Exercises Algebraic Geometry Sheet 7 - solutions

1. Exercise: The Cremona transformation: Let $X \subset \mathbb{P}^{2}$ be given by $\underset{\sim}{X}=V(I)$ with $I=$ $(x y, x z, y z)$, i.e., $X=\{(0: 0: 1)\} \cup\{(1: 0: 0)\} \cup\{(0: 1: 0)\}$. Denote by $\widetilde{\mathbb{P}}^{2}$ the blowup of \mathbb{P}^{2} in X. Consider the morphism

$$
\begin{array}{lll}
f: \mathbb{P}^{2} \backslash X & \longrightarrow & \mathbb{P}^{2} \\
(x: y: z) & \longmapsto & (x y: y z: x z)
\end{array}
$$

Show that there is no morphism $F: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ with $F_{\mid \mathbb{P}^{2} \backslash X}=f$. Show moreover that there exists an isomorphism $\widetilde{F}: \widetilde{\mathbb{P}}^{2} \rightarrow \widetilde{\mathbb{P}}^{2}$ which extends f.
(a) Suppose that there would be an extension F of f to the whole projective plane. In particular, on the chart $\{x \neq 0\}, F$ would be an extension of the map $k^{2} \backslash\{(0,0)\} \rightarrow \mathbb{P}^{2}$ given by $(y, z) \mapsto(y z: z: y)$ to the origin in k^{2}. But then this map would send this origin to $(0: 0: 0)$ which is not a point of \mathbb{P}^{2}.
(b) It is a general statement on rational maps $f=\left(f_{0}, \ldots, f_{k}\right): X \rightarrow \mathbb{P}^{k}$ that they extend to a regular map $\widetilde{F}: \widetilde{X} \rightarrow \mathbb{P}^{k}$ where \widetilde{X} is the blowup of X in the ideal $\left(f_{0}, \ldots, f_{k}\right)$. In our situation, this shows that there is a morphism $\widetilde{\mathbb{P}}^{2} \rightarrow \mathbb{P}^{2}$. But we can say much more: Consider the subvariety Y of $\mathbb{P}^{2} \times \mathbb{P}^{2}$ given by the equations $x c-y b, x c-z a$, where $(x: y: z)$ and ($a: b: c$) are the coordinates on the two factors.
Lemma 1. The two projections $p_{1}, p_{2}: Y \rightarrow \mathbb{P}^{2}$ induced from the projections $\mathbb{P}^{2} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ both identify Y with the blowup $\widetilde{\mathbb{P}}^{2}$. The composition $p_{2} \circ p_{1}^{-1}$ is well-defined on $\mathbb{P}^{2} \backslash X$ and coincides with f, so that the identity on Y gives an extension of f to an automorphism of $\widetilde{\mathbb{P}}^{2}$.

Proof. We will show that the preimage $p_{1}^{-1}(\{z \neq 0\})$ is isomorphic to the blowup of k^{2} in the origin. This will be sufficient, as blowing up is a local construction. The affine coordinates on $\{z \neq 0\}$ are (x, y) and the preimage is given by the ideal $(x c-y b, x c-a) \subset$ $k[x, y][a, b, c]$, so that the coordinate ring of the preimage is equal to $k[x, y][c, b] /(x c-y b)$. This obviuosly defines the required blowup. The same is true for the other projection. As the blowup is an isomorphism outside the exceptional locus, we conclude that $p_{2} \circ p_{1}^{-1}$ is welldefined on $\mathbb{P}^{2} \backslash X$ and an that it is an isomorphism of this open subset of \mathbb{P}^{2} (i.e., a birational transformation of $\left.\mathbb{P}^{2}\right)$. Moreover, it is clear that the map $(a: b: c):=(x y: x z: y z)$ defined on $\mathbb{P}^{2} \backslash X$ (i.e., the map f) is just the composition $p_{2} \circ p_{1}^{-1}$ (because Y contains the graph of f as an open subset).
2. Exercise: Let $X \subset k^{n}$ be affine with $J=I(X)$. Suppose that $0 \in X$, and denote by $\widetilde{I}=$ $\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right) \subset k[X]$ the ideal of $0 \in X$. Then the coordinate ring $k\left[C_{X, 0}\right]$ of the tangent cone of X at 0 is the algebra $\oplus_{k \geq 0} \widetilde{I}^{k} / \widetilde{I}^{k+1}$.
Solution: First note the following obvious ring isomorphism:

$$
\bigoplus_{k \geq 0} \frac{\widetilde{I}^{k}}{\widetilde{I}^{k+1}} \cong \frac{k[\underline{x}]}{J+I} \oplus \frac{I}{J+I^{2}} \oplus \frac{I^{2}+J}{I^{3}+J} \oplus \ldots \oplus \frac{I^{k}+J}{I^{k+1}+J} \oplus \ldots
$$

where this time $I=\left(x_{1}, \ldots, x_{n}\right) \subset k[\underline{x}]$ (note that $0 \in X$ implies $J \subset I$). Define the following isomorphism of graded k-algebras (on the left hand side, the grading is the one induced from the usual grading of $k[\underline{x}]$ on the right hand side, the grading is by the given decomposition)

$$
\begin{aligned}
\frac{k[x]}{L T(J)} & \cong \frac{k[x]}{J+I} \oplus \frac{I}{J+I^{2}} \oplus \frac{I^{2}+J}{I^{3}+J} \oplus \ldots \frac{I^{k}+J}{I^{k+1}+J} \oplus \ldots \\
1 & \longmapsto([1], 0, \ldots) \\
x_{i} & \longmapsto\left(0,\left[x_{i}\right], \ldots\right)
\end{aligned}
$$

Here $L T(g)$ is the leading term of g with respect to the partial order given by the degree (i.e., this is not a monomial ordering as $L T(g)$ is not a monomial). We first show that this is well-defined, i.e., that it sends any $f^{(i)} \in L T(J)$ to zero: obviously $f^{(i)}$ has zero image in $\left(I^{k}+J\right) /\left(I^{k+1}+J\right)$ for any $k<i$ or $k>i$, but also for $k=i$: the difference $f-f^{(i)} \operatorname{lies}$ in $I^{k+1} \subset I^{k+1}+J$, so that $f^{(i)} \equiv f$ in $\left(I^{k}+J\right) /\left(I^{k+1}+J\right)$ and thus $\left[f^{(i)}\right]=0$. Moreover, the above map is obviously surjective, and injectivity follows by the same argument: suppose that for any homogenous $g \in k[\underline{x}]$, the image is zero in $\oplus_{k \geq 0} I^{k} /\left(I^{k+1}+J\right)$, then it is zero on each factor, in particular in $I^{k} /\left(I^{k+1}+J\right)$ with $k=\operatorname{deg}(g)$, so that $g \in I^{k+1}+J$ so that there is $\widetilde{g} \in I^{k+1}$ with $g+\widetilde{g} \in J$, this implies $g \in L T(J)$.
3. Exercise: For an affine variety $X \subset k^{n}$ (with $J=I(X)$) containing the origin, let \widetilde{X} be the blowup of X in the origin (i.e., in the ideal $\left.\widetilde{I}=\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right)\right)$. Show that the exceptional divisor $E \subset \widetilde{X}$, seen as an algebraic set in $\mathbb{P}^{n-1}=\{0\} \times \mathbb{P}^{n-1} \subset k^{n} \times \mathbb{P}^{n-1}$ is contained in the projective zero locus $V_{p}(L T(J))$ of the initial ideal $L T(J)$ (recall that for a homogenous ideal $J \subset k\left[y_{1}, \ldots, y_{n}\right]$, we denote by $V_{p}(J) \subset \mathbb{P}^{n-1}$ the projective variety given the vanishing of the elements in J and by $V_{a}(J) \subset k^{n}$ its affine cone. Note further that E is actually equal to $V_{p}(L T(J))$, but we do not prove this here).
Solution: $\quad \widetilde{X}$ is by definition the closure in $k^{n} \times \mathbb{P}^{n-1}$ of the graph Γ of $X \backslash\{0\} \rightarrow \mathbb{P}^{n}$ given by $y_{i}=x_{i}$ where $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}: \ldots: y_{n}\right)$ are coordinates on $k^{n} \times \mathbb{P}^{n-1}$. Let $J=\left(f_{1}, \ldots, f_{k}\right)$, with $f_{i}=L T\left(f_{i}\right)+\operatorname{Tail}\left(f_{i}\right)$. Then the functions $\tilde{f}_{i}:=\left(\frac{y_{j}}{x_{j}}\right)^{d_{i}} \cdot f_{i}\left(\right.$ with $\left.d_{i}=\operatorname{deg}\left(L T\left(f_{i}\right)\right)\right)$ are also zero on Γ and thus on \widetilde{X}. But $\tilde{f}_{i} \in L T\left(f_{i}\right)\left(y_{1}, \ldots y_{n}\right)+\left(x_{1}, \ldots, x_{n}\right)$, because the relations $\frac{y_{k}}{x_{k}}=\frac{y_{j}}{x_{j}}$ allows to rewrite the term $\left(\frac{y_{j}}{x_{j}}\right)^{d_{i}}$ such that each monomial of $L T\left(f_{i}\right)$ gets its x-variables replaced by y 's. This implies that $\left(\widetilde{f}_{i}\right)_{\mid E}=\left(\widetilde{f}_{i}\right)_{\mid x_{i}=0}=L T\left(f_{i}\right)\left(y_{1}, \ldots, y_{n}\right)$ is zero. This shows that $I(E) \supset L T(J) \subset k\left[y_{1}, \ldots, y_{n}\right]$. The other direction can actually be shown by the last exercise, it is possible to prove that the coordinate ring of \widetilde{X} is the $k[X]$-algebra $k[\widetilde{X}]=k[X] \oplus \widetilde{I} \oplus \widetilde{I}^{2} \underset{\widetilde{X}}{\underset{\sim}{x}} \ldots\left(\right.$ where $\left.\widetilde{I}=\left([x]_{1}, \ldots,[x]_{n}\right) \subset k[X]\right)$ and that the exceptional divisor is $k[\widetilde{X}] / \widetilde{I} k[\widetilde{X}] \cong \oplus_{k \geq 0} \widetilde{I}^{k} / \widetilde{I}^{k+1}$.

