(C(A)) precisely iff the coefficient Ay in the above sum is positive.
From the fact that INA is normal it follows that Spec (D[]N/ﬂ is Cohen-Macaulay by a classical result
due to Hochster ([Hoc72l theorem 1]). That INA is positive is equally easy to see: it follows (see,

e.g., [MS05) lemma 7.12]) from the fact that C(A) is pointed, i.e., that the vectors (a;)i=o, .. m are
contained in the half-space {z € R"*! |z > 0}.

It remains to show that Spec C[INA] is Gorenstein: We use [BH93, corollary 6.3.8] stating that this
property is equivalent, for normal positive semigroup rings, to the fact that that there is a vector
¢ € Int(INA) with

Int(NA) = ¢+ INA.

From the above proof of the normality of INA we see that Int(INA) = N NInt(C(A)). On the other
hand, the map N — N which sends Z to Z + (1,0) induces a bijection from C(A) to Int(C(4)),

this follows from the characterization of C'(A) given above.
O

In order to state our first main result, we will associate (several variants of) a D-module) to the set of
vectors aq, . . .,a,, above. This construction is a special case of the well-known A-hypergeometric systems
(also called hypergeometric D-modules or GKZ-systems). We recall first the general definition.

Definition 2.2 ([GKZ90], [Ado9%4]). Consider a lattice Zt and vectors by, ..., by, € Z' which we also
write as a matrizv B = (by,...,b;). Moreover, let 8 = (B1,...,0:) € C'. Write (as above) L for the
module of relations of B and Dgs for the sheaf of rings of algebraic differential operators on C* (where
we choose x1,...,Ts as coordinates). Define

MYy = Des [ (O)ier + (Zi)ret,..t) »
where . .
DL = Hlll <0 a; f - H'Ll1 >0 aZL’Zi
Zy = Z::1 biti0x, + Bi
M’g 18 called hypergeometric system.

We will use at several places in this paper the Fourier-Laplace transformation for algebraic D-modules.
In order to introduce a convenient notation for this operation, let X be a smooth algebraic variety, and

M a Dgs x x-module, where we have coordinates (z1,...,zs) on C°. Then we write ﬁgi; M for the
D(¢s)v x x-module, which is the same as M as a Dx-module, and where y; acts as —0,, and 9y, acts as
x;, here y1,...,ys are the dual coordinates on (C*)¥. One could also work with the functor FLY!" %,

where y; acts as 0, and 0,, acts as —x;, this would lead to slightly uglier formulas.

Definition 2.3. Let Dy, Dy and Dz be the sheaves of algebraic differential operators on 'V, V and f,
respectively.

1. Consider the hypergeometric system M% associated to the vectors ay, @, ...,a,,. More explicitly,
Mi := Dy /Z, where T is the sheaf of left ideals in Dy defined by
T :=Dy(y)icr + Dv(Zk)requ,...ny + DV E,
where B -
O, = ok, II oy — [1 9% if 1>0,
B 1:1; <0 ‘ 7:1; >0 ¢
O, = [T oy — oy I dy it I<o,
- ;<0 @li>0
Zy = Yot akiNiOx, + B,
E = Doimg Aida, + Bo,



here a; = (a14, ..., an;) when seen as a vector in Z™.

2. Let ./(/l\% be the Dy -module ﬁfs (M%)[Tfl]. In other words, /T/l\é = Dy [r1)/Z, where 7 is the

left ideal generated by the Fourier-Laplace transformed operators ﬁb Ek and E, i.e.,

O = o I1 - 1 ok == 1 o5~ 1 &,
;<0 ali>0 ili<0 >0

Zy = S akiNiOx, + B,

E = Y7 ANby — 70 — 14 Bo,= X0 Mida, + 20, — 1+ fo.

3. Define /\//Y%’loc = j*ﬂ% to be the restriction of./T/l\% toT. We will use the presentations D4 [r1/T'
and Df[f_l]/f” of M\%loc where T' resp. 1" is the sheaf of left ideals generated by ﬁi, Z), and E

resp. Di’, Zi and E, where

ai 1= g2tz li 'ﬁL and Iﬁf = H (z- )b - ﬁb

i:1,>0

so that

i=1 :1; i:l; =

Notice that obviously 7 = f”, but we will later need the two different explicit forms of the generators
of this ideal, for that reason, two different names are appropriate.

y p— (1’9) A .— A(l»g) 'Vl C e A(lyg)’loc
4. Wmte./\/lg.—./\/lg ’Mﬁ'_MZ and./\/lfgc.—./\/lg .

In order to avoid too heavy notations, we will sometimes identify M\g resp. M\%loc with the corresponding

modules over either C: x W resp. C% x Sy or PL x W resp. PL x Sy, here PL is P! with 0 defined by
z=0.

The first main result is a comparison of these D-modules to some GauB-Manin systems associated to
families of Laurent polynomials. When this paper was written, a similar result appeared in [AST0]. The
techniques of loc.cit. are not too far from those used in the proof of the next theorem, however, it seems
not to be more eflicient to translate their result into our situation than to give a direct proof.

Theorem 2.4. Leta,,...,a,, € N suchthaty ;" Za, = N. Consider the family of Laurent polynomials
w:85 xW — C; x W defined by

m

(s vn)y A, Am)) = O Ny, M) = (Z)\i Hygki,(Al,...,Am)> = (, Ay Am) -
i=1 k=1

i=1

Then there is an isomorphism

—

¢: My — FL; (H0p, Osew)lr '] = @
of Dv—modules.

Before entering into the proof, let us recall the following well-known description of the Fourier-Laplace
transformation of the Gau-Manin system.



Lemma 2.5. Write p = (F,m), where F: Sog x W — Cy, (y,A) = >.7" Aiy% and w: So x W — W is
the projection. Then there is an isomorphism of Dy -modules

G =K (05 Ty w25, d = 271 - dF A

where d is the differential in the relative de Rham complex W*QE’OXW/W' The structure of a Dy -module
on the right hand side is defined as follows

O (w-2Y) = w2 —272F w2

(-2 = (W) 2"+ 0F w271 =05(w) 2" +y% w- 27

where w € ngxw/w.

Proof. The identification of both objects as Dy /Dy -modules is well-known (see, e.g., [DS03), proposition
2.7], where the result is stated, for a proof, one uses [Sai89l lemma 2.4]). The proof of the formulas for
the action of the vector fields 0y, can be found, in a similar situation, in [SevlIl lemma 7]. O

Proof of the theorem. Throughout the proof, we will use the following notation: Let X be a smooth
algebraic variety, and f a meromorphic function on X with pole locus D := g~!(c0) C X, then we denote
by Ox (*D)-ef the locally free Ox (xD)-module of rank one with connection operator V := d+dfA. The
Dx-module thus obtained has irregular singularities along D, notice that this irregularity locus may lay
in a boundary of a smooth projective compactification X of X if f € Ox. For any Dx-module M, we
write M - e/ for the tensor product M ®¢, Ox(*D) - e’.

Put T} := Spec C[]V] with coordinates yo, y1, ..., yn, and define

kE:Ty, — C'xW cVv’

(y07y17 v 7yn) — (UJO = Yo, (wi =7Yo- gﬁi)i=1,...,m) 5

where, as before, we write y% for the product [Ti—; yi*. It is an obvious consequence of the first

point of proposition that & is again a closed embedding from Ty to C* x W’. Write moreover p for
the projection Cf x Sp x W — C* x W. We identify Ty with C* x Sy by the map (yo,y1,.-.,yn) —

(_y07y1a e 7yn) = (T7 Yi,- - 7yn)
First we claim that

G H0p+ (O@;Xsoxw e 7 2 Aigll) . (2)
As p is a projection, the direct image py of any module is nothing but its relative de Rham complex, i.e.

H0p+ (OC;XSOXW LT X A@ﬂi) & 740 (p*Qﬂ.j;ZSOXW/C:XW’d_ T- dF/\) ,

and this module is the same as G, using lemma It follows from the projection formula ([HTTOS|
corollary 1.7.5]) that

((% X idW)+OTo><W> Ltz A — (% x idw )+ (OTOXW oY 2ty Azﬂﬂi) .

This can also be shown by a direct calculation, in fact, both modules are quotients of De: o xw. Now
consider the following diagram

C:xW xW

Ty b s x W Cr x W,

where 71 and 7o are the obvious projections. As 7y o (% x idw ) = p, we obtain that

Hopy (OSOXC:XW Lo T Xi )‘1@&1) =Hma 4 (((E X idw ) 4 Opyw) - €251 Aiwi) .



On the other hand, we obviously have that (k x idyw )4+ O xw = k4 Or,, hence
HOmy 4 («E X idw )4 Oy xw) - €251 Aiwi) =H'm ¢ ((WTE+OTO) S AM) ’

Now we use the following well-known description of the Fourier-Laplace transformation:

Homy i (((m1) ki Or,) - XA ) = L0 2 (RO )

We are thus left to show that the latter module equals M - In order to do so, notice that the Dg,-module
Or, can be written as a quotient of Dr,. The natural choice would be to mod out the left ideal generated
by (yxOy, )k=o0,...n, however, we will rather write

o (3)
(yoayo) + (ykayk + ]-)k:l,...,'n,)

Or, =

which we abbreviate as O, -[]}_, y,;l. Now notice that % is a closed embedding, hence a calculation sim-
ilar to the proof of [SW09|, proposition 2.1}, using the (Dr,, kleC:Xw/)—transfer bimodule Dr, ;e xw-
shows that the direct image k;Or, is given by

~ Desxwr

k+OT0 - —1 —1. —1 1 m m ’
(Hi:li<0(w0 wi) 7 = [ L, >0(wo wi) I)LE]L + (it akiawiwi)kzl,__,m + (woOuw, + 3221 Ow, wi)

Now as wg = —7 and Jy, = —w; in FiLw_lAlw;)\m E+(’)TO, we obtain that the latter module equals

DC;XW
(T, <o (T 100D 7" = Tliat,0(T7100)") o, + (211 aridiOn )y + (W0Due — 321%5 Aida,)

so that finally

_/\nL 7 DA[T_I]
m k-‘rOTo = [ w

Tf(ni;zi<o 6;1_ ¢ _Hmi>0 8f\ii)LE]L+(Z;';1 akiAidy, )k:l n""(T@T—E;';l Aia)‘i)

,,,,,

O

In the following proposition, we comment upon the more general case where the vectors a4, ...,a,, only

generate Ng over Q. Let as before A = (a4,...,a,,) where a; are seen as vectors in Z". Then it is a

well-known fact that A can be factorized as B; - C - By where B resp. Bz is in Gl(n, Z) resp. Gl(m,Z)
and C has the form

€1 €1 1

en en 1

where e; are natural numbers called elementary divisors. Set A’ := E - By, then A = By - D - A’ and the
columns of A’ generate N over Z.

Proposition 2.6. We have the following isomorphism

jel,

where j = (j1,...,jn) € N" and I,, = [T;_,([0,er — 1] NIN) C IN".



Proof. First notice that the morphism ¢ can be factorized into ¢’o(®xidg, ), where ® is the automorphism
of Sy defined by B € Gl(n,Z). Hence ¢ Ogyxw = ¢, Osyxw, so that we can assume that By = idgn,

i.e., that A = D - A’. Now one checks that the arguments in the proof of theorem showing that

ﬁ;\iz\u; (EJFOTO) ~ FL; (H 4 Og,xw)[r 1] are still valid under the more general hypothesis that
A = D - A’ where only the columns of A’ do generate N over Z. Hence we need to compute the module

ﬁ)\l,...)\m (E«{»OTO) )

Wi,y Wm
The factorization of A corresponds to a factorization k= E’oc, where ¢ : (Yo, Y1, ---»Yn) = (Yo, Y1, .- YE")

is a covering map and k' is a closed embedding defined by the matrix A’. Let us first compute the direct
image of Or, under ¢. To do so, we look at the one-dimensional case, i.e. a map ¢ : yx — y.*. We have

ep—1

¢k, Oc+ =~ ¢ 1 De- [ (Yky,) = @D Do- /(yrdy, + 1= j/ex);
=0

and moreover c; O, = O¢- Mc; 1 Oc¢- X ... M e, 1 Og- so that we get

Dr,
C OT ~ 0 - .
e S? yano + (ykﬁyk +1- ]k/ek)kzl,...,n

In the next step we compute the direct image under the closed embedding k. Similar as above, we
obtain for the direct image

'kv/ < DTO )
T\ w00y, + (yk0y, + 1= ji/€r)k=1,...,n

Dexxwr

(Hi:li<o(wo_lwi)7li - Hz‘:li>o(wo_lwi)li)Le]L + (0L akiOw,wi — jk/ek)k:L,,_,n + (W00, + 22721 O, wi)
(4)

The Fourier-Laplace transformation in the variables wy, ..., w,, yields

— AlyeAm [ Dr, )) =8
FL, b k : = M~
B tm ( * (y06y0 + (UkOyy, + 1 = jr/er)k=1,...n A

where 8 = (1,j1/e1,...,jn/€n). Taking the direct sum this gives

—_T _ = —Al,ee0s—Am [T “(1,51/€1sy0n/€n
FL; (M0 Osyxw)[r 1] ~ FL, (ki0r,) = @ M7 evminien).

Wi,..,Wm
jel,

O

In the following proposition, we collect some properties of the hypergeometric D-modules introduced
above. An important tool will be the notion of non-degeneracy of a Laurent polynomial, recall (see, e.g.,
[Kou76] or [Ado94]) that f: (C*)! — C, f = pyxbs +. ..+ psxbs is called non-degenerate if for any proper
face 7 of Conv(0,b,...,b,) C R! not containing 0, f, = ZbieT wiz% has no critical points in (C*)*.

Proposition 2.7. 1. M% (resp. ./T/l\%, /\//Y%loc) is a coherent and holonomic Dy -module (resp. Dy;-

module, Dgz-module). Moreover, M% has only regular singularities, included at infinity.
2. Let as before F: So x W — Cy, (y1,. -1 Yn, Ay Am) > Doieq Ai - y%i. Define
SV :={(A1,..., A\m) € S1| F(—, ) is non-degenerate with respect to its Newton polyhedron}.
Moreover, consider the following extended family

ﬁIT()XV — C
((y(]vyla"'ayn)v()‘Oa)‘l,“';)\m)) — yO()‘OJf_ZZil)\zgﬂ‘)

10



and put
0= {( Mo, Aoy Am) € CxSy |ﬁ(—,g) is non-degenerate with respect to its Newton polyhedron}.
Both SY and V' are Zariski open subspaces of Sy resp. Cx Sy (as well as of W resp. V). We have

(a) The characteristic variety of the restriction of M% to VO is the zero section of T*V?°, i.e
Mﬂ~ is smooth on V.

(b) Suppose that aq,...,a,, are defined by toric data and moreover, that the the projective variety
X5, is genuine Fano, i.e., that its anti-canonical class is ample (and not only nef). Then

VA\V? Cc A(F)uU U;il{)\i =0} C V, where
={(=t,A1,..., Am) EV|F(=, )" (t) is singular }

is the discriminant of the family —F.
(c) The restriction of M\%’loc to Cx x SY is smooth.

3. Suppose that ay, ...

? ’H'L

are defined by toric data. Then the generic rank of both M% and M\%

is equal to n! - vol(Conv(ay,...,a,,))) = (n+ 1)! -VOI(C~0nV(§, ay,.-.,0q,)), where the volume of a

» Em

hypercube [0,1]* C RE is normalized to one, and where 0 denotes the origin in Z"1.
Before entering into the proof, we need the following lemma.

Lemma 2.8. Suppose that aq,...,a,, are the primitive integral generators of the rays of a fan ¥4

defining a smooth toric Fano manifold Xs,, . Then the family F : Sy x S1 — C; is non-degenerate for
any (A1,...,Am) € S1.

Proof. Tf Xy, is Fano, then it is well known (see, e.g., [CK99, lemma 3.2.1]) that X4 is the fan over the
proper faces of Conv(ay,...,a,,). Let 7 be a face of codimension n 4+ 1 — s and o the corresponding s-
dimensional cone over 7. As X4 is regular, the primitive generators a, ,...,a, are linearly independent.
We have to check that

Ts

Fr(Ay) = Ay 4o+ Ay

has no singularities on Sy for any (A-,...,Ar,) € (C*)°. The critical point equations yz0,, Fr = 0 can
be written in matrix notation as

(ar )1 (an)1 .. (ar Ary - f”
S : | =0
(ar)n  (@r)n v (ar)n Ar, 'QQTS
This matrix has maximal rank and therefore can only have the trivial solution, contradicting the fact
that (A7,,...,Ar,) € (C*)® and y € Sy. Hence there is no solution at all and F' is non-degenerate for all
A€ S O

Proof of the proposition. 1. The holonomicity statement for M% is [Ado94, Theorem 3.9] (or even
the older result [GKZ90, Theorem 1], as the vectors dg,dy,...,a,, lie in an affine hyperplane
of N). Then also M% and M%’loc are holonomic as this property is preserved under (partial)

Fourier-Laplace transformation. The regularity of M% has been shown, e.g., in [Hot98| section 6].

2. (a) This is shown in [Ado94] lemma 3.3].

(b) By lemmaﬁ F. = Doia aer N ITio y“’” can have a critical point in Ty only in the case that
7 = Conv(ay,dy, - - -, 8y, ), i-€., we have the following system of equations

~ !
yoayOF = Y ()\0 —+ Enl k: 1 ;Z;]”) = 0,

(yka’/kﬁ = Yo g Ni aszk 1yakl;o
k=1,...,n

The first equation yields A\g = —t, where ¢ denotes the value of the family F', and the second
one is the critical point equation for F'.

11



(c) We know that char(ﬂ%) is included in the variety cut out by the ideal
(¢@0),_, +(©@(Z)imr.n + o E).

Write y resp. p; for the cotangent coordinates on T*(C* x SY) corresponding to z resp. \;.
As 0(E) = zy + 3.1, \ip, it suffices to show that the sub-variety of € x T*S? defined by
the ideal N R
(U(Dl)> +(0(Zk))k=1,..n
lel

equals the zero section. Write 3 = (8, 3’) with 3’ € N¢. Notice that for any [ € L, if [ # 0,
then either U(ElL) or a(zjﬁi) belongs to C[u,. .., im] and equals the symbol of one of the
operators defining Mﬁ/. Similarly, if [ = 0, then already [J; itself is independent of z and
equal to an operator from ./\/lf;. This shows that [Ado94] lemma 3.1 to lemma 3.3] holds for
/\//\l%, and hence ./T/l\% is smooth on C* x SY.

3. For the Dy -module M% this is [Ado94} corollary 5.21] as Spec (D[]NZ] is Cohen-Macaulay by propo-

sition 2., notice that the Cohen-Macaulay condition is needed only for the ring Spec (D[]N/T],
not for any of its subrings as the only face 7 occurring in loc.cit. that does not contain the origin

is the one spanned by the vectors gy, ay ..., a

s Z=m:

Similarly, [Ado94! corollary 5.21] shows that the generic rank of/\/li/ equals n!-vol(Conv(ay, . .., a,,)):
Here we have to use the fact that all cones o € ¥4 are smooth, so that the semigroup rings gener-
ated by their primitive integral generators are normal and Cohen-Macaulay. Now it follows from
the calculation of the characteristic variety from 2(c) that this is then also the generic rank of M%.
O

For later purpose, we need a precise statement on the regularity resp. irregularity of the module /\//\l%,
at least in the case of main interest where a4, ...,q,, are defined by toric data. As a preliminary step,

»Z2m

we show in the following proposition a finiteness result for the singular locus of M%.

Proposition 2.9. Suppose that a,,...,a,, are defined by toric data. Let p: V — W be the projection
forgetting the first component. Then for any A = (A1,..., \m) € SY, there is a small analytic neighborhood
Uy C SY™™ such that the restriction

Playnnp-1wy) P AF)™ Np~H({Uy) — Ux
is finite, i.e., proper with finite fibres. In particular p|a(p)np-1(s9) : A(F)Np~1(SY) — SV is finite.

Proof. Write Py for the restriction pja(ryannp-1(v,). The quasi-finiteness of Py is obvious, as for any
A € SY, F(—, ) has only finitely many critical values. Hence we need to show that P, is proper. Take any
compact subset K in Uy. Suppose that P)\_1 (K) is not compact, then it must be unbounded in V' =2 ¢ +1

for the standard metric. Hence there is a sequence ()\él),g(i)) € P;l(K) with lim;_, o \)\él)| =00, as K is
closed and bounded in W 2 €™. Consider the projection 7 : V- — P(V) = Proj C[Ag, A1, .., Am], then
(possibly after passing to a subsequence), we have lim;_, o, w(/\ff),xi)) =(1:0:...:0).

In order to construct a contradiction, we will need to consider a partial compactification of the family
F, or rather of the morphism ¢ : Sy x S; — C; x S;. This is done as follows (see, e.g., [DLI1] and
[KhoT7]): Write Xp for the projective toric variety defined by the polytope Conv(a,,...,qa,,) (under
the assumption that Xy, is weak Fano, this is a reflexive polytope in the sense of [Bat94]) then Xp
embeds into P(V’) and contains the closure of the image of the morphism k from proposition Write
Z ={>"Nw; =0} C P(W’)xP(W) for the universal hypersurface and put Zp := (Xp x P(W))NZ.
Consider the map 7 : Xp x (C; X S1) = Xp x P(W), let ZB :=171(Zp), and write ¢ for the restriction
of the projection Xp x (C; x S1) - C; x 51 to Zp. Then ¢ is proper, and restricts to pon Sy x S; =
Iy, C Zp. There is a natural stratification of Xp by torus orbits and this gives a product stratification
on Xp x (C; x S1). Now consider the restriction ¢ of ¢ to ZJ’B = ¢ 1(C; x SY), then one checks that
the non-degeneracy of F on S? is equivalent to the fact that Z cuts all strata of (X5\Sp) x (C¢ x SY)

12



transversal. Hence we have a natural Whitney stratification ¥ on (the analytic space associated to) Zﬁ;
If we write Crits(¢') for the Y-stratified critical locus of ¢/, ie., Critg(¢') := Us,_ ey Crit(¢]s,_ ), then
we have Crits;(¢') = Crit(¢’), where ¢’ := ¢, g0. On the other hand, Whitney’s (a)-condition implies
that Crity(¢’) is closed in Z]’B, and so is Crit(¢’).
Now consider the above sequence (/\ff),g(”)) € P (K) C A(F)®, then the fact that the projection from
the critical locus of ¢ to the discriminant is onto shows that there is a sequence ( (w(()i),w(i)), (/\(()i), A9 e
Crit(¢") C So x K projecting under ¢’ to (A(i),g(i)). Consider the first component of the sequence
W((w(()i) (), ()\( AD)), then this is a sequence (w(()i) ,w®) in X which converges (after passing possibly
again to a subsequence) to alimit (0 : wi™, ... wli™) (this is forced by the incidence relation S wid; =

0), in other words, this limit lies in Xp\Sy. However, we know that lim;_, o ((wy (0w @), ()\( DAl )) exists
in Critx(¢’) as the latter space is closed. This is a contradiction, as we have seen that ¢ is non-singular
outside Sy x (C; x S), i.e., that Crity(¢') = Crit(¢’) C Sp x S9. O

Now the regularity result that we will need later is the following.

Lemma 2.10. Consider /\//Y% as a Dp,  y7-module, where W is a smooth projective compactification of
W. Then /\//\l% is reqular outside ({z =0} x W)U (PL x (W\SY)).

Proof. 1t suffices to show that any A = (A1, ..., Ayn) C SY has a small analytic neighborhood U, C gPan

such that the partial analytization M\%ZOCQ@ er s, OR T, 771 is regular on C, x U (but not at 7 = c0).
This is precisely the statement of [DS03| theorem 1.11 (1)], taking into account the regularity of Mé
(i.e., proposition 1.), the fact that on €y, x Uy, the singular locus of M"% coincides with A(F)

(see the proof of proposition 2(b)) as well as the last proposition (notice that the non-characteristic
assumption in loc.cit. is satisfied, see, e.g., [Pha79l page 281]). O

2.2 Brieskorn lattices

The next step is to study natural lattices that exist in G and in MP.. To avoid endless repetition of
hypotheses, we will assume throughout this subsection that our vectors a4, ...,q,, are defined by toric

data. In order to discuss lattices in ./\/l , we start with definition.

Definition 2.11. 1. Consider the ring
R:=C[\,. .., A5 2)(20y,,. .., 20y, ,22D.),

. . L. +
i.e. the quotient of the free associative C\, ..., \E

8
m? z
by the left ideal generated by the relations

z]-algebra generated by z0y,, ..., z0x

’I‘ﬂ/’

[20),,2] =0,  [205,,\j] = 8ij2, [220.,M] =0
(220, 2] = 2%, [20x,,20,] =0, [2%0.,205,] = z- 20,,.

Write R for the associated sheaf of quasi-coherent Oc, x s, -algebras which restricts to Dexxs, on
{(z # 0}. We also consider the subring R' = C[\E,... A 2](20y,,...,20x,,) of R, and the
associated sheaf R'. The inclusion R' — R induces a functor from the category of R-modules to
the category of R'-modules, which we denote by For,z5_ (“forgetting the 220, -structure”).

2. Choose B € Ng, consider the ideal T := R(aDlelL +R(z Zy)pm 1,..n +R(z- E) in R and write

W\%loc for the quotient R/Z. We have For 2. (OM\%IOC) = R'/((D')le]]_ + (2 Z)kt...n), and the

restriction of W\%loc to C: x Sy equals /\//\l%loc. Again we put 0/\/11%"C = 0/\/1%1 Q)sloe,

Corollary 2.12. Consider the restriction of the isomorphism ¢ from theorem to C; x S1.
1. ¢ sends the class of the section 1 in ./(/l\%’c to class of the (relative) volume form wo := dy1/y1 A
o Adyn/yn € ngxsl/sl.
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2. The morphism ¢ maps (}/(/l\%"c isomorphically to

F*Qg'o)(sl/sl [Z]

(zd — dFN) W*QTSLU_;SH/SI ]

Go =

Proof. 1. Following the identifications in the proof of theorem this is evident, if one takes into
account that due to the choice in formula , we have actually computed

S 1 — Dsyxs
Gic-xg =FL, ( #0., 0 — ) =FL, (H° 0%
|Cx %S4 t < P+Usyx Sy T yn> t ( P+ Dsoxs, (yki‘?yk T 1)1@:1,‘.‘,n

2. First notice that due to 1. and the formulas in lemma we have ¢ (M//\IEC) C Gyp. To see that
it is surjective, take any representative s = ) .. w® 2 of a class in Go. As an element of G, s
has a unique preimage under ¢, which is an oper_ator Pe ./(/l\%"c and we have to show that actually
P e O/T/l}oc. By linearity of ¢, it is sufficient to do it for the case where w(® = 0. There is a
minimal k¥ € IN such that 2*P € Oﬂ/l\%oc, and then the class of 2*P in OM\I%’C/Z . O/T/I\EC does not

vanish. Suppose that k > 0, then the class of ¢(z*P) = z*s vanishes in Go/2Gp, which contradicts

the next lemma. Hence k =0 and P € 0/(/1\1%"6.
O

Lemma 2.13. 1. The quotient W\Ec/z : O/Y/l\ffc is the sheaf of commutative Og, -algebras associated

to N
C[Al a"'v)‘yjr:u/-l/la"'a/j/m]

(T <o = Tl w0 i ter + (20 ariXifti)k=1,...n

2. The induced map
A qloc A loc ~ n n—1
[¢] : MF/2- MZT — Go/2Go = TG 5, /5, /Ay F AT s 6,
is an isomorphism.

Proof. 1. Letting p; be the class of zdy, in W\fc/z . 0/(/1\1%00, we see that the commutator [u;, A;]
vanishes in this quotient.

2. This can be shown along the lines of [Bat93| theorem 8.4]. Namely, consider the morphism of
C[\E, ..., Af]-algebras
YCONE L AE ] — CELLE yTE,
pi >y

From the completeness and smoothness of ¥4 we deduce that v is surjective. Moreover, we have
ker(v) = (I1;, <o py i — 1,0 k) en (for a proof, see, e.g., [MS05, theorem 7.3]), and obviously
(O ariipi) = ypOy, F for all k =1,...,n. One easily checks that the induced map

" CIAT, . A fny s o) _>C[A1i,...,)\§,yf[,...,y$]
(T, <o " = T m0 5t + (01 Gkiditti)h=1,...n (Y Oy F)k=1,...n

coincides with the map [¢] induced by ¢, notice that

CIAL - Ayt it] o T Sxsys,
WOy F)i=1,...n dF AT Q816 s,

by multiplication with the relative volume form dy; /y1 A ... A dyn /yn.
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Following the terminology of [Sab06] and [DS03] (going back to [Sai89], and, of course, to [Bri7(]), we
call Gy (and, using the last result, also Oﬂ/l\%"c) the (family of) Brieskorn lattice(s) of the morphism ¢.
For the case of a single Laurent polynomial F) := ¢(—, A) : So — C, it follows from the results of [Sab06]
that the module Q7§ [2]/(2d — dFA/\)Qggl[z] is C[z]-free provided that A € SY, recall that S¢ denotes the
Zariski open subset of S; of parameter values A such that F(—, \) is non-degenerate with respect to its
Newton polyhedron. However, this does not directly extend to a finiteness (and freeness) result for the
Brieskorn lattice G of the family ¢ : Sp x SY — C; x S¥. We can now prove this freeness using corollary
2. 12

Theorem 2.14. The module Og_x 50 ®0c, x5, 0/(/[\11430 (and hence also the module Og_ 50 ®0c,_ s, Go)
is Og, xs0-locally free.

Proof. The main argument in the proof is very much similar to the proof of proposition 2.¢). Tt is
actually sufficient to show that Og_ 59 ®0c, x5, OM,%OC is O¢, x so-coherent. Namely, we know that the

restriction Ogo ®o,, (O/T/l\%ov/z . 0/(/1\1%00> equals the Jacobian algebra of ¢, g0, which is Ogo-locally free

»ZEm

of rank equal to the Milnor number of ¢g, g0, that it, equal to n!- vol(Conv(ay,...,a,,)), see [Kou76)
théoreme 1.16]. Moreover, the restriction Ocs x50 ®0c, ys, OM\,IZOC = O¢xx59 @0px x5, M\g is locally free
of the same rank and equipped with a flat structure, so that OM%OC R0c, x5, OCZng can only have the

same rank everywhere, provided that it is coherent. .
It will be sufficient to show the coherence of N := Oc. x50 ®0c, x5, Fors2s. (0/\/11[43“) only, as this is the

same as Og, x50 ®0¢, x5, 0/\//7%"0 when considered as an Og,  go-module. Let us denote by F, the natural
filtration on R’ defined by

FyR:=SPeR |P= Y galz,A)(201,)" ... (20,)

This filtration induces a filtration F, on A which is good, in the sense that FyR’' - FIN = Fi N,
Obviously, for any k, FiN is O¢, « so-coherent, so that it suffices to show that the filtration F, become
eventually stationary. The ideal generated by the symbols of all operators in the ideal defining N, that
is, by the highest order terms with respect to the filtration F,, cut out a subvariety of C, x T*Sy, and
it suffices to show that this subvariety equals C, x S?, then by the usual argument the filtration F,
stabilizes for some sufficiently large index. However, for any of the operators ﬁ; and 2k in 7', its symbol
with respect to the above filtration F, is precisely the same as the symbol of ﬁL , Ek with respect to the
ordinary filtration on M\fgc, hence, the same argument as in the proof of proposition 2.c) (that is,

the arguments in [Ado94) lemma 3.1 to lemma 3.3]) shows that the above mentioned subvariety is the
zero section C* x SY. O

2.3 Duality and Filtrations

In this section, we discuss the holonomic dual of the hypergeometric system M 7, from which we deduce

a self-duality property of the module M - Moreover, we study the natural good filtration on M ; by
order of operators, and show that it is preserved, up to shift, by the duality isomorphism. We obtain an
induced filtration on ./\/lfgc by Og, [z]-modules (which is not a good filtration on this module). Its zeroth

step turns out to coincide with the lattice 0/\//\1%"6 considered in the last subsection. This shows that we

obtain a non-degenerate pairing on OM\EC, a fact that we will need later in the construction of Frobenius
structures.
We start by describing the holonomic dual of the Dy -module M 7. This description is based on the local

duality theorem for the Gorenstein ring Spec C[INA]. If we were only interested in the description of this
dual module, we could simply refer to [Wal(07, proposition 4.1], however, as we need later a more refined
version taking into account filtrations, we recall the techniques using Euler-Koszul homology that leads
to this duality result.

We suppose throughout this section that the vectors aq,...,a,, are defined by toric data.
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Theorem 2.15. 1. For any holonomic left Dy -module N, write DN for the left Dy -module associ-
ated to the right Dy -module Extgjl(J\/', Dv), where we use, as V is an affine space, the canonical
~ Qptt

identification Oy given by multiplying functions with the volume form dXg A ... A d\p,

Then we have

B _ rq4—B+(1,0)

in particular

DMz = MY,
2. We have the following isomorphisms of holonomic left Dy - (resp. Dg)-modules
M\A = L*DM\E
.A//Y%)c ~ L*Dﬂi§07
here 1:V — V resp. L : T — T is the automorphism sending (2, A1, ..., Am) to (=2, A1, ..., Am)-

Before giving the proof of this result, we need to introduce some notations. The basic ingredient for the
proof is an explicit resolution of M"% by the so-called Euler-Koszul complex. We recall the description
of this complex from [MMWO05]. In order to be consistent with the notations used in loc.cit., we will
rather work with rings and modules than with sheaves. Therefore, put R = Clwy,...,wy,] and S = R/I
where [ is the toric ideal of ag,ay, .- ., a,,, i.e., the ideal generated by

[T wy — [] w' foranyleclL with]>0
i:1;<0 @:0;>0

T w —wh- I wh foranylel withl<0
i:1; <0 i:1; >0

Both rings are Z"*!-graded, where deg(w;) := —a; € Z"*! (more invariantly, they are N—graded),
notice that the homogeneity of I follows from the fact that L is the kernel of the surjection Zmtt s N
given by the matrix A. We write D = I'(V,Dy) for the ring of algebraic differential operators on V.
However, using the Fourier-Laplace isomorphism D = T'(V’, Dy) given by 0, — —w; and A\; — Oy,
we can also view D as the ring of differential operators on the dual space, and we shall do so if D-
modules are considered as R-modules. We have a natural Z"*!-grading on D defined by deg(\;) = @,
and deg(dy,) = —a;, and the Fourier-Laplace isomorphism gives rise to an injective Z"!-graded ring
homomorphism R — D sending w; to —3dy,. Again in order to match our notations with those from
[IMMWO5], let us put Eg := ;" (X0, € D and By :=>_." | ag; N0y, € D forall k =1,...,n. Let P be
any Z"*1-graded D-module, and o € C™ arbitrary, then by putting (Ey —ay)oy = (Ex—ai —deg, (v))(y)
for K =0,...,n and for any homogeneous element y € P and by extending C-linearly, we obtain a D-
linear endomorphism of P. We also have that the commutator [(E; — «;)o, (E; — a;)o] vanishes for any
i,j € {0,...,m}. Hence we can define the Euler-Koszul complex Ko(E — a, P), a complex of Z"*1-
graded left D-modules, to be the Koszul complex of the endomorphisms (Ey — ag)o, ..., (E, — a,)o on
P. Notice that here F is an abbreviation for the vector (Ey, E1,..., E,) and should not be confused
with the single vector field Z;nzo AiOx; + Bo used in the definition of the modules M%. The definition
of the Euler-Koszul complex applies in particular to the case P := D Qg T, where T is a so-called toric
R-module (see [MMWO5] definition 4.5]), in which case we also write o (E — o, T') for the Euler-Koszul
complex. Similarly one defines the Euler-Koszul cocomplex, denoted by K*(E —«, P) resp. K*(E—a,T),
where K{(E — a, P) = Ky,41-i(FE — o, P) and the signs of the differentials are changed accordingly. In
particular, we have H*(K*(E — a, P)) = H,11_i(Ke(E — , P)). We will mainly use the construction
of the Euler-Koszul complex resp. cocomplex in the case of the toric R-module S, or for shifted version
S(¢), where ¢ € Z"*1.

The main result on the Euler-Koszul homology and holonomic duality that we need is the following.
For any D-module M, consider a D-free resolution L, — M, then we write DM for the complex of left
D-modules associated to Homp(Le, D).
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Lemma 2.16 ([MMWO5, theorem 6.3]). Put g5 := > " (a; € Z""'. Then there is a spectral sequence
EP? = HI(K*(E + a, Exth,(S,wr))(—gz) = H"™D (Hppg—(m+1)(Ke(E — @, 5))) . (5)

Here (=)~ is the auto-equivalence of D-modules induced by the involution A\; — —A; and Oy, — —0h,.
Notice that it is shown in [MMW05, lemma 6.1] that Exth,(S,wg) is toric. Notice also that the dualizing
module wr is nothing but the ring R, placed in 2" -degree e; (see, e.g., [MS05, definition 12.9 and
corollary 13.43] or [BH93, corollary 6.5.6] for this). -

In our situation, the relevant Fxt-group occurring in the spectral sequence of this lemma is actually
rather simple to calculate, as the next result shows.

Lemma 2.17. There is an isomorphism of Z" 1 -graded R-modules Exty " (S,wr) = ws = S((1,0)).

Proof. First it follows from a change of ring property that Ext™ " (S,wr) = ws (see [BHI3, proposition
3.6.12]). We are thus reduced to compute a canonical module for the ring S. Remark that S is nothing

but the semigroup ring C[]N/T] from proposition (see again [MS05, theorem 7.3]), and its canonical

module is the ideal in S enerated by the monomlals corresponding to the interior points of INA. We
have seen in proposition 2., that the set of these interior points is given as (1,0) + INA, i.e., we have
that wg = S((1,0)), recall that S is a quotient of R = Clwg, w1, ..., w,] and that deg(w;) = —g;.

T

O

Proof of the theorem. In order to use lemma for the computation of the holonomic dual of M%,
write Mg = HO(V, M%) and notice that the homology group Ho(Ke(F — «,S)), seen both as a R-
module and a D-module, is nothing but T'(V’, FLK)S o (M:Z’l)) Hence by putting a := —/3, we have

an equality ]D)M:i = H™" " (DHy(Ke(E +3,5)))” of D—modules. Notice that the duality functor and the

Fourier-Laplace transformation commutes only up to a sign (see, e.g., [DS03, paragraph 1.b]), for this
reason, the right hand side of the last formula is twisted by the involution (—)~

1. As the ring S is Cohen-Macaulay, Ezth,(S,wg) can only be non-zero if p = codimp(S) = m +
1—(n+1) = m —n. This implies that the spectral sequence degenerates at the Fs-term,

so that By"™ ™% = H™ "D (H(p—n)+q—(m+1)(Ke(E — @, S))) . On the other hand, we deduce
from lemma 217 that

By = HI(K*(E + ,5((1,0))) = Hnj1-¢(Ke(E' + o+ (1,0),5))(1,0).
where we have used the equality
Ke(E+ ,5()) = Ke(E+ a+7¢,S) ()

of complexes of Z"*!-graded D-modules. As noticed in [MMWO05, remark 6.4] the CM-property of
S also implies that the Euler-Koszul complex Kq(F — a,.S) can only have homology in degree zero,
hence E5" ™% = 0 unless ¢ = n + 1. This is consistent with the fact that due to the holonomicity

of M% the right hand side of the spectral sequence can only be non-zero for p 4+ ¢ =m + 1.
Summarizing, we obtain an isomorphism of Z"+!-graded D-modules

H™H(DHy(Ku(E = @, 5)))” = Ho(Ka(E +a + (1,0), 9))(1,0),
from which we deduce an isomorphism of sheaves of Dy-modules (recall that o = —/3)

B ~ —B+(1,0)
DM% = M :

as required.

2. Put 8= (1,0) € zZ"+! = J\Nf, then it follows from 1. that we have a morphism
. AP B
o : MZ — ]D)Mg

m — a-0,
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Write D[(“);Ol] for the partial (polynomial) microlocalization C[Ag, A1, . . ., Am] (D, 8;017 OngyevyOn,)-
Then ¢ induces an isomorphism D[o”’;ol] ®QpM g 5 D[o”’;ol] ®p (DM g) On the other hand, it follows
from the D-flatness of D[a)fol] that Ea:tg[gi,ol](M,D[@;:]) = Bt (M, D) ® D[@/\_Dl] for any left
D-module M, hence we obtain an isomorphism

Doy | @p M5 = D(D[9;}] ©p M)

where the symbol D on the right hand side denotes the composition of Extgfgl,l](—7 D[B;OI]) with
Ao

the transformation of right D[(?;Ol] to left D[a)fol]—modules. Performing a partial Fourier-Laplace

transformation, we obtain an isomorphism (still denoted by ¢)

b ﬁ;O(ME)[Tfl} = ﬁ;o (D(D[E);Ol] ®p Mﬁv)) )

which is given by right multiplication with 7 = z7!. On the other hand, it is known (see, e.g.,

[DSOi Tparagraph 1.f]) that for any D[d; ']-module N, we have an isomorphism FL, (DN) =
*D(FLy, (N)) which gives us

FL3, (M)~ = oD (FL, (D165, @p M3)) = D (LS (M) [ 1))

~

from which we deduce the isomorphism M i= DM 4 of Dgp-modules resp. the isomorphism
_/\/llfC = L*]D)M%’C of Dg-modules.

O

The next step is to investigate a natural good filtration defined on the sheaf M%. We write M § =
HO(V, M%) which is isomorphic to Ho(Ke(E + 3,5)) as a D-module.

Proposition 2.18. 1. Write Fy for the natural filtration on D by order of Ox,-operators and denote
the induced filtration on Mg also by Fo. There is a resolution Lo of Mg by free D-modules which

is equipped with a strict filtration FFe and we have a filtered quasi-isomorphism (Lo, FL*) —
(M4, F).

2. Consider the case 8 = (1,0), i.e., M§ = Mz. Write FY DM 5 for the dual filtration of FoMz, i.c.,
D(Mz, Fo) = (DM 3, FY?) (see, e.g., [Sai94, page 55]), then we have
(0,0) _ D
FkMg - Fk7n+(m+1)]D)MAV'

3. For any B € Z"+!, F.ME induces a filtration GJ by Oc, xs,-modules on the Da-module ,A//T%ZOC
and we have an isomorphism of O¢,_ x s, -modules

GOM%IOC ~ ()/\/l[%,loc7

in particular
A gloc ~v A Aloc
GoM e = MF".
s, Gk./\/l%)C is Og, x s0-locally free.

For 3 = (1,0) we obtain from the dual filtration FY on DM5 a filtration G2 by Oc, x5, -modules
on M\;Q»Q)'

Moreover, for any k, Oczxsg R0¢

4. Consider the isomorphism
v — v * 7 W - 1 40,0
¢ :FLyt (Mp)lr~') = Mz — o FLy (DM p)[r ] = MOY

from the proof of theorem 2., which is given by multiplication with z='. Then we have
¢(Ge) = GH3)+m+2an(£’Q)-
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Proof. 1. The free resolution Lo — M § is obtained as in the proof of [MMWO05l theorem 6.3] as
the total complex Tot Ko (E + 3, F,) of a resolution of the Euler-Koszul complex obtained from a
R-free Z"!-graded resolution F, of S. In particular, this resolution is Z-graded for the grading
of R = Clwg,w1,...,Wn] = C[Or,,0n,---,0,,] for which deg(w;) = deg(dy,) = 1. On the
other hand, the differentials of the Euler-Koszul complex are constructed from linear differential
operators. Hence by putting on each term of the above total complex (which is D-free) a filtration
which is on each factor of such a module the order filtration on D, shifted appropriately, we obtain
a strict resolution of (Mg, F,).

2. From the construction of the resolution L, — M3, from point 1., we see that L, = 0 for all
k> m+ 1 (notice that we write this resolution such that d : Ly, — Li_1 so that Mz = Hy(L,,d))
and L,,+1 = D. We have seen that the filtration on L,,1; is the order filtration on D, shifted
appropriately and we have to determine this shift. It is the sum of the length of the Euler-Koszul
complex (i.e.,, n + 1) and the degree (with respect to the grading of R for which deg(dy,) = 1) of
Ext’y ™ (S,wgr). The latter is equal to m, which is the first component of the difference between
the canonical degree of R (i.e., £4) and the canonical degree of S (i.e., (1,0)). Hence the filtration
on Lyyy1 i8 Fe_(nym+1)D. Now by definition (see, e.g., [Sai94 page 55]), we have

D(Mz, Fo) = H™ ' Homp ((Le, FF*), (D @ Q3T Fo_o(minyD ® (Q7THY))
and this implies the formula for FPDM 1
3. We will consider the 8;01-saturation of the filtration steps Fj,M 3. More precisely, consider again

Mz[031] := D[8;,)] @p My,

FkMg[(');Ol} =250 6;0j16::(Fk+ng). Then we easily see that

and the natural localization morphism loc : M i— M 5[8;01]. Put

FiM (05,11 = Im (95, C[Ao, A1y Am] (031, 05, O, s -, 03, On,, ) i M (051
The filtration F.Mg[a)fol] induces a filtration G4 on Z/W\%” = F(f, ./T/l\%"c), with
Gk]T/[\%‘)C =Im (2 "Clz, AT, AR (20, ,20y,,,2%0.)) in J\/foc

Hence we obtain a filtration G4 on the sheaf ./(/l\ffc and we have GOM\I;{C = /}0‘3, as required.

Moreover, z*- Gpﬂfzoc = Gp,k./(/l\li’c, and it follows from theorem [2.14f that O¢_x g0 ®oq, s,

Goﬁ/l\%’c, and hence all O¢_ 50 ®0q, s, GP/T/I\%’C are Og_go-locally free. Notice however that
G, is in general not a good filtration on M%"C, as 8ZGkMifc C Gk+2M%"C whereas 6AinM1%"C C
Gk+1legc.

A

Concerning the filtration G2, notice that due to the definition of Fj, M 5[8;01], the strictly filtered

e

resolution of (M 3z, F,) from part 2 from above yields a strictly filtered resolution of the filtered
module (M 5[8;01], F M 2[6;01])’ and the dual complex is then also strictly filtered and defines a
filtration G2 on D(M g[@{ol]), which is nothing but the 8/\_01—saturation of the dual filtration F?

from point 2. from above. Hence we obtain a filtration Go by Oc¢, xs,-modules on ]D)/T/l\g = /\//\l%)’g).

4. This is a direct consequence of 2. and 3.
O

As a consequence, we obtain the existence of a non-degenerate pairing on the lattice OMI%OC considered
above.

Corollary 2.19. 1. There is a non-degenerate flat (—1)"-symmetric pairing

. A floc * A floc
P (omxsg ©00, s, M ) ® (Omsg ©0c, s, MY ) = O eso-
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2. We have that P(OMEC,OMEC) C 2"Oc¢_xs,, and P is non-degenerate on Oczxsg’ ®Oc, x5, 0/\/1%00,
i.e., 1t induces a non-degenerate symmetric pairing

/\lNoc loc
-npj. A A
[z7"P]: |Og0 ®og, . Oji/l\llfc ® |Og0 ®og, . 0/(/1\%‘”] — Ogo.
Proof. 1. The statement can be reformulated as the existence of an isomorphism

. ~ —~ *
. loc = * loc
R (Oc;xs‘f ®0¢, x5, M3 ) — (Oc;txsg’ ®0c, xs, M3 )

where (—)* denotes the dual meromorphic bundle with its dual connection. We deduce from
[DS03, lemma A.11] (see also [Sai89, 2.7]) that D(Og: x50 ®oq, s, M%’C)(*({O,oo} x S89)) =
(/(20: xS9®0¢, x5, ./T/l\%’c)*. On th/e\other hand, theorem , 2. gives an isomorphism Og: » 5000 s,
lec = 'D(O¢s x50 ®0c, x5, Mi‘gc) so that the latter module is already localized, i.e., equal to

((’)@:X 59 ®0c, x5, ./(/l\lf“)*, which gives the existence of the isomorphism v from above.
2. We have seen in point 1. that the duality isomorphism
¢ =21 FLy (M y)[r '] — FLY) (DM 3)[7 7]
yields an isomorphism

(U (OC:XS? ®oc, xs, M%m) — (OC;‘_XS? Q0c, xs, lec)
of meromorphic bundles with connection. Now it follows from [Sai89) formula 2.7.5] that we have

1 Aloc _ D 1 7(0,0),loc
HOmOszsg (Oczxsg’ ®0c, vs, GrRMF aoczxsg> = Ocixs9 @0c, w5, GrpmiayM5 .

Hence by proposition 2.18] 4. from above we conclude that 1 sends the module

1 loc 1 qloc
Oc. x50 ®0c, xs, GoMZ* = Oc. x50 @0c, x5, M

isomorphically into

A floc
%m@czxsg (Oczxsg ®0c, x5, G-nM7 a@czxsg>

_ Al
= zn’Homo 2 x50 (O@z x 59 ®OCZ %5, G()Mfc’ O@z ng)

C

— n A loc
= =z HOmOCZXs? ((9(Dz><5§J ®OCZ><SI O'Mg 7OCZ><S[1)) ’

which is equivalent to the statement to be shown.

3 D-modules with logarithmic structure and good bases

In this section we apply the results of section |2 to study hypergeometric D-modules on a subtorus of
the m-dimensional torus S;. We suppose that our vectors a,,...,a,, are defined by toric data. In this
situation, the subtorus is defined as Sy := Spec C[L], where, as before, L is the module of relations
between a4, ...,a,,. Following standard terminology, we call this torus the complexified Kahler moduli
space of X5;,. We will consider a subfamily of Laurent polynomials of the morphism ¢ : So xW — C; xW
from the last section, parameterized by Sy and we will show that the associated Gaufl-Manin system also
has a hypergeometric structure.

For a good choice of coordinates on S; embedding it into some affine space C", we will construct an
extension of this hypergeometric modules to a certain lattice with logarithmic poles along the boundary
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divisor €"\S2. This “D-module with logarithmic structure” will play a crucial role in the next section:
on the one hand, we will see that it equals the so-called Givental connection defined by the quantum
cohomology of the variety Xs,, on the other hand, we will use it to construct logarithmic Frobenius
structures and express the mirror correspondence in terms of them. For that purpose, we will show that
this logarithmic extension is still a free module, and can be extended to a family of trivial bundle over
P! x C” (or at least outside the locus where the family of mirror Laurent polynomials is degenerate) on
which the connection extends with a logarithmic pole at infinity. This structure is the key ingredient to
construct a logarithmic Frobenius manifold, this will be done in section [4]

3.1 Landau-Ginzburg models and hypergeometric D-modules on Kahler mod-
uli spaces

We briefly recall the situation considered in the beginning of the last section, with the more specific
assumption that now the input data we are working with are of toric nature. Hence, let again N be a
free abelian group of rank n which we identify with Z" by chosing a basis. Let ¥4 C Ng = N ®@ R
be a fan defining a smooth projective toric weak Fano variety Xs5;,. We write X 4(1) for the set of rays

(i.e., one dimensional cones) of ¥ 4, we will often denote such a ray by v;. As before, a,...,a,, are the
primitive integral generators of the rays vy, ...,v,, in X 4(1). Consider the exact sequence
0— L 2z2Wxgzm A N (6)

Applying the functor Homy(—, C*) yields
1 — Sy = Spec C[N] = (C*)"* — (€*)®aM = (¢")™ 4 Gy := Spec C[L] 2 LY @ C* — 1. (7)

The middle torus (C*)*4() is naturally dual to S; = Spec C[\, ..., \E], however, we will from now on
identify both (as well as the corresponding affine spaces W and W), so that we denote (C*)*4(1) also
by S7. Notice that the composition of the first map of the exact sequence with the open embedding
(C*)™ < €™ is nothing but the map k from proposition which was shown to be closed. Recall
that for smooth toric varieties, LY equals the Picard group Pic(Xy, ). Inside Ly, := LY ® R we have the
Kihler cone Ky, which consists of all classes [a] € Ly, such that a, seen as a piecewise linear function
on NR (linear on each cone of 3 4) is convex. The interior ICOEA of the Kéhler cone are the strictly convex
piecewise linear functions on Ng. Write D; for the torus invariant divisors of X5, associated to the ray
generated by a;, then the anti-canonical divisor of Xy, is p = > .~ [D;] € L. Recall that Xy, is Fano
resp. weak Fano iff p € ICOZA resp. p € Kx,. We will choose a basis of LV consisting of classes p1, ..., D
(with » = m—n) which lie in Ky, and such that p lies in the cone generated by p1, ..., p,. This identifies
So with (C*)", and we write ¢1, ..., ¢, for the coordinates defined by this identification.

The next definition describes one of the main objects of study of this paper.

Definition 3.1. Consider the linear function W = wi + ...+ wy, : S1 — C;. The Landau-Ginzburg
model of the toric weak Fano variety Xs, is the restriction of the function W to the fibres of the torus
fibration q : S1 =2 (C*)™ — Sy = (C*)". We will also sometimes call the morphism

(W,q) : S1 2 (C*)™ —> €y x So = C; x (C*)"

a Landau-Ginzburg model. Notice that the choice of the basis p1,...,p, (and hence the choice of coordi-
nates on Sa) are part of the data of the Landau-Ginzburg model, which would otherwise only depend on
the set of rays (1), but not on the fan ¥ itself.

The choice of a basis pi,...,p, of LV also determines an open embedding S3 — C”. An important issue
in this section will be to extend the various data defined by the Landau-Ginzburg model of Xy, over the
boundaray divisor C™\S;. As a side remark, notice that the Kéhler cone of a toric Fano variety does
not need to be simplicial, the simplest example being the toric del Pezzo surface obtained by blowing up
three points in P2 in generic position. Hence the above chosen basis of L. does not necessarily generate
the Kéhler cone.

Using the dual basis (pg)azlw,r of L, the above map m is given by a matrix (m;,) with columns
m, and hence the torus fibration ¢ : (C*)™ — (C*)" is given by q(wi,...,wn) = (ga = WP =
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[T, wi™)ez1, .. We will also consider the product map (id,q) : PL x S; — P! x S5 as well as its
restriction to C% x S;. Choose moreover a section g : LV — Z™ of the projection Z™ —» LV, which is
given in the chosen basis p1, ..., p, of LY by a matrix (g;,) with rows g, so that > Giamib = Oqp. The
map g induces a section of the fibration g, still denoted by g, which is given as

g:SQ — Sl

((hv e 7%) — (w1 = ggi = H2=1 qaia)i:l,...,m

Obviously, g also gives a splitting of the fibration ¢, see diagram below. Let us notice that the section
g can be chosen such that the entries of the matrix g;, are non-negative integers. For this, recall (see,
e.g., [CK99, section 3.4.2]) the description of the Kéhler cone as the intersection of cones in LY ® R each
of which is generated by the images under Z™ —» LV of some of the standard generators of Z™ (the
so-called anti-cones associated to the cones o € ¥ ). Hence, the chosen basis (pg)q=1,.. , of LY which
consists of elements of Ky, can be expressed in the generators of any of these cones, and the coefficients
are exactly the entries of the matrix (g;,), hence, non-negative. It follows that the section g : So — 51
extends to a map g : C" — W = Spec Clwy, ..., wy], although the projection map ¢ : S; — S3 cannot
be extended over the boundary |J~,{w; = 0} C W. In what follows, we will always assume that g is
constructed in such a way. .

Write S9 := ¢71(SY) = {(q1,---,q) € So|W := D", ¢%y% is Newton non-degenerate }. Finally, we
define g = (id,, g) : PL x Sy — PL x 1, which is a section of the above projection map (id., q).

Proposition 3.2. The embedding g is non-characteristic for /\//\llfc on PL x SY. Moreover, the inverse

image ﬁ“'ﬂ%’c is given as the quotient of D¢ x s, [T‘l}/f, where I is the left ideal generated by

7[171 K lifl T
0, .= H qbe® H H (Z Miq2qa0q, — VZ) — H g W H H (Z Miq2qq0q, — VZ)
a:pq(1)>0 :l; <0 v=0 a=1 a:pa(1)<0 i:1; >0 v=0 a=1

for any 1 € L and by the single operator

20: + Y p(p)da0s, -

a=1
Notice that p, is a linear form on 1L and that we have Z;’;l Giali = Z,-J, Gia(mappp(1)) = pa(l) € Z.

Proof. The non-characteristic condition is evident as the singular locus of M%’C, seen as a Dp1 g, -module

is contained in ({0,000} x S1) U (P! x (S51\S?)). In order to calculate the inverse image, consider the
following diagram

S (8)

SO X S2 ul SZ

(ylv"'vynuqlv"'vqr)! (qlv'”vq’r)

where the coordinate change ® is given as

As the diagram commutes, the g-component of ® 1 is g, = w™e. Putting P Sox Cr xSy — C; xS,
(y,7,q) = (7,®(y, ¢)) and similarly 7 : So x C; x S2 = C; x Sa, (y, T, q) + (7,q), we consider the module
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&er\fgc which is (using the presentation /\//Y%"C = Df[Tfl]/f”) equal to the quotient of Ds,xc, x5, [T}
by the left ideal generated by

l;—1

I %0 = H 2O T (S iz uda, — v2) — T T1 (S Miazudy, — v2)

a:pa(1)<0 i:1;<0 v=0 i:1;>0 v=0

E = 20.+ ZZ=1(Z;‘11 mia)‘]aaqa =20, + ZZ=1 P(pZ)Qaaqa

In other words, we have

C[zi,yf, . ,yff,(ii e 7(]Ti~]<8z,8ql, oy 0q,)
(OpeL + E

T4+ % qloc
MY =

Obviously, the map g is given in the new coordinates by g(7,q) := (7,1,q9) € C; x Sp x Sa, hence we

obtain N
C[Ziaql g aQT ]<827aCI17 . aaqr>
(e + E

~+Aloci
grM3Z =

O

As a consequence of this lemma, and using the comparison result in theorem [2:4] we can interpret this
reduced GKZ-system as a Gaul-Manin-system.

Corollary 3.3. Consider the (restriction of the) Landau-Ginzburg model (W, q) : SY — C; x SY. Then
there is an isomorphism of D¢y s9-modules

De, xsglm /T = FL (HO (W, )+ Ogy))[r ]
Proof. First notice that due to diagram we have an isomorphism
HO(W,9)+Os0) = H (W, 7)1 Og,550)5
recall that

Wiwo=3oet =3 (T ) (1T ).

Consider the following cartesian diagram

So X SS SO X S(l) (9)
@'::(Wﬂr) @
idg, ,
C, x SY (o) Uy =C; x 89

Now we use the base change properties of the direct image (see, e.g., [HTTOS8, section 1.7]), from which
we obtain that

(idct79)+7'lo(<ﬂ+osoxs?) = Ho(wﬁrosoxsg)-
This gives o o
FL, (ide,, 9) " H (04 Os,xs0)[r 1] 2 FL; HO (¢!, Ogys9)[7 1],

and as we have o o
FL7 ((ide )" HO(91 Osysp) ) = 7 FL H (94 Og, ),
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we finally obtain
~+ 7 | 0 -1 _ w77 Of, ./ —1
G FL] (HO(0405,xs0)) 7] = L (HO(¢, 05, x59)) I7 7,

from which the desired statement follows using proposition [3.2] and theorem [2:4]
O

As a consequence of the last result, we have the following easy corollary concerning the the family of
Brieskorn lattices resp. the holonomic duality for the Gaufi-Manin-system of the Landau-Ginzburg model

(W, q).

Corollary 3.4. 1. The D¢, g9-module Q/\/ljfc = O¢, x59 ®0c, x5, (D, x5, [7=1/Z) is equipped with
an increasing filtration Go by Oezxsg -modules. Moreover, for any k € IN, G Q/\/lllqi’C 1 Oczxsg‘

locally free of rank n! - vol(Conv(ay, . .., a,,)-

2. Write OQMI%"C for the Oczxsg -module G QMI%OC, then this is the restriction to C, x S of the sheaf

associated to the module N N )
Clz,q7 ..., q7)(20q,, ..., 20q,,2°0,)

(Oier + (220: + 301 p(pY)20a04,)

3. There is a non-degenerate flat (—1)™-symmetric pairing

l l
P QMY @ 1" QM — O 0.

4. P(OQ./\/IEC, oQ,/\/lx%OC) C ZnOszsg: and P is non-degenerate on OQM%OC,

Proof. As we have seen, the closed embedding §\Cz><5‘2] : C, x SY — C, x S is non-characteristic for
Oc. x59 ®0c, x5, J(/I\ZAEC. It is actually nothing else but the inverse image in the category of meromorphic
bundles with connections. Hence the increasing filtration Og_ g0 ® (zf'o/\//\lllfc) on ./\//Y%’c by locally free

Og, x so-modules pulls back to an increasing filtration G4 on Q/\/l%"c by locally free O  g9-modules, the
zeroth term of which is given by the formula in 2. All other statements follow from proposition O

3.2 Logarithmic extensions

In this subsection, we first construct a logarithmic extension of the hypergeometric system Q/\/l}fc on
the Kihler moduli space. Recall from the last subsection that S§ is a Zariski open subspace of Sy :=
Spec C[L] consisting of points ¢ such that the Laurent polynomial W (—,q) : So — C; is non-degenerate.

Recall also that we have chosen a basis p1,...,p, of LY of nef classes, i.e., classes lying in the Kéhler
cone K C Ly,. The corresponding coordinates on Sy are ¢i,..., ¢y, and define an embedding of Sy into
Cr.

Write Ag, := S5\S5 and denote by Ag, the closure of Ag, in C". Finally, put S9 .= C"\Ag,. We will
write Z, for the divisor {g, = 0} in both C" and S9, and we define Z = J.,_, Z, which is a simple
normal crossing divisor in C” resp. S9.

Lemma 3.5. 1. The origin of C" is contained in 578
2. If X5, is Fano (i.e., p € ICOEA), then Ag, = 0, and, hence, Sig =C".

3. If Ag, # 0, then there is a ball B := B,.(0) C (S9)*" with radius equal to r := inf{|q| : ¢ & Ag,}.
We set B := (C")*" if Ag, = 0.

Proof. 1. This has been shown in [[ri09al, appendix 6.1].
2. This follows from lemma 2.8l

3. This is clear from 1.
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We proceed with a construction which is a variant of the arguments used in the proof of theorem
however, now we also take into account the logarithmic structure along Z. We first define the appropriate
non-commutative algebras, and then show that they are actually locally free O-modules, possibly after
a further restriction to some Zariski open subset of S9.

Definition 3.6. 1. Consider the ring
R:= Clq1s- -+ qr, 2){2q104q, » - - -, 2Gr 0y, , 220,)

i.e., the quotient of the free Clqi, ..., qr, z]-algebra generated by 2q1 0y, , - - ., 2q,0,,, 220, by the left
ideal generated by the relations

[anaqu’ Z] = 0; [ZQaaqaaqb] = 6abZQaa [22827 Qa] = 0; [22627 Z] = ZZa
[analhﬁqua(%} =0, [22827 anaqa,] =2 2Ga0q,

Write R for the associated sheaf of quasi-coherent O¢_ xcr-algebras, which restricts to Dexxs, on
{(Qa # O)azl ..... 27 O}'
We also consider the subring R := Clgi,...,qr,2)(2010q,, . . ., 24+ 0q,) of R, and the associated

sheaf R’. The inclusion R' — R induces a functor from the category of R-modules to the category
of R'-modules, which we denote by For,25_ (“forgetting the 220,-structure”).

2. LetT be the ideal in R generated by the operators EL for anyl € L and by 220+ . _, p(p.)2qa0y,
and consider the quotient R/Z. We have For,29_ (R/I) = (R//(ﬁg)geL) and R/ equals OQ/\/I%"C on
C, x Sy (and hence equals Q,/\/l%oC on C: x Sy).

The basic finiteness result about the module (QMj5 is the following.

Theorem 3.7. There is a Zariski open subset U of@ containing the origin in C" such that the module
0@Mj = Oc.xvU @0c, wor R/T is Oc,xv-coherent. If X, is Fano, i.e., if p € K°(X4), then one can

choose U to be C" (which equals S in this case).
There is a connection operator

V1 gQMg — 0QM; ® 27 'Q¢_y (log ({0} x U) U (C. x Z)))
extending the Des x (Uns,)-structure on (Q/Vlfc)\C:x(Umsz)-

Proof. The arguments used here have some similarities with the proof of theorem We first suppose
that X5, is Fano, then we have to show that QM5 is O¢_xcr-coherent. We will actually show the
coherence of For,2p (0QMy), which is sufficient, as QM7 and For,2p, (0QM3) are equal as Oc, xcr-
modules. Consider the natural filtration on R’ given by order of operators, i.e., the filtration F.R' given
on global sections by

FiClqr, .-, qr, 2|{zq10q,, . - -, 2¢40y,.) := S P| P = Z 9s(2,9)(2q104,)°* - ... - (2¢:0,,)°"
ls|<k

This filtration induces a filtration Fy on For,24_ (OQMK) which is good in the sense that

FyR' - FiFor,2p_(6QMj5) = Fj.iFor.25. (0QM5).

We have a natural identification _

gr.F(R/) = W*Ocsz*CT(log D)
where T*C" (log D) is the total space of the vector bundle associated to the locally free sheaf Q¢ (log D)
and 7 : C, x T*C"(log D) — C, x C" is the projection. It will be sufficient to show that the subvariety

C. xS of C, xT*C"(log D) cut out by the symbols of all operators EL for [ € L equals C, x C", then by
the usual argument the filtration F, will become eventually stationary, and we conclude by the fact that
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all FFor,25_ (OQ/\/lA«) are Og, xcr-coherent. For the proof, we will use some elementary facts from toric
geometry, namely, the notion of primitive collections and primitive relations (see [Bat91] and [CvR09)).
Suppose that [ € L corresponds to a primitive relation in the sense of loc.cit., then it follows that
pa(l) >0foralla=1,...,r, as a primitive relation lies in the Mori cone of Xs;, and as p, is a nef class,
i.e., by definition it takes non-negative values on effective cycles. On the other hand, as Xy, is Fano, we
have that [ = p(I) > 0, remember that p = >_/" | D; is the anti-canonical divisor which by definition lies
in the interior of the Kéhler cone. Hence, E“po l; > Z“KO —I;, moreover, for a primitive relation, we
have I; = 1 for all ¢ such that I; > 0 (see [Bat91l proposition 3.1]). This yields

@)= 1] (Z miacr(zqaaqa)),

:l;=1 \a=1

Now identify T*C"(log Z) with the trivial bundle C" x X where X is the vector space dual to the space
generated by (0(2¢q0q,))a=1,...,-- Then the last equation shows that the variety S alluded to above is of
the form C" X Y;..q, for some possibly non-reduced subvariety Y C X. We need to show that Y,..; = {0}.
First it is clear that Y is homogeneous so that it suffices to show that its Krull dimension is zero. Recall
from [Ful93], section 5.2, page 106] that the classical cohomology ring of Xy, with complex coefficients

is presented as
C[(Ui)izl,...,m]

(7 aivi)p=1,...n + (Uz'l et Uz'p)
where the tuple v;,,...,v;, runs over all primitive collections in ¥4(1). However, it follows from the
exactness of the sequence @ that the spectrum of this ring equals the above subspace Y, in particular
the latter must be fat point, supported at the origin in the space V. This shows that the variety S is
the zero section of T*C" (log D), as required.

Now suppose only that X5, is weak Fano, i.e., p € Kx,. Then it may happen that for a primitive relation
1, we have [ = p(1) = 0, which implies that

O'(E]L): ﬁqga(l) H ( T miao'(zqaaqa)) — H <zr:mia0'(zqa8qa)>,

i:l;<0 \a= ;=1 \a=1

H*(Xy,,C) = (10)

as pq(l) > 0 for any primitive relation . This shows that the fibre of S over the point ¢ =0,...,¢, =0
is again the reduced space of the spectrum of the cohomology algebra of Xy, , i.e, it is only the origin
in the fibre of T*C"(log D) over ¢ = 0. In particular, the projection map S — C" is quasi-finite in a
Zariski open neighborhood U of 0 € €”. On the other hand, by its very definition, S is homogeneous
with respect to the fibre variables. Hence on U, S is the zero section of the projection T*U (log D) — U,
as required.

The statement concerning the connection follows directly from the definition of (QM7z, namely, ( QM7 is
invariant under the operators V.5, fora=1,...,r and V 25_. O

The next step is to discuss the restriction (QQMZ)‘CZX{q:Q}, this is a coherent O¢_-module that we
denote by E. It turns out that it is actually locally free, from which we deduce the freeness of QM3
and certain extension properties of the pairing P from corollary [3.4] 3.

Lemma 3.8. 1. There is a canonical isomorphism
a:0¢. ® H*(Xs,,C) — E,

hence, E is Oc¢_-free of rank p:=n!-vol(Conv(ay,...,a,,)). It comes equipped with a connection

Ve F—-FEQ® 27200132
induced by the residue connection of V on (0QM3)|cx x{q=0} along Ui _1{q. = 0}.

Leti: C, — C, x U be the inclusion and write 7 : i_l(OQ/\/lg) — F for the canonical projection.
Let F = 7 (Clzq10qy 5 - - - , 2Gr04,.]) C E, where we denote abusively by Clzq10y,, . - . , 2¢;0,,] the sheaf
associated to the the image of this ring in I'(C, x U, (QM3z). Then o(l ® H*(Xx,,C)) = F.

The restriction E|,—g = (0QM3)|(0,0) 15 canonically isomorphic, as a finite-dimensional commuta-
tive algebra, to the cohomology ring (H*(Xs,, C),U).
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2. 0QMy is O¢, xu-free of rank p.

3. Write QMy for the restriction (0QMj)|cxxu- Then for any a € {1,...,r}, the residue endomor-
phisms 29,04, € Endo,,. ((QMZ)IC:X{Q}) = E\¢: are nilpotent.

4. There is a non-degenerate flat (—1)"-symmetric pairing P : QMz ® t* QM3 — 2"O¢_ v, i-e., P
is flat on CX x (UNS2), and the induced pairings P : (:QMz/z-0QM7)® (0QMz/2-0QM5) — 2" Oy
and P : (0QMz/qa - 0QM3) @ " (0@QM5/qa - QM) — 2"Oc, xz, are non-degenerate.

5. The induced pairing P : E @ *E — 2"Og¢_ restricts to a pairing P : F' x F — 2"C. The pairing
z7™P on F coincides, under the identification made in 1., with the Poincaré pairing on H*(Xs, , C)
up to a non-zero constant.

Proof. 1. In order to construct the map « notice first that we have
l;i—1 .
[ia, 50 IL20 ey Mia20ady, —v2z) i pa(l) > 0foralla=1,...,7

— — 7[1'71 T .
(DL) om0} [l coll =0 (ami Mia2qa0y, —vz) ifpa(l) <Oforalla=1,...,r
0 else
Hence we obtain the following isomorphimsm of O¢_-modules

Clz, 2104y, - - -, 2G+0y, ]

({(ﬁl)l{q_o} |1 € Bffy, mL})

where EﬁXzA C Lg is the Mori cone of X5,. Notice that if [ € Leg := EffXEA N L, then any

E = (Forzzaz <OQM<Z))|CZ><{Q:Q} o~

)

follows (see, e.g., the discussion in [CK99, 3.4.2]):

Effx,, = Y Co, (11)

c€X A(n)

(Ifll> P contains [],; <o(>r_; miazq.0,,) as a factor. The Mori cone can be characterized as
q=0 = -

where C,, is the cone generated by elements [ € I with [; > 0 whenever R>oa; is not a ray of o.
It follows that whenever [ € Leg\{0}, then the set {a; |l; > 0} cannot generate a cone in X 4, for
otherwise —[ would also lie in EPEXEA, and thus [ = 0. As a consequence, for any [ € L.g\{0}, the

element (ﬁi)\{ng} contains a factor [],c; (31 Mia2¢ady, ) where Y, R>oa; ¢ Xa.

Now consider the case where [ is primitive, in particular, [ € Leg. Then (ﬁi)\{ng} is equal to
[Tic;h—i Miazqad,, ), where {a;|i € I} is a primitive collection. As any set of rays {a;|j €
J} which does not generate a cone contains a primitive collection, we conclude from the above
discussion that F is equal to

C[zv Z‘haqlv ) ZQTaqr]

({(ﬁl){q_o} | { primitive })

where the index set I in the denominator of the right hand side runs over all subsets of {1,...,m}
such that {a; |7 € I} is a primitive collection.

Now to define o we use again the presentation of H*(Xs,,C) from formula (I0). We conclude
from the above discussion that putting a/(v;) := > _; Mia2¢a0y, yields a well-defined map O¢, ®
H*(Xs,,C) — E, which is obviously surjective. We have seen in theoremthat 0@M7 is coherent,
and its generic rank is that of Q/\/lllql’c, i.e., p. On the other hand, O¢, ® H*(Xy,,C) is O¢,-free
of rank p, hence by semi-continuity and comparison of rank, we obtain that « is an isomorphism.
Then we also have that a(H*(Xx,,C)) = F. The pole order property of the connection operator
V"% on E follows from the pole order properties of V on (QMj as stated in theorem

C[ZQIaqu R ZQTaqr]
(Hief(ZZ:1 miazqdaqa))j ’

~Clz]®
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2. This is now a standard argument: For any I C {1,...,r}, put Z; := (),.; Za and consider the

acl
restriction (0QMj)|cs xz,, Where Zf := ZI\ (UJDI Z]) This restriction is equipped with the
structure of a Dex x z,-module, so that it must be locally free. Hence it suffices to show freeness of
0@M7 in a neighborhood of 0 € C. x U. But this is clear after from point 1.: The dimension of
the fibre at 0 is n! - vol(Conv(ay, . .., a,,)), which is also the rank on C, x S9. Hence it can neither
be smaller nor bigger at any point in a neighborhood of the origin in C, x U.

. Using the isomorphism « from 1., the residue endomorphism [2¢,0,,] equals Idp,, ® (D, U —) €
&ndoy. (E|c:) from which its nilpotency follows easily.

. Using the Og, xy-freeness of QM5 and point 5. above, this can be shown by an argument similar
to [HS10, lemma 3.4]. Namely, consider the canonical V-filtration (denoted by Vs ) on C__),/\/l%"C along
the normal crossing divisor Z. Then the last point shows that we have Vg QM%"C = OMj (recall
that QM is the restriction of QM to C; x U), hence, gry (QMy) = (QM)|cx x {0} This implies
immediately (see [HS10l proof of lemma 3.4 and formula 3.4]) that P extends in a non-degenerate
way to QM7. Hence we obtain a non-degenerate pairing on the restriction (6QM7)(c. xv)\({0}x 2)-
However, as {0} x Z has codimension two in C, x U, P necessarily extends to a non-degenerate
pairing on (@QMj3, as required.

. The non-degenerate pairing P : £ ® (*E — 2"Og, restricts to a pairing P : F' x F' — 2"Oc¢,.
Let us show that it actually takes values in 2z"C on F. Set r; = dimH?(Xs,,C) and choose a
homogeneous basis

wl,o = 1,w1,1, .. ~;wr1,1a .. .,wlwn,l, e ,wrn_lyn,l,wl,n

where w; € H**(Xs,, C) and which is adapted to the Lefschetz decomposition. Recall that the
Hard Lefschetz theorem says the following:

H™(Xs,,C) =@ L'H"*(Xs,,C),

where H" *(Xy,, C), = ker(L*+1 : H""*(Xy,,C) — H"*+2(Xy,, C)) and the map L is equal to
cup-product with ¢1(Xs, ). It follows from equation [12] that
Tk+1
Z2Vy. Hwi ) =k - wi g + 2 21 OmikWmk+1 for k<n,
m=

T€ES,q
2V, H(win) =n-win,

where O, ; k == (AO)W, with u = m—&-Zf:l rpand v = i—&-Z;:ll r; and Ay is the matrix with respect
to the basis wy g, ..., ws,y of the endomorphism —¢; (X, )U. The first claim is that P(w; x, w;;) =

Cikj12" T with ¢ € C. Using the fact that P takes values in 2"Oc, on E, this implies in particular
P(w; k, wj;) =0 for k+1 < n. We have

20, P(w1 n, w1 n) = 2nP(w1 n, w1 ) € 2"O¢, ,

thus it follows that P(wy ,,w1,,) = c-2?" for some ¢ € C. Now assume that we have P(w; s, wjt) =
Cisjtz* T for ¢;50 € Cand s+t > d+ 1. We have for k+1=4d

Tk+1
20 P(w; pw;1) = Pk wik + =D Omi kW hy1), w5,0)
z m=1
Ti+1

1
+ P(wi ke, L wj + ;( z_:l O, j,l Win,i+1))

d

= (k+)P(wi g, wji)+c-z* forsome ceC,

where the last equality follows from the inductive assumption for d + 1 and d + 2. Thus we have

(20, — d)2P(wi,kwj7l) =0,
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which shows P(w; pw;;) —c- 2% € z4C. This shows the first claim, i.e. P(w; g, wj) = cijklzk"’l for
k+1>mnand P(w;,w;;) =0 for k+1<n.

As a second step we want to show P(wj i, w;,;) = 0 for k41 > n. We prove this by descending induc-
tion, beginning with the case k41 = 2n. We first introduce some notation. We say w; j is primitive
if it is not of the form —c;(Xs;, ) Uv for some v € H**72(Xy,, C). We say qw; € H*724(Xy,, C)
is a ¢g-th primitive of w; j, if (—¢1(Xy,))9U qw; & = w; ;. The Hard Lefschetz Theorem tells us that
for 2k > n the element w; j, is never primitive.

As the base case we have to prove P(wy n,w1,,) = 0. Let jw; , be a first primitive of wy ,. We
have

1
0= (20, — (2n—1))P(1w1 n,w1n) =P((n —1) - 1w1 pn,w1n) + P(;wlyn,wlyn)
+P(wipn, - win) — (20— 1)P1wt n, win)

1
:;P(wl,na wl,n) .

Now assume P(w; x,w;;) = 0 for k+1 > s+ 1. We will prove P(w; x,w;;) = 0 for k+1 = s by
descending induction on k. Notice that by (—1)*-symmetry we only have to prove this for k& > I.

The base case is to show that P(w1 ,, w; s—n) = 0for j € {1,...,rs_y} (recall that n+1 < s < 2n).
We have to distinguish two cases:

I. case: w; s_p is not primitive. Thus there exists 1w, s—, wWith —c1 (X5, ) U1wj s—n = Wj s—pn. We
calculate

0= (20, — (s — 1)) P(w1,n, 1Wj s—n)
1
= P(n - win, 10j,s—n) + P(win, (s =0 = 1D1wjs—n) + P(win, ~wjs—n) = (s = P (w10, 10j5-n)

1
=~ P(win, Wjs—n)-

IL. case: wj s—y, is primitive. This means that
W s—p € H?* ?"(Xy5,,C), = ker (c1(Xs, )" 2Tt H* 2" (Xy,,C) — H" > 2(Xy,, 0)).
We have
0=(20. — (s = 1)) P(1w1,n, Wj,s—n)
=P((n—1) - 1w1pn, Wj,s—n)+ P(%wl’n,wﬁs,n) + P(1win, (s —n) - wjs—pn)

1
+PGw1n, —(=e1 (X)) U wjs—n) = (5 = DP(wi0, Wj,s—n)
1 1
=P(Cwin, Wjs—n) + Pliwin, —(=e1(Xs,)) Uwjs—n)
which gives P(w1 5, wj s—n) = P(1w1,n,c1(Xs,) Uw; s—pn). Notice that 3n — 2s < n. Because w

has an n — th-primitive (this follows from the Hard Lefschetz theorem: ¢;(Xy,)" : H°(Xy,,C) —
H?"(Xs,,C)), we can repeat this step 3n — 2s + 1 times to get

P(wy,,, wjs—n) = P(n—2s41)W1n, (—c1(X5,))" " Uwj e n) = 0.

This shows the second case.

We now assume that P(w;,,w;j;) =0 for k >t+1and k+1 = s as well as P(w; x,w;;) = 0 for
k41> s+ 1. We have to prove P(w; s, wjs—¢) = 0 for i € {1,...r4} and j € {1,...,r—s} and
t > s —t (the last restriction is allowed because of the (—1)”-symmetry of P).

29



I. case: wj s—; is not primitive: Thus there exists jw; ¢ with —c1(Xy,) U 1wjs—t = wjo—¢. We
calculate

0=(20, — (s — 1)) P(wi,t, 1wj s—t)
1
=P(t - wiy,1Wwjs—t) + P(;(_Cl(XEA) Uwi), 1Wjs—t) + Plwig, (s =t —1) - 1wj s—¢)

1
+P(w; ¢, ;wj,sft) — (s = 1)P(wst, 1wj,s—t)

1 1
ZP(;(—Cl(XEA) Uwi ), 1W0j,s—t) + P(wi, ~Wis—t)
1
:P ity _ Wys—t)-
(w it Z“’J, t)

Notice that P(c1(Xs,) U w;,, 1w s—¢) vanishes because ¢1(Xs,) U w; ¢ is a linear combination of
{wi 41} and P(w;41,1wj s—¢) vanishes for every i € {1,...,r41} by the induction hypothesis.

IL. case: wj —; is primitive. This means that
W st c H2572t(XEA’C)p = ker (Cl (XEA)n+2t72s+1 . H2572t(XZA’ C) _ H2n72s+2t+2(X2A ’ C)) .

Notice that w;; has a (2t — n)-th primitive and we have 2t — n > n + 2t — 2s + 1, because of
s > n+ 1. We calculate

0=(20, — (s — 1)) P(1wi 1, wj,s—t)
=P((t = 1) 100, w500) + P wiae) + Platwses (5 — 1) w50
P (11 (—ea(X6)) Ui = (5 = DP (1w w0t
=P wy-d) + Pl (—e1 (¥5,)) Uy

which gives P(w; ¢, wj s—t) = P1wit, (—c1(Xs,)) Uwj s—¢). As w; ¢ has a (2¢ — n)-th primitive we
can repeat this step n + 2t — 2s + 1 times to get

P(w; 4, wj s—1) = Plnyor—ast1Wi, (—e1(Xs, )" P25 U o y) = 0.

This finishes the induction over ¢. Thus we have shown that P(w;x,w;;) =0ifk+l=5s>n+1
and k > [. The case k <[ follows by symmetry and this finishes the induction over s. This means
that the pairing P : F' x F' — 2"O¢_ takes values in 2"C.

It remains to show that the pairing z~" P coincides, under the isomorphism a : 1@ H*(Xy,,C) — F
and possibly up to a non-zero constant, with the Poincaré pairing on the cohomology algebra.
First notice that by construction, z=™P, seen as defined on H*(Xs,, C) is multiplication invariant,
ie., P(a,b) = P(1,a Ub) for any two classes a,b € H*(Xy,,C). This can be deduced from the
flatness of P on Q/\/ljlfc, more precisely, by considering the restriction of P defined on the family
of commutative algebras ¢QM7/z - (QMj. Notice however that this argument holds a priori only
modulo z, and in order to obtain the multiplication invariance of z="P on 1 ®@ H*(Xs,,C) one
first needs to know that it takes constant values on that space. It suffices now to show that P(1,a)
equals the value of the Poincaré pairing on 1 and a. But as we have seen above, P(1,a) can only be
non-zero if a € H*"(Xy,, C), so that the P on H*(Xy,,C) is entirely determined by the non-zero
complex number P(1, PD([pt])).

O

Remark: The value of the pairing P at the point (0,0) € C, x U is determined, by the above argument,
up to multiplication by a non-zero complex number. In order to simplify the statements of the subsequent
results, we will without further mentioning assume that this number is chosen such that P corresponds
under the above identifications exactly to the Poincaré pairing on H*(Xy,,C). Such a choice is always
possible by changing the morphism ¢ : M3 = M;’Q) — DMz = MI(ZO’Q) from the proof of theorem
by multiplication by a non-zero complex number (and these are the only non-trivial morphisms between
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these two modules, due to [Sai0Il theorem 3.3(3)]).

We now show how to construct a specific basis of ( QM7 defining an extension to a family of trivial
P! parameterized by an analytic neighborhood of the origin in U and such that the connection has a
logarithmic pole at z = 0o. As already mentioned in the introduction, the method goes back to [Gue08§],
namely, we first construct an extension of E = (0QMj)c.x {0} to PL x {0} and then show that it can be
extended to a family of P'-bundles restricting to 0QM; outside z = co. At any point ¢ near the origin in
U this yields a solution to the Birkhoff problem (in other words, a good base in the sense of [Sai89]) of
the restriction of (OQM%"C)WZX{,J}, but it also gives an extension of the whole family ( QM3 taking into
account the logarithmic degeneration behavior at D.

Proposition 3.9. Consider the Oc,-module E with the connection V™2 and the subspace F' C E from
lemma[3.8

1. The connection operator V™% : E — 272 . E sends F into 2 ?F ® z~! - F.

2. Let E = Opix oy - F' be an extension of E to a trivial Pl-bundle. Then the connection V™% has
a logarithmic pole at z = oo with spectrum (i.e., set of residue eigenvalues) equal to the (algebraic)
degrees of the cohomology classes of H*(Xx,,C). This logarithmic extension corresponds to an
increasing filtration Fy on the local system El‘avmﬂ by subsystems which are invariant under
the monodromy of V™*%. Let j. : C: < (PI\{0}), and put E>® := ’z,ZJTjﬂ!(E“”)‘%?’E, where
Y, is Deligne’s nearby cycle functor. Then F, is defined on E°°, and there is an isomorphism

~

HO(P!,E)=F — E>.

3. Write N, for the nilpotent part of the monodromy of (Q/\/II%"C)‘”"V around C: x Z,, then N, acts
on E* and satisfies NoFy C Fo_1.

4. The pairing P on E extends to a mon-degenerate pairing P : E R0, VB Opi(—n,n), where
Op1(a,b) is the subsheaf of Op1(x{0,00}) consisting of meromorphic functions with a pole of order
a at 0 and a pole of order b at co.

Proof. 1. Let wy,...,w, be a C-basis of F' which consists of monomials in 2g,0,,. We will show that
(2*V2 ) (w) = w - (Ag + 2Ax), (12)

where Ag, Asw € M (puxp, C) and that the eigenvalues of A, are exactly the set (counted with multi-
plicity) of the (algebraic) degrees of the cohomology classes of Xy, . First notice that under the iden-
tification of H* (X, , C) with the quotient C[(v;)i=1,....m]/ ((3ieq akiVi)k=1,....n + (Viy = .. - v3,)) in
formula , aray v; is mapped to the cohomology class in H?(Xx,, , C) of the torus invariant divisor
it determines.

From the definition of OQ/\/I%"C we see that

res,q

(Z2VZ )(quia%i)ki = (2282’) ’ (quia%i)ki

(2qv,0g,, )™+ (220:) + ki - 2+ (201,04, )™

(13)

= > p(Pa)29a0q, | - (quiaq&i)ki +ki-z- (quialIbi)ki

a=1

Hence A, is diagonal with eigenvalues equal to the algebraic cohomology degrees of H*( Xy, , C).

As a by-product of the above calculation, we also see that the endomorphism of FE/z- E represented
by the matrix Ag is the multiplication with —c¢;(Xs,), and hence, is nilpotent. With a little more
work, this shows that V"4 has a regular singularity at z = 0 on E. However, as we are not going
to use this fact in the sequel, we will not give the complete proof here. In any case, we see that
[Aso, Ao] = Ao.
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2. Formula and formula show that the connection V'**4 has a logarithmic pole at z = oo on
E with residue eigenvalues equal to the algebraic cohomology degrees of the cohomology classes of
H*(Xs,,C). The correspondence between logarithmic extensions of flat bundles over a divisor and
filtrations on the corresponding local system is a general fact, see, e.g., [Sab02, III.1.ab] or [Her(2,

lemma 7.6 and lemma 8.14]. The isomorphism F' — E° is explicitly given by multiplication by
—Ae . 5—Ao
z sz A0,

3. We have seen in the proof of theorem 3.8} 4., that Ejcx = gry OM7 as flat bundles. N, naturally
acts on the latter one, and is flat with respect to the residue connection V™2 hence it acts on

E‘%Z’me and thus on E*°. Under the identification of 2., the filtration F, is induced by

Fp= Y C((2q105)" ... (24:05,)"") .

[k|>—p

Notice that the only non-trivial filtration steps are those for p € [—n, 0], which corresponds to the
residue eigenvalues of 271V, -1 = —2V, on E at z = oo (see formula above). By definition, N,
seen as defined on F' is simply the multiplication by 2q,0,, , from which it follows that N, Fe C Fe_1.

4. This follows directly from lemma , 4. and from the definition of E.
O

The next result gives an extension of QM5 to a family of trivial P'-bundles, possibly after restricting
to a smaller open subset inside U.

Proposition 3.10. There is an analytic open subset U° C U still containing the origin of C" and a

holomorphic bundle O/Q\/\/lg — PL x U° (notice that here ~ signifies an extension to z = oo, this should
not be confused with notation for the partial Fourier-Laplace transformation used before) such that

1. (0QMz)c. xvo = (0QMF")|c. xuo
2. (6QMz)p1xioy = E

3. O/Q,\/\/lg is a family of trivial PL-bundles, i.e., 0?2,/\\/15 = p*p. (O/Q\Mg), where p: PL x U® — U is the
projection.

4. The connection V has a logarithmic pole along Z on 0@;, where Z is the normal crossing divisor
({z =00} UUoi{ta = 0} NP x U°.

5. The given pairings P : QM7 @ 1" 0QMz — 2"O¢.xv and P : E@opl E (’)]pi(—n,n) extend to

a non-degenerate pairing P : 06,/\\/1; Ko L*Oé/\\/lg — O]pion(—n,n), where the latter sheaf is

Pl xuU0

defined as in point 4. of proposition[3.9

6. The residue connection
AV ()Q//\\/lA'/T . oé,/\\/lg — O/Q\Mg/T : ()Q//\\/tg ® Q}oo}XUO(IOg({OO} X Z)).

has trivial monodromy around {oo} x Z and any element of F C H°(PL x U°, O/Q\/\/lg) is horizontal
for V.

Proof. Recall that QM7 is the restriction of ( QM5 to C; x U. The strategy of the proof is to show that
there is a holomorphic bundle QM on (P1\{0}) x B (where B is the analytic neighborhood of 0 € C”
which was defined in lemma which is an extension of (QM%H)\Ci «B over z = 0o with a logarithmic

pole along Zan (P!l x B) and such that the bundle obtained by gluing this extension to QM7 is a
family of trivial Pl-bundles, possibly after restricting to some open subset P! x UY of P! x B.

A logarithmic extension of (QMI%OC)%EX(BQSSH) over 27" N (PL x B) is given by a Z"!-filtration on
the local system £ = (Q/\/lzlg"c)‘m’V which is split iff the extension is locally free (see [Her02, lemma
8.14]). In our situation, the bundle QM7 already yields a logarithmic extension over C¥ x Z and we are
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seeking a bundle Q/\\/lg — (P1\{0}) x B restricting to QMS"™ on €7 x B. Moreover, the Z"-filtration Py
corresponding to Q/\/l%" is trivial, as this bundle is a Deligne extension due to lemma 4. Tt follows

that if we choose an extra single filtration Fy on £ (this will be the one which define the extension oM Y
over {z = co}), then the corresponding Z"+!-filtration 151 = (F,, P,) will automatically be split. Write
L for the space 1 (1q, (- .. (¥, (1L) . ..))), where j : C; x (U\Z)*™ — (PL1\{0}) x U i.e., L is the
space of multivalued flat sections of Q/\/ljl-fc. The basic fact used in order to construct F, is that we have

L>® =), jr <(QA/1%”)IYDT.’:X%{ Q}) This is again due to lemma 4. More precisely, we have already seen
that VOQMI%"C = OMy, ie., grg (QM3) = (QMy)(cs x {0} = Ejc:, where V, is the canonical V-filtration
on Q/\/l}fc along the normal crossing divisor Z, and then the statement follows from the comparison

theorem for nearby cycles.
Now we have already constructed an extension of (QMj)|cxx (o} to (PI\{0}) x {0}: namely, the chart

at z = oo of the bundle F from proposition and we have seen in point 3 of this proposition that it

is encoded by a filtration F, on 1 j,, ((QM%TL)‘Y;:ZE{O}). Hence we obtain a filtration Fy, on L that

we are looking for. As explained above, this yields a split Z"t!-filtration ]31 giving rise to a bundle
OM; — ((P1\{0}) x B) with logarithmic poles along Z%* N (P! x B), and by construction this bundle

restricts to QMz on Ci x B and to EI(Pi\{O})X{Q} on (P1\{0}) x {0}. Hence we can glue Q//\\/lg and
4" on C} x B to a holomorphic P} x B-bundle. Its restriction to P} x {0} is trivial, namely, it is the

bundle E constructed in proposition As triviality is an open condition, there exists an open subset
(with respect to the analytic topology) U® C B such that the restriction of this bundle to P! x U, which
we call O/Q\/\/lg, is fibrewise trivial, i.e., satisfies O/Q,\/\/lg = p*p*o@\/\/lg. This shows the points 1. to 4.

Concerning the statement on the pairing, notice that the flat pairing P defined on L gives rise to

a pairing on ¢;jr ((QM%,I)%;X’E{Q}) Then the pole order property of P on E at 2 = oo can be

encoded by an orthogonality property of the filtration F, with respect to that pairing (the one defined

on Y jr ((Q/\/l%")‘%?f{g})) see, e.g., [Her03 theorem 7.17 and definition 7.18]. Hence the very same

property must hold for P and F,, seen as defined on L°°, so that we conclude that we obtain P :
OQ//\\/IA ®0p1 o L*()Q//\\/lg — Op1xyo(—n,n), as required.

Finally, let us show the last statement: It follows from the correspondence between monodromy in-
variant filtrations and logarithmic poles used above that the residue connection V™7 along z = oo
on Q/Q-\MA”/Z_lo/QA\/lA” has trivial monodromy around Z if for any @ = 1,...,r, the nilpotent part N, of
the monodromy of V on the local system (QMY)V kills gr,’, i.e., NoFe C Fo_i. Now by the above

identification, we can see F, as defined on v, j, ((Q/\/l%")‘%fsf{o}) and then N,F, C F,_1 has been
shown in proposition 3. It follows directly from the above construction that all elements of F, seen

as global sections over PL x U are horizontal for V77, O

Remark: If the algebraic subset Ag, = S5\SY, i.e., the subspace on which the Laurent polynomial
W(—,q) : So — C; is degenerate, is a divisor, then additional monodromy phenomena may occur. For
this reason, the bundle 0@M 5 cannot in general be extended as an algebraic bundle over a Zariski open
subset of P! x U. Such an extension a priori can only be defined on some covering space of a Zariski
open subset of P! x U. The choice of this covering space depends on the structure of the fundamental
group of U, which is not a priori known. We therefore restrict ourselves to the construction of an analytic
extension parameterized by the ball B. Notice however that if Xy, is Fano, then O/Q/\\/lg exists as an
algebraic family of P-bundles on some Zariski open subset of C".

At this point it is convenient to introduce the so-called I-function of the toric variety Xsx,. We follow
the definition of Givental (see [Giv98]), and relate this function to the hypergeometric module Q/\/léf’c
discussed above.

Definition 3.11. Define I resp. I to be the H*(Xs,,, C)-valued formal power series

T o ([D] +v2) _
I=¢%. L. p=_o0 H*(Xs,, O)[2[[q1, -, ¢ ]lllz7  te, - oo 1]
L%;q 21;[1 T (D] +ve) € H*(Xs,,C)[]lq )l Il
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resp. I = 2=P-z"-I. Here we have set ¢- = I, qﬁ“(l) and (t1,...,t.) are the coordinates on H*(Xs,, C)
induced by the basis (p1,...,pr) of LY which were chosen at the beginning of subsection . Notice that
§ =3 _, tapa is a cohomology class in H*(Xx,, C). Later we will set q; = €' fori=1,...,r. As before
p= Zz:l[ ;] € LV is the anti-canonical class of Xs,, and we write p € Aut(H*(Xs,, C)) for the grading
automorphism which take the value k - ¢ on a homogeneous class ¢ € H**(Xs,, C).

We collect the main properties of the I-function that we will need in the sequel. Most of the statements
of the next proposition are well-known, but rather scattered in the literature.

Proposition 3.12. 1. We have

—l

I=T(TXy,) €277 (14)
21T, D L)
where T(T Xy, ) == [1-, T'(1 + D;). Moreover,
e ¥ 1,20 e T e H'(Xs,,O)llq1,- ... qr, 2], (15)

that is, these series are univalued and have no poles in {z = oo} U, _,{g. = 0}.

2. I has the development
I=1+7(q,....q) 2 " +o(z)

where v =5+ 7' (q1, ..., q) lies in § + H*(Xs,,C)[[q1,- - .,q]]. If Xs, is Fano, then v = 0.

3. There is an open neighborhood S of 0 in €™ such that both e=%/% . I and 2P -e~° - T are elements
in H*(Xy,,C) ® O%’;Xs*, where S* := SN SY. In particular, if we put k = q - e’ then k lies in
(OFM)" and defines a coordinate change on S. Notice that in the Fano case, k is the identity, in
general it is called the mirror map. It will reappear in theorem[{.7 and proposition [{.10

4. Write  : (C?;/S*)a" — (€2 x §*)* for the universal cover, then for any linear function h €
(H*(Xs,,C))Y, we have

holeHO ((CQ/S*)“",W*SOZ'(QMECD — HO ((C?X/S*)a”, T Homp, . (QM, 0@:x5*)>

5. Forallh € (H*(Xs,,Q))Y, ifho]v: 0, then h = 0, in other words, I yields a fundamental system
of solutions of (QMfc)\®¢xS*~

Proof. 1. From 2" -§/z =482 and 2 - D;/z = D; - z" we deduce

z -z”-]zzﬂ’.eé.qu .ﬁngz—mz([Di]JrV)

leL i 1L 2 ([Di] +v)
265-27P~ZQL.H I'(Di+1) ) L(Di+1)- Hul+lz (Di+v)
leL S0 P(Di+1)- [T, z(Di+v) 1,<0 I'(D; +1)
m 1
=¢. —p.HF( Z ,H _ z
€z q .
P A ST +1) LT L+ 1)

The identity [[;~, [(D; + 1) = ['(T'Xs;, ) yields

-

I=T(TXs,) € 277y
ST D+l+1)

For the second point, notice first that

—1

L
~ - i
I F(IXZ)'B(S'Z P . E: _ ’
LELNEf xy, Hi:lI (Di +1;+ 1)
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where again EffXEA C L denotes the Mori cone of classes of effective curves in Xy,,. Indeed, we

0 _70
gz vanishes in H*(Xy,, C).

m
Assume the contrary, and first notice that for 1 < 0 the factor is divisible by D;. For

0o _30
=t

IT72, D(D:+12+1)

will see that for any 1° outside Leg = LNEf X4 0 the term

F(Di+lg+1)

to be non-zero, there must be a maximal cone ¢° containing the set of all a; such

10 10

that 19 < 0, as otherwise the term Hi:l?<0 D; which occurs as a factor in W_ﬂoﬂ) is zero
in H*(Xg,,C). We use again (see formula (11])) that Effxg, = > ,es,(n) Cor Where Cy is the
cone generated by elements [ = (ly,...,{y) with I; > 0 whenever R>og,; is not a ray of 0. Thus
"€ C,o C Effy;,, , which shows the claim. Now remember from the proof of theorem that
for all [ € Leg we have | > 0 as Xy, is weak Fano, hence, 2! has no poles at z = co. Moreover,
by the same argument p,(l) is non-negative for [ € L.g, which gives that ¢! has no poles along
Ur_,{qs = 0}. Hence we obtain e=%/% . T, 2 . =9 = H*(Xs,,O)lq1,---,qr, 271

. After what has been said before, it is evident that the I-function can be written as

om H3:700 (D]
/Z.qu.z—l.H 3 E[D]:Zg

1ELoge i1 [ o

Let us calculate the first terms in the zil—developmenic of this expression: The constant term
can only get contributions from elements [ € Leg with [ = 0. The zero relation [ = 0 gives the
cohomology class 1, on the other hand, for any [ # 0 with [ = 0, there must be at least one

- oo (2 +)

i€ {1,...,m} with I; < 0, and then constant coefficient in the product W gets a

factor v = 0, i.e., is zero. By a similar argument, the coefficient v of the z~'-term cannot have
a H°(Xs,, C)-component. One also sees immediately that v has no components in H>?(Xs,, C).
Hence we are left to show that v(¢1,...,¢.) =3 ++'(q1,---,¢). We have

_ o ([g] +y)
I=(1+6/z+0(7") LEEL;HQ 'En;__m(wz””)

For the coefficient v, we have a contribution from the §/z-term in the first factor, and if Xy, is
Fano, this is the only term as then [ > 0 for all € Leg\{0}. In the weak Fano case, any [ € Leg\{0}
with [ = 0 give some extra contribution from the [D;]/2z-terms, but this part is multiplied by ¢ ,
i.e., a univalued function in ¢, ..., ¢q,.

. As a first step, we show that there is a constant L > 0 such that for any « = (21,...,2,,) € C™,
the expression

7 r Pa(l)
-1 Hafl a
ZH” mz+l+1) Zz T2, D +1; + 1)

1E€Lest 1€Legs i=1

is convergent on {(2,q1,...,q-) | |2| > 1,|qa] < L} N C: x S9. Using [BHO6, Lemma A.4] we have

_ HT qga(D _ »
P a=1 < A(z)(4m)MI . g=tog 243 -1 pal)-log |4a
Hz 1 (ml + l )

Let € > 0, the series is absolutely and uniformly convergent if

IZ]| - log(4m) —1-log |2| + Y pa(l) - logaal < —el|l (16)

a=1

for all [ € Leg. This gives the condition

1-log 2| +Zpa —log ga|) > (e + log(4m)) - ||1]]
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Let [|M|| be the norm of the matrix (mjq). For |z] > 1 and g € S§ we have

I log\2|+zpa —log [qal) >Zpa —log |qal)

ZZpa<z>-a=rgnpr<—1og\qa|>z” a1 mmin (=1og o)

where we have used Y. _; miapa(l) = 1; and p,(l) > 0 for [ € Leg. Thus condition is satisfied
for

max lqa] < e~ [1M|[(e+log(4m)) _. I
a=1,.r

T, Fensn On S =A{(zq,-a) | 2] > 1,lgal < L} N
C: x S9. From the nilpotency of the operators D;U € End(H*(Xs,, C) we see that

L
This shows convergence of >, I =
e

—1

ZH11 D+l+1)

1€Lets

€ H*(Xs,,C) ® 0.

For the readers convenience, we recall next how to derive the identities

OuI) = 0 VieL
) (17)
(282 + 2221 p(pz\z/)qaaqa) (I) = 0
Write ‘il‘) = lil_o — Iil'*'0 where
~ (lo) _l?_l
Uo = I e II 11 (D a=1Mia?qa0q, — V)
N a:pq (19)>0 :19<0 v=0
0 o=
= —pa(l 4 r
05 == I @™ T (X mia2aady, — )
- a:pa (1°)<0 i:19>0 v=0

Using the fact that zqaaqal = 2(pa + pa(l fwe get

0 r pa(l) -1
-7 = R #(1°) 10 L [lomy @ -2
=t e 3 (e 1 T ooen) el
lel \a:p, (l°)>0 i:19<0 v=I19+1 ?
Pa(lJrl ) Pa () _Z*ifzmgkol?

[L. 1L (<o 9a
=T(TXs,) € -2 P01 el
! L%; [0 co D(Di + L+ 17 + 1) - [l 50 D(Ds + 1 + 1)

a() pa(l-1°) | 0501

Ha:pa (H>0 qg : Ha pa (1)<0 da
ieL Hi:lg<o DD+ 1+ 1) - [Lgso T(Di + 1 — 19 +1)

=I(TXg,) € 27"

0 T Pa(l) —1
- S o) 1 L oo aa"” -2
=TT | ] a H S 1L il [LT(D;+1; +1)
LEL \aip,(1°)<0 2:19>0 v=1-19 v

=OpT (18)

which shows [J;(I) = 0. The second one of the equations (I7) follows from

(zaz + Zp(pav)qaaa> I= ((—p D+ p(p!)(pa +pa(l))> I=0

a=1 a=1
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Now we conclude by a classical argument from the theory of ordinary differential equations (see, e.g.,

[CL55, Theorem 3.1]): Fix ¢° € S§ with |¢3| < L, then I(27,¢°) satisfies a system of differential
equations in z~! with a regular singularity at z~! = 0. Hence I (271, go) is a multivalued analytic
function on all of €7 x {g,}, that is, I is (multivalued) analytic in C* x S*, with S = {geC gl <

—d/z

L}, this implies the statement on e T and 2# - e=% -1 and obviously also the convergence of

the coordinate change x.
4. This is a direct consequence of the equations .

5. We follow the argument in [BHO6, proposition 2.19]. Let h € (H*(Xs,,C))Y\{0} be given, and
let ¢ = p’fl -...-pkr € H*(Xy,,C) be a monomial cohomology class of maximal degree such that
h(c) # 0. Consider I as a multivalued section of the trivial bundle H*(Xy,,C) x (C: x §*) —
C* x S*, then as e~? - Iis univalued, the monodromy operator M, corresponding to a loop around
qq = 0 sends I to €2™P= . [, Hence we have

(log(M1)* o ... olog(M,)*) h(I) = h((2mi)" - p§* ... pf" - 1),

and it suffices to show that the right hand side of this equation is not the zero function as then
h(I) itself cannot be identically zero. We have

T -1 IN(TXs,) € B
h(pkl'-“'Pv’fr‘I): ql'Zl'h<pk1~...-pI,f“ ™ A sz P
1 le;eff ' Hi:l I'(Ds +1; +1)
The contribution of [ = (0, ...,0) € Leg is

NTXs,) .
Bilpkr .  opkr. A EA) 5 —p) = h(kl.._..kr.é._p)
(pl yu H:il F(DZ T 1) e z D1 yus (& z

= n(ph Pk (149).
where ¢ € H>%(Xs,, C)[log(2),10g(q1), - - - ,10g(gr)]. As h is zero on any cohomology class of degree
strictly bigger than p’fl oo phr we get h (plfl cephe (1T E)) # 0. On the other hand, this

term cannot be killed by a contribution from any I € L.g\{0}, as for such an I, ¢*® will have
positive degree.

O

As an easy consequence, we obtain the following interpretation of the I- resp. the I-function.
Corollary 3.13. For any homogeneous basis Ty, T1,...,Ts of H*(Xs,,C), write I = Zf:oft - Ty, so
that I, € H° ((Ci X S*)“”,W*SOZ'(QM%‘@) by proposition |3.12, 3. Moreover, (f(), ... ,fs) is a basis of

HO ((C?;/S*)‘m, F*&)l.(QMEC)) by proposition|3.14, 4. Using the natural duality

(75 wsirer) L (B (@55 DR evi))
% X S 2
= H° ((Ci x §*)*, w* Homp,, , 5 (Ocs x s+, QMIlZoc)) ’
let (f07 .. .,fs) c (HO ((C;;/S*)anﬂr* DR.(QMI%OC))>S+1 be the dual bas’is’ o
=" fro T € H ((C; % S°), Endgy oe o (QMF))
t=0

In particular, seeing I, (or, more precisely E(l)) as a multivalued function in Og:xs-, we obtain a
representation

IZZE(Zilvqla"WQT)'ft (19)
t=0

of the element 1 € Q/\/lffc, where fi are multivalued sections of the local system ((QM%"C)%‘ wge) Y-
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3.3 Logarithmic Frobenius structures

We derive in this subsection the existence of a Frobenius manifold with logarithmic poles associated to
the Landau-Ginzburg model of Xs,. This extends, for the given class of functions, the construction
from [DS03], in the sense that we obtain a family of germs of Frobenius manifolds along the space U°
from the last subsection, with a logarithmic degeneration behavior at the divisor Z. For the readers
convenience, we first recall briefly the notion of a Frobenius structure with logarithmic poles, and one
of the main result from [Rei09], which produces such structures starting from a set of initial data with
specific properties. In contrast to the earlier parts of the paper, all objects in this subsection are analytic,
unless otherwise stated.

Definition-Lemma 3.14. Let M be a complex manifold of dimension bigger or equal to one, and Z C M
be a simple normal crossing divisor.

1. Suppose that (M\Z,0,g,¢e, E) is a Frobenius manifold. Then we say that it has a logarithmic pole
along Z (or that (M, Z, 0, g, e, E) is a logarithmic Frobenius manifold for short) if o € Q},(log Z)®?®
Or(log Z), g € QY (log Z)®2, E,e € O(log Z) and if g is non-degenerate on Oy (log 7).

2. Alog-trTLEP (n)-structure on M is a holomorphic vector bundle H — PLx M such that p*p.H = H
(where p : PL x M — M is the projection) which is equipped with an integrable connection V with
a pole of type 1 along {0} x M and a logarithmic pole along (P x Z) U ({0} x M) and a flat,
(—=1)"-symmetric, non-degenerate pairing P : H @ 1*H — Op1yxp(—n,n).

3. Any logarithmic Frobenius manifold gives rise to a log-trTLEP(n)-structures on M, basically by
setting H := p*O(log Z), V := VEC — % o+ (%{ — V) %, where V€ is the Levi-Civita connection
of g on O(log Z), U := Eo € &nd(©(log Z)) and V := VLCE —1d € &d(©(log Z)) (see [Reild,
proposition 1.7 and proposition 1.10] for more details).

Under certain conditions, a given log-trTLEP(n)-structure can be unfolded to a logarithmic Frobenius
manifold. This is summarized in the following theorem which we extract from [Rei09 theorem 1.12],
notice that a non-logarithmic version of it was shown in [HMO04], and goes back to earlier work of
Dubrovin and Malgrange (see the references in [HMO04]).

Theorem 3.15. Let (N,0) be a germ of a complex manifold and (Z,0) C (N,0) a normal crossing
divisor. Let (H,0) be a germ of a log-trTLEP(n)-structure on N. Suppose moreover that there is a
global section & € HO(P! x N,H) whose restriction to {oo} x N is horizontal for the residue connection
VST oW/ TH - H/TH ® Q}m}xN(log ({oo} X Z)) and which satisfies the following three conditions

1. The map from ©(log Z)g — p«H)o induced by the Higgs field [zV,](§) : O(log Z) — p.H is
injective (injectivity condition (IC)),

2. The vector space p.Hq is generated by & 0,0y and its images under iteration of the elements of
End(p«H)p) induced by U and by [2Vx] € for any X € ©(log Z) (generation condition (GC)),

3. & is an eigenvector for the residue endomorphism V € Endo,__, . (H/27"H) (eigenvector condition
(EC)).

Then there exists a germ of a logarithmic Frobenius manifold (M, Z), which s unique up to canonical
isomorphism, a unique embedding i : N — M with i((M) N Z = i(Z) and a unique isomorphism H —
(idp1 x4)*p*Opr(log Z) of log-trTLEP (n)-structures.

Using proposition [3:10] we show now how to associate a logarithmic Frobenius manifold to the Landau-
Ginzburg model (W, ¢) of the toric manifold X, .

Theorem 3.16. 1. Let Xs, be a smooth toric weak Fano manifold, defined by a fan X 4. Let (W, q) :
S1 — €y x Sy be the Landau-Ginzburg model of X5, and let q1,...,q, be the coordinates on S

defined by the choice of a nef basis pi,...,pr of LY. Consider the tuple (()@A\/IE,V,P) associ-

ated to (W, q) by proposition . Then the corresponding analytic object ((@/\\/157V7P)‘m 15 Q
log-trTLEP (n)-structure on U%%".
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2. There is a canonical Frobenius structure on (U%%" x CF=" 0) with a logarithmic pole along (Z x
CH=",0), where, as before, Z =, _,{qa =0} C U%*" C C".

Proof. 1. This follows directly from the properties of oé\/\/lg, V and P as described in proposition
B.I0

2. We apply theorem to the germ (N,0) := (U%* 0) and the germ of the log-trTLEP(n)-
structure ((QMy, V, P)®". Define the section £ to be the class of 1 in FF C H°(PL x U, . QMjy),

recall that F =2 HO(P! x {0}, (Q//\\/lg)\ngx{g}) was defined as the subspace of £ = (QM3) ¢, x{0}
generated by monomials in (2¢,9y,)a=1,... The V"™ 7-flatness of € follows from proposition
6. Conditions (IC) and (GC) are a consequence of the identification of (QM7)(,0) With
H*(Xy,,C),U) (lemma 1.) and the fact that the latter algebra is “H?2-generated”, i.e., from
the description given by formula . More precisely, the action of the logarithmic Higgs fields
[2q.0,,] on H(PLE) =~ F =~ (0QM3)(0,0) correspond, under the isomorphism o from lemma
exactly to the multiplication with the divisors classes D, € H?(Xs,,C) on H*(Xg,,C), and
H?-generation implies that the images under iteration of these multiplications generate the whole
vector space (0QMj)|0,0)- Finally, condition (EC) follows from proposition 2. Hence the
conditions of theorem [3.15|are satisfied and yield the existence of a Frobenius structure on a germ
(N x C*~",0), which is canonical in the sense that it does not depend on any further choice, and

which is universal for chosen section ¢ by the universality property of theorem [3.15
O

Remark: It follows from conditions (GC) and (EC) that £ is a primitive and homogeneous section in
the sense of [DS03] (this notion goes back to the theory of “primitive forms” of K. Saito). In particular,
for a representative U%" of the germ (U%%" 0) and any point ¢ € U%%"\Z, the Frobenius structure
from theorem 2., is one of those constructed in loc.cit. It is a natural to ask the following

Question 3.17. Is the (restriction of the) Frobenius structure from above to a small neighborhood of

q € U%™\Z the canonical Frobenius structure of the map W(—,q) : So — C; from [DS03] (see also
[Dou09])?

Notice that for Xs5;, = P", it follows from the computations done in [DS04] (which concern the more
general case of weighted projective spaces), that this question can be answered in the affirmative.

4 The quantum D-module and the mirror correspondence

We start this section by recalling for the readers convenience some well-known constructions from quan-
tum cohomology of smooth projective varieties, mainly in order to fix the notations. In particular, we
explain the so-called quantum D-module (resp. the Givental connection) and the J-function. We next
show that the quantum D-module can be identified with the object o@/\\/lg constructed in the last section.
This identification uses the famous I = J-theorem of Givental and can be seen as the essence of the mirror
correspondence for smooth toric weak Fano varieties. As a consequence, using the results of subsection
we obtain a mirror correspondence as an isomorphism of logarithmic Frobenius manifolds.

4.1 Quantum cohomology and Givental connection

We review very briefly some well known constructions from quantum cohomology of smooth projective
complex varieties and explain the the so-called quantum D-module, also called Givental connection.

Definition-Lemma 4.1. Let X be smooth and projective over C with dimg(X) = n. Choose once
and for all a homogeneous basis Ty, T1, ..., Ty, Tri1,...,Ts of H>*(X,C), where Ty = 1 € H(X,C),

Ti,..., T, are nef classes in H*(X,Z) (here and in what follows, we consider without mentioning only
the torsion free parts of the integer cohomology groups) and T; € H?*(X,C) with k > 2 for all i > r. If
X = X5, is toric and weak Fano, then we suppose moreover that T; = p;, i.e, that the basis Tp, ..., Ts

extends the basis of LV = H?(Xg,,C) chosen at the beginning of section , We write tg, ..., ts for the
coordinates induced on the space H**(X,C). We denote by (—,—) the Poincaré pairing on H**(X,C)
and by (T*)k=o...s the dual basis with respect to (—,—).
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1. For any effective class 3 € Hz(X,Z)/Tors denote by Mg, 5(X) the Deligne-Mumford stack of
stable maps f : C — X from rational nodal pointed curves C to X such that f.([C]) = [B]. For any
i=1,...,n, let w; be the relative dualizing sheaf of the “forgetful” morphism 7 : Mo pni1,5(X) —
Mo .5(X) (i.e., the morphism forgetting the i-th point and stabilizing if necessary) which represents
the universal family. Define a Cartier divisor L; := x}(wx) on Mo n 5(X), where x; : Mo, 5(X) —
Mo ni1,8(X) is the i-th marked point, and put 1; = c1(L;).

2. For any tuple ay, ..., o, € H**(X,C), let

[Mo,n,p(X)]07*

(@/}ilah .. ,1/)3L”Oén>0’nﬁ = / 1/1? evi(a;)U... U 1/); evy, ()

and put {ai,...,an)onp = (War, ..., ¥0an)ons- Here ev; : Monp(X) — X is the i-th evalua-
tion morphism evi([C, f, (x1,...,2n)]) := f(x;) and [Mon,g(X)]"""" is the so-called virtual funda-
mental class of Mo,n,5(X), which has dimension dimc(X) + [;e1(X) +n—3. (a1,...,an)on,p i
called a Gromov-Witten invariant and (Yi*ay,. .., a,)on 5 is a Gromov-Witten invariant with
gravitational descendent.

3. Let a,y,7 € H*(X,C) be given, write T = 7' + & where § € H*(X,C) and 7" € H°(X,C) ®
H>2(X,C). Define the big quantum product to be

1
Qor7y = Z Z a<0{,’7,7‘,...,T,Tk)o’n+3’ﬁTkQ'B

BEEftx n,k>0 n—times

RIG) )
= > > — (7,7 T Tiomss sTFPQP € H¥(X,C) @ C[[f])[[Effx]]  (20)
BEEfx n,k>0 ' Y

n—times

where Effx is the semigroup of effective classes in Ho(X,Z), i.e., the intersection of Ho(X,Z.)
with the Mori cone in Hy(X,R). Notice that in order to obtain the last equality, we have used the
divisor axiom for Gromov-Witten invariants, see, e.g., [CK99, section 7.3.1].

The Nowikov ring C[[Effx]] was introduced to split the contribution of the different 5 € Effx,
as otherwise the formula above would not be a formal power series. However, if one knows the
convergence of this power series, one can set Q@ = 1.

4. Suppose that as before a,y € H?*(X,C) and that § € H?(X, C). Define the small quantum product
by

axsyi=> > P a,y,Ti)ossT"Q € H*(X,C)® O x ¢ [Effx]].
k=0 BEEfx

As we have seen, the quantum product exists as defined only formally near the origin in H?*(X, C).
However, we will need to consider the asymptotic behavior of the quantum product in another limit
direction inside this cohomology space. For that purpose we will use the following

Theorem 4.2 ([Iri07, theorem 1.3]). The quantum product for a projective smooth toric variety is
convergent on a simply connected neighborhood W of

{r=7+5€H*(X.C)|RE(8) < —M Vp € Bifx\{0}, ||r']| < M}

for some M > 0, here || -|| can be taken to be the standard hermitian norm on H**(X, C) induced by the
basis Ty, ..., Ts.

If o and ~ are seen as sections of the tangent bundle of the cohomology space, we also write a o y for
the quantum product, which is also a section of TH?*(X, C).

The next step is to define the Givental connection, also known as the quantum D-module. For a smooth
toric weak Fano manifold, this is the object that we will compare to the various hypergeometric differential
systems constructed in the last section from the Landau-Ginzburg model of this variety.
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Definition-Lemma 4.3. 1. Writep: PLx W — W for the projection, and let F*9 := p*TW be the
pull-back of the tangent bundle of W. Define a connection with a logarithmic pole along {oo} x W
and with pole of type 1 along {0} x W on F'9 by putting for any s € H(PL x W, F9)

Vs = Vi - LT
(21)
Vs = L (E2 4 ()

z

where p € Ende(H?* (X, C)) is the grading operator already used in deﬁnitionm

£

is the so-called Euler field which is defined by > . _ kT, = c1(X) and where Vresz T s the
connection on TW defined by the affine structure on H?*(X,C). Notice that by its very definition,
the residue connection of VE™ along z=1 = 0 is V™% ' whence its name. We have that (V &%)?

0, and this integrability condition encodes many of the properties of the quantum product (most
notably its associativity, which is expressed by a system of partial differential equations, known as

Witten-Dijkgraaf- Verlinde- Verlinde equations). We sometimes use the dual Givental connection,
which is defined by V" := 1*V % recall that 1(z,t) = (—z,1).

2. Define the pairing
P Fb9 @ Fb Op1xw(—n,n)
(22)
(a,0) — 2"(a(z),b(—2))

3. The tuple (F**9, V% P) is a trTLEP(n)-structure on W in the sense of [HMOJ, definition 4.1]
(i.e., the non-logarithmic version of definition-lemma 2.). We call it the quantum D-module
or Givental connection of H**(X,C).

4. Write W' .= {r € W|7' = 0} and let ]-' = p*"(TH?**(X, C)|W/) We equip F with a con-
nection and a pairing defined by formulas (21)) and ( . Then (F,V%" P) is a trTLEP(n)-
structure on W' C H?(X,C), which we call the small quantum D- module. We have (F,VE% P) =
(‘FbigavaaP)HPiXW"

Next we show that the small quantum D-module can be considered in a natural way as a bundle over
the partial compactification of the Kahler moduli space that we already encountered in the last section.

Lemma 4.4. 1. Consider the natural action of 2miH?*(X,Z) on H**(X,C) by translation. Then
the set W is invariant under this action. Write Vy for the quotient space, and m : W — Vj
for the projection map. Then there is a trTLEP(n)-structure (G, V%% P) on Vy such that
¥ (GY9, VO P) = (Fb9 VG P). (G VG P) is also called quantum D-module of X.

2. The algebraic quotient of H*(X,C) by 2miH?(X,Z) is the torus Spec C[H*(X,Z)], which we call
So to be consistent with the notation of the previous section in case that X is toric weak Fano.
Then the small quantum D-module descends to Vj = S§" N'Vy, i.e, there is a vector bundle G
on P x V{, a connection V& and a pairing P such that (G, V", P) is a trTLEP(n)-structure
on V§ and such that 7 (G,V%" P) = (F,V%" P), where 7 : W' — V{ is again the projection
map. We also call (G,VE" P) the small quantum D-module. Obviously, we have again that
(g,vGiv, ) (gbzg va )\]P1><V'

If X is Fano, then (G,V 9", P) has an algebraic structure, i.e., it is defined as an algebraic bundle
over P x Ss.

Proof. The first statement and the first part of the second one are immediate consequences of the divisor
axiom already mentioned above. If X is Fano, then as |, 5 c1(X) > 0 for all 8 € Effx, for fixed n only
finitely many Gromov-Witten invariants can be non-zero, this implies the algebraicity of G. O
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Corollary 4.5. Using the choice of the nef basis Ty,..., T, of H*(X,Z) (consisting of the classes
P1y---,pr €LY if X = X, is toric weak Fano), we obtain an embedding H*(X,C)/2miH?*(X,Z) — C",
with complement a normal crossing divisor Z = J._,{qa = 0}, if o = €' for a = 1,...,r. Denote
by V' the closure of the image of Vi under this embedding. Then there is an extension (G,V ", P) of
(g, \ASH P) to alog-trTLEP(n)-structure on V'. Moreover, consider the partial compactification

V = {(t07q17"'7q7“at7‘+17"'7t8} | Hg” < e_M7 ||(t07t'r+1u”-7ts)” < e_M}

c H'X,0)aC a,., H*(X,C)

of Vo, then there is a structure of a logarithmic Frobenius manifold on V restricting to the germ of a
Frobenius manifold defined by the quantum product at any point (to, qi,- .., qr,trs1,---,ts) € HO(X,C)®
H*(X,C)/2miH*(X,Z) & P-4 H?!(X,C).

Proof. Both statements follow from [Rei09] section 2.2, proposition 1.7 and proposition 1.10]. O

4.2 J-function, Givental’s theorem and mirror correspondence

In order to compare the quantum D-module G to the hypergeometric system O/Q\/\/l 7 from the last section,
we will use a particular multivalued section of G, called the J-function. Givental has shown in [Giv9Sg]
that I = J for Fano varieties and that equality holds after a change of coordinates in the weak Fano
case. We use this equality to identify the two log-trTLEP (n)-structures and deduce an isomorphism of
Frobenius manifolds with logarithmic poles.

Actually, Givental’s theorem is broader as it also treats the case of nef complete intersections in toric
varieties, however, the B-model has a different shape for those varieties, the most prominent example
being the quintic hypersurface in P*. In this case (this is true whenever the complete intersection is
Calabi-Yau) the mirror is an ordinary variation of pure polarized Hodge structures, whereas in our
situation the Landau-Ginzburg model gives rise to a non-commutative Hodge structure as discussed in
section [5} We plan to discuss the relation between the B-model of a (weak) Fano variety and that of its
subvarieties in a subsequent paper.

We start with the definition of the J-function. It is convenient to introduce at the same time an
endomorphism valued series which is closely related J. We suppose from now on that X = Xy, is a
smooth toric weak Fano variety.

Definition 4.6. 1. Define a End(H*(Xs,, C))-valued power series in 2% t1,...,t, by

5 5 e T, ;
L(6, 2 (T,) := e /T, — Z B <,Tj> T/,
Z+ 1 0,2,8
BeBfixg \{0}
7=0,..., s
here the gravitational descendent GW-invariant (;ﬁ, 1)0,2,3 has to be understood as the formal

sum — Zkzo(_z)_k_lwlij, 1)o,2,6-
2. Define the H*(Xy,, , C)-valued power series J by

T, ,
J6, 2 Y i=et |14 e¥P) <3,1> T’
(6,271 > et N

BEBfx, \{0}

Notice that any product of cohomology classes appearing in the definition of L and J is the cup product.
Observe that L has the factorization L = S o (e=%/%) where S is the following End(H*(Xs,, C))-valued

power series
T .
S(6, 27 )(T,) =T, — > P <“ T > 77,
0,2,8

z+ 4’ J
BeBfixg \{0}
7=0,...,s
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The main tool we are going to use to identify the quantum D-module with a hypergeometric system
from the last chapter is the following famous result of Givental.

Theorem 4.7 ([Giv98|, theorem 0.1]). The coordinate change k from 3., transforms the I-function
into the J-function, i.e., we have I = (idg. xk)*J. In particular, it follows from proposition 3.
that J defines a (multivalued) holomorphic mapping from C, x S* to H*(Xs,,C). If Xs, is Fano, then
I1=J.

Denote by S the matrix-valued function which represents the endomorphism function S with respect to
the basis Ty, ..., Ts. Similarly, K; is the constant matrix representing the cup product with 7;, €; is the

connection matrix of @gﬁl’aqi and V the matrix diag(deg(Tp), ..., deg(Ts)). We have the following
Lemma 4.8 ([Iri06, lemma 2.1,2.2]). 1. The matriz-valued function S satisfies the following differ-
ential equations:

S
Zqz%—SKZ+QZSZO,

0 - 0
<22(‘3z + ;(deg qi)qiaqi> S+[V,S]=0.

2. The End(H*(Xs,,C))-valued power series S satisfies S*(8,271) - S(§,—271) = id, where (—)*
denotes the adjoint with respect to the Poincaré pairing. In particular S is invertible.

The main properties of the J-function and of the endomorphism function L are summarized in the
following proposition.

Proposition 4.9. 1. For any o € H*(Xy,,C), we have

VaGt’:’L-a = VglquL~a:O
@ZGZ%LL-Q = L-(zp—c1(Xg,)V) -«

2. The endomorphism-valued function L is invertible.
3. We have J = L™H(Ty) = Y.;_o(s¢, To) Ty, with sy = L(T}):
4. Both L and J are convergent on PL\ {0} x (S* NVy).

Proof. 1. The first formula can be found in [Pan98| equation (25)] and the second follows from lemma
by a straightforward calculation.

2. This follows from the second point of [£:8]
3. See, e.g. [CK99| lemma 10.3.3].

4. The multivalued functions (s;,Tp) are holomqrphic in C; x S* as this is true for J by theorem
and proposition [3.12] 3. Using the formula Vg’gq (s¢, T}) = (8¢, T, o T;) we conclude that s; is a

multivalued section of G which is holomorphic in C, x (S* N V{), because monomials of the form
T/ o...oT" are a basis of G in this domain.

O

Next we will define a twist of the endomorphism-valued function L to produce truly flat sections of the
Givental connection. Define L = Loz "0z’ = Soe %/%02 "0 2P, If we set 3, = L(T}), where as before
p=c1(Xs,) € H*(Xg,,C) = LV, then it is a straightforward computation to see that VE®3, = 0 for
t=0,...,s. As L resp. Lis invertible, we obtain that s; is a basis of multivalued flat sections.

We also need to define a twisted J-function, namely J := Zi:o STy = > o(5¢, To)Ty = L™ (Tp). This

yields, similarly to equation , the following formula

1=Ty= > Ji5 € H(C: x V3, G) (23)
t=0
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The following proposition uses all the previous results to identify the differential systems defined on both
sides of the mirror correspondence.

Proposition 4.10. Let Wy be a sufficiently small open neighborhood of 0 € C™*™ which is contained in
SNV NU%" gnd such that k induces an automorphism of Wy. There is an isomorphism

¢ (M) B, — (idp1 X#)*Gp1 s,
of log-trTLEP (n)-structures on W°.

Proof. Define a morphism of vector bundles with connection
o ((OQMg)fgzxwo,V) s (ide, xK)* (Gwzxwo, @G”)

1 — 1=T,

where the connection operator V on the left hand side is the one from theorem The first_task
is to show that ¢ is well-defined, i.e., that the following holds: Put Dz = (idg, XK)« Dl and E’

(idc, xk)«(220; + >0 _1 p(py)24a0y, ), then we have to show that

Ty(qr- -2 VS L. VG )(1) = 0 VieL
B (ql,...,qr,z Vs VG, L Vb, )(1) — 0.

Obviously, the objects on the left hand side of these equations are sections of (id¢, X n)*g‘cz <o, 1.e., they
cannot have support on a proper subvariety, hence, it sufﬁces to show that they are zero on C* x (WyNSY).
On that subspace we can use the presentation 1 =Y 7_ o Jt - 5; from equation (23)). As the multivalued
sections 3; are flat for V% it follows that we have to shovv that

ﬁz(ft) = O((idex xK)*Jy) E—

E'(J) = (220: + Xis, p(p)2040,,) ((ide; xk)*T) = 0.

This is obvious by theorem and by the equations in the proof of proposition Hence we
obtain that ¢ is a well-defined morphism of locally free sheaves compatible with the connection operators
on both sides.

Next we show the the surjectivity of ¢: As we are allowed to replace Wy by a smaller open neighborhood
of 0 € C", one easily sees that it suffices to show that ¢ is surjectiv on the germs at (0,0) of both
modules. Namely, we have flat structures on C* x (W N SY) and on C: x Z, for alla =1,...,r, so that
if ¢ is surjective at some point in C* x (Wy N SY) resp. at some point in C* x Z,, it will be surjective
on all of C: x (W N S9) resp. C: x Z,. By Nakayama’s lemma, surjectivity on the germs at (0,0) is
guaranteed once we have surjectivity at the fibre at (0,0), which is evident as both fibres are canonically
isomorphic to H*(Xs,, , C) (for G|(0,0), this isomorphism holds by definition, and for (0QM3)i(5,0)» this is
lemma 1.). Now by comparison of ranks, we obtain that ¢ is an isomorphism.

It remains to show that ¢ can be extended to an isomorphism of log-trTLEP(n)-structures on Wj.

@Gw
and g|®:x(WomS‘2’)'

) around Z, =

First notice that ¢ yields an identification of the local systems (Q/\/ll"c)lc* X (WonS9)

In particular, it follows then from lemma 3. that the monodromy of Q‘wa

X (WoNnSY
{¢a = 0} is unipotent (this can also be shown by a direct calculation). Hence by usir21g the the same
arguments as in proposition it suffices to identify the punctual trTLEP (n)-structures (Q//\\/IA')HPI x{0}
and aupl «{0}- We already have such an identification on C, x {0} by restricting the above isomorphism
¢ to €, x {0}. Moreover, consider a basis wy, ..., w, of (6@QM7z)c.x{0} as in the proof of proposition
1., which extends the basis To,T1,..., T, Try1, ..., Ts of H*(Xs,,C) = (6QM3)|(0,0)- Then by the
definition of the Givental connection and of the morphism ¢, the restriction ¢|¢_ {0} maps this basis is

toTy,....,Ts €G Ic.x {0} = ©7{_0Oc.T;- Remark also that the connection matrices in these babes of V on
(oM A)IC x {0} Tesp. VG on G (0,0) are equal, this follows from formula resp. formula . Hence
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¢ extends to an isomorphism of P!-bundles ¢ : (Q//\\/tg)upix{g} — Gpixqoy = ((idps X“)*a)mlx{o}’
compatible with the connections. By the same argument, this isomorphism also respects the pairiilgS]D
on both sides, as it restricts to the identity at z = 0.

As discussed above, we obtain from ¢ and ¢ an isomorphism
¢+ (0QMF) 1w, — (idp1 XK)*Gp1Lxw,
of log-trTLEP (n)-structures on W0, as required. O

As a consequence, we can now deduce an isomorphism of logarithmic Frobenius structures defined by
the quantum product resp. by the Landau-Ginzburg model (through the construction from subsection

of XEA~

Theorem 4.11. There is a unique isomorphism germ Mir : (Wy x C*~7,0) — (V,0) which maps
the logarithmic Frobenius manifold from corollary (A-side) to that of theorem (B-side) and
whose restriction to Wy corresponds to the isomorphism ¢ of log-trTLEP (n)-structures from above. In
particular, it induces the identity on the tangent spaces at the origin, i.e., on (H*(Xx ,,C),V).

Proof. This is a direct consequence of the uniqueness statement in theorem [3.15] using the last proposi-
tion. O

5 Non-commutative Hodge structures

In this section we will use the results from the previous parts of the paper to show, via the fundamental
theorem [Sab08| theorem 4.10], that the quantum D-module on the Kéhler moduli space underlies a
variation of pure polarized non-commutative Hodge structures. Moreover, we study the asymptotic
behavior near the large radius limit point and show that the associated harmonic bundle is tame in the
sense of Mochizuki and Simpson (see, e.g., [Moc02] definition 4.4]) along the boundary divisor. We start
by recalling briefly the necessary definitions.

Definition 5.1 ([Her03l definition 2.12],JHS10, definition 2.1],[KKPO08|, definition 2.7]). Let M be a
complex manifold and n € Z, be an integer. A wvariation of TERP-structures on M of weight n consists
of the following set of data.

1. A holomorphic vector bundle H on C, x M with an algebraic structure in z-direction, i.e., a locally
free Opgz]-module.

2. A R-local system L on C; x M, together with an isomorphism
iso: LOR O¢xpr = Hic

such that the connection V induced by iso has a pole of type 1 along {0} x M and a regular singularity
along {oo} x M.

3. A polarizing form P : L Q "L — i"Rxy pr, which is (—1)"-symmetric and which induces a non-
degenerate pairing
P:H®0c, 0 t"H — 2"Oc, x5

here non-degenerate means that we obtain a non-degenerate symmetric pairing [z~ "P| : H/zH %

We also recall the notions of pure and pure polarized TERP-structures.

Definition 5.2. Let (H,L,P,n) be a variation of TERP-structures on M. Write v : P x M —
P! x M for the involution (z,z) — (Z7',2) and consider v*H, which is a holomorphic vector bundle

over (P\{0}) x M. Define a locally free Op1C$-module H, where Op1C§} is the subsheaf of CBY, ),

consisting of functions annihilated by Oz by gluing H and v*H via the following identification on C% x M.
Let x € M and z € C} and define

c: H|(z7:v) — (’Y*H)Kz,w)

a +— V-parallel transport of z=" - a.
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Then c is an anti-linear involution and identifies H c:xnr with v*ch* <77+ Notice that c restricts to the
complex conjugation (with respect to L) in the fibres over S* x M.

1. (H,L,P,n) is called pure zﬁﬁ = p*p*ﬁ, where p : P x M — M. A wvariation of pure TERP-
structures is also called variation of (pure) non-commutative Hodge structures (ncHodge struc-
ture for short).

2. Let (H,L, P,n) be pure, then by putting
h:pH ®can pH — Cst
(s,t) — 27"P(s,c(t))

we obtain a hermitian form on p*’}/-l\. We call (H, L, P,n) a pure polarized TERP resp. ncHodge
structure if this form is positive definite (at each point x € M ).

Remarks: We comment on the differences between this definition and those in [HST0] resp. [KKPOS].

1. One may want, depending on the actual geometric situation to be considered, the local system L
to be defined over @ (as in [KKPO8|) or even over Z. This corresponds to the notion of real resp.
rational Hodge structures and to the choice of a lattice for them in ordinary Hodge theory.

2. The reason for considering TERP-structures, and not only ncHodge structures, which are pure
by definition (this condition is called opposedness condition in [KKPOS]) is that there are natural
examples of TERP-structures which are not pure (see, e.g., [HS10L section 9]).

3. A ncHodge structure in the sense of [KKP0S§| does not contain any polarization data. However, the
structures we are considering, i.e., those defined by (families of) algebraic functions are polarizable
in a natural way, so that it seems reasonable to include these data in the definition.

4. We did not put the Q-structure aziom from [KKP0§| in the definition of an ncHodge structure.
This property, roughly stating that the Stokes structure defined by the pole of V along z = 0 (in
case it is irregular) is already defined on the local system £, and not only on its complexification
L ®@r C was part of the definition of a mixed TERP-structure in [HS07]. It turns out that in some
situations (see, e.g., [Moc08al, section 8]), this property is actually something to be proved, which
is why we exclude this condition from the definition of a ncHodge structure. Notice however that
in the geometric situations we are studying, this condition will always be satisfied.

The following theorem is the first result of this section.

Theorem 5.3. The restriction to C, x (Wy N S9) of the quantum D-module G underlies a variation of
(pure) polarized ncHodge structures of weight n on Wy N SS3.

Proof. We will show that OQ/\/l%"C is a polarized ncHodge structure on S9, then the statement follows
from proposition m We first show that OQM%’C is equipped with structures as in definition that
is, that it underlies a variation of TERP-structures. Then we deduce from [Sab08] that this structure is

pure and polarized.
It follows from corollary that ()Q/\/l%oc is a locally free O¢_y sg-module, equipped with a connection

operator with a pole of type 1 along {0} x S9 and that moreover we have a non-degenerate pairing
P OQM%OC ® L*OQM}Z"C — 2"O¢_xsg- Recall also from the proof of theorem and of corollary

that the Dp; , gg-module QMY ®0 Op1 59 equals FL; (HO(W, 7)+Og0). Now the Riemann-Hilbert
correspondence gives DR®(H®(W, 7)+0g0) = PHOR® (W, )« Cgo, where PH* is the perverse cohomology

]P%XSQ

functor (see, e.g., [Dim04]). Hence DR®*(H(W, q)+Ogo) carries a real (resp. rational) structure, namely,
PHOR® (W, q)+Rgo (resp. PHOR® (W, q)*QS?). We then deduce from [Sab97, theorem 2.2] that the the
local system of flat sections of ((Q/\/lg’c)“”, V) is equipped with a real or even rational structure. One
could also invoke the recent preprint [Mocl0] and show that H%(W,q);Ogo is a R-(or Q-)holonomic
D-module in the sense of [Mocl0, definition 7.6}, which holds due to the regularity of H°(W, q)+(’)s(1). It
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then follows from loc.cit., section 9, that this real or rational structure is preserved under the standard
functors (direct image, inverse image, tensor product) in particular, under (partial) Fourier-Laplace
transformation (the elementary irregular rank one module has an obvious real /rational structure). Hence
FL, (HO(W, q)+Ogo) has a real (resp. rational) structure, which shows that OQMEC underlies a variation

of TERP-structures on S9.

It remains to show that this structure is pure and polarized in the sense of definition It is sufficient
to do this for the restriction (OQ/MEC)ICZX{Q} for all ¢ € S3. Write W, for the restriction W, prei(g)
q_l(g) — C4, then the restriction of the tuple (QM%"C,OQM%"C,P) to C. x {q} is exactly the tuple
(G, Gy, ﬁ) associated to W, which was considered in [Sab08, theorem 4.10], where one has to use the
comparison result [Sablll lemma 5.9] to identify (possibly up to a non-zero constant, see the remark
after the proof of lemma i the pairing P defined on OQMEC with the pairing P from [Sab08| theorem
4.10]. Then it is shown in loc.cit. that one can associated to (G, G, ]3) an integrable polarized twistor
structure, which means exactly that the variation of TERP-structures (OQMEC) |C. x{q} 1S pure polarized,
i.e., that it is a variation of (pure) polarized ncHodge structures. O

In order to state the second result of this section, recall the following fact (see, e.g., [HS07, lemma 3.12]).

Proposition 5.4. Let (H, L, P) be a variation of polarized ncHodge structures of weight n on M. Put
E = p*’}/-z, which is a real-analytic bundle equipped with a holomorphic structure defined by the isomor-
phism E =2 H/>H ®e,, C3, a Higgs field § := [2V,] € &ndo,, (H/2H) ® Q, and the hermitian metric
h from above. Then the tuple (E,0,0,h) (where O is the operator defining the holomorphic structure on
E) is a harmonic bundle in the sense of [Sim88].

Let (F,0,0,h) be the harmonic bundle associated by the last proposition to the ncHodge structure
OQM%"C on SY (resp. G on Wy N S9). The next result concerns the asymptotic behavior of E along the

boundary divisor Z = {J,_;{¢. = 0}.

Theorem 5.5. Put U := (U\Z)®" C S3*™. Then the restriction of the harmonic bundle (E,,0,h) to
U is tame along Z in the sense of [Moc02, definition 4.4].

Proof. Recall that the tameness property of a harmonic bundle defined by a variation of polarized
ncHodge structures can be expressed in the chosen coordinates ¢i,...,q,. as follows: Write the Higgs
field 0 € Endo, (H/zH) ® Qf as

= iead&
mp Ya

with 0; € &ndo, (H/zH). Then (E,0,0,h) is called tame iff the coefficients of the characteristic poly-
nomials of all 6; extend to holomorphic functions on U*". Now consider the locally free O¢_ xy-module
0@M; from theorem The connection

VM — QM5 ® 2714y (log ({0} x U) U (C. x Z)))

induces
0 = [2V] € Endoyan ((ngg)f{%}wm) ® Q. (log 2)

As ¢’ restricts to 6 on U, we see that if we write §' = S0, ‘i‘f}“, then ¢/, is the holomorphic extension
of 8, we are looking for. O
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