Exercises Algebraic Geometry Sheet 6 - solutions

1. Exercise: (The join of projective varieties) Let $X, Y \subset \mathbb{P}^{n}$ be disjoint projective varieties. Then let $J(X, Y):=$ $\bigcup_{l}\left\{l \subset \mathbb{P}^{n}\right.$ line $\left.\mid l \cap X \neq \emptyset, l \cap Y \neq \emptyset\right\} \subset \mathbb{P}^{n}$. Show that $J(X, Y)$ is a closed subset of \mathbb{P}^{n}.
(a) Let $\left(\mathbb{P}^{n}\right)^{*} \cong G(2, n+1)$ be the dual projective space. It can be defined either as $\mathbb{P}\left(\left(k^{n+1}\right)^{*}\right)$ or as the space (the Grassmanian) of two-dimensional subspaces of k^{n+1}. Then let

$$
\text { Inc }:=\left\{(l, p) \in\left(\mathbb{P}^{n}\right)^{*} \times \mathbb{P}^{n} \mid p \in l\right\}
$$

be the Incidence variety. We will show that Inc is closed in $\left(\mathbb{P}^{n}\right)^{*} \times \mathbb{P}^{n}$: We have the canonical projection $\pi:\left(k^{n}\right)^{*} \times k^{n} \rightarrow\left(\mathbb{P}^{n}\right)^{*} \times \mathbb{P}^{n}$ and it is sufficient to show that $\pi^{-1}(\operatorname{Inc})$ (the affine cone) is a closed affine algebraic set in $\left(k^{n}\right)^{*} \times k^{n}$. But this is obvious, as we have

$$
\left.\pi^{-1}(\text { Inc })=\left\{(\varphi, v) \in\left(k^{n}\right)^{*} \times k^{n}\right) \mid \varphi(v)=0\right\}
$$

(b) Consider the following diagram of projective morphisms

For any closed subset $Z \subset\left(\mathbb{P}^{n}\right)^{*}$, denote by \mathcal{L}_{Z} the union $\cup_{l} l$ in \mathbb{P}^{n} of all lines l such that $l \in Z$. Obviously (check this!), we have $\mathcal{L}_{Z}:=\pi_{1}\left(\pi_{2}^{-1}(Z) \cap\right.$ Inc). This shows (main theorem on projective varieties), that \mathcal{L}_{Z} is a closed subset of \mathbb{P}^{n}.
(c) For any subvariety X of \mathbb{P}^{n}, consider $Z_{X}:=\pi_{2}\left(\pi_{1}^{-1}(X) \cap I n c\right) \subset\left(\mathbb{P}^{n}\right)^{*}$. It is clear (check this!) that points of Z_{X} are the lines in \mathbb{P}^{n} passing through X. Again we see that Z_{X} is closed in $\left(\mathbb{P}^{n}\right)^{*}$. On the other hand, we have $J(X, Y)=\mathcal{L}_{Z_{X} \cap Z_{Y}}$ so that $J(X, Y)$ is a closed subset of \mathbb{P}^{n} by part (b).
2. Exercise: Prove that for $X, Y \subset \mathbb{P}^{n}$ closed subvarieties, if $\operatorname{dim}(X)+\operatorname{dim}(X)-n \geq 0$, then $X \cap Y$ is not empty.
(a) First note that we can chose closed embeddings

$$
\begin{aligned}
j_{1}: \mathbb{P}^{n} & \longrightarrow \mathbb{P}^{2 n+1} & j_{2}: \mathbb{P}^{n} & \longrightarrow \mathbb{P}^{2 n+1} \\
\left(x_{0}: \ldots: x_{n}\right) & \longmapsto\left(x_{0}: \ldots: x_{n}: 0: \ldots: 0\right) & \left(y_{0}: \ldots: y_{n}\right) & \longmapsto\left(0: \ldots: 0: y_{0}: \ldots: y_{n}\right)
\end{aligned}
$$

such that $\widetilde{X}=j_{1}(X) \cong X$ and $\widetilde{Y}=j_{2}(Y) \cong Y$ are disjoint. It therefore makes sense to consider the join $J(\widetilde{X}, \widetilde{Y})$. Then it is obvious that $X \cap Y=J(\widetilde{X}, \widetilde{Y}) \cap V\left(\left(x_{i}-y_{i}\right)_{i=0, \ldots, n}\right)$. In order to conclude, it will be sufficient to show that $\operatorname{dim}(J(\tilde{X}, \tilde{Y})) \geq \operatorname{dim}(X)+\operatorname{dim}(Y)+1$, as then we obtain $\operatorname{dim}(X \cap Y) \geq \operatorname{dim}(J(\tilde{X}, \tilde{Y}))-(n+1) \geq$ 0 . To show this, we proceed by induction on $k=\operatorname{dim}(\widetilde{X})+\operatorname{dim}(\widetilde{Y})$. For $k=0$, the result is clear: A line which is the join of two points has dimension one. Otherwise, let $\operatorname{dim}(\widetilde{X})=l$ and $\emptyset \neq \widetilde{X}_{0} \subsetneq \widetilde{X}_{1} \subsetneq \ldots \subsetneq \widetilde{X}_{l}=\widetilde{X}$ be a chain of closed subvarieties of maximal length. Then $J\left(\widetilde{X}_{l-1}, \widetilde{\widetilde{Y}}\right)$ is a proper closed subset of $J(\widetilde{\widetilde{X}}, \widetilde{\widetilde{Y}})$ which by induction hypotheses implies that $\operatorname{dim}(J(\widetilde{X}, \widetilde{Y}))>\operatorname{dim}\left(J\left(\widetilde{X}_{l-1}, \widetilde{Y}\right) \geq l-1+\operatorname{dim}(\widetilde{Y})+1=\operatorname{dim}(\widetilde{X})+\operatorname{dim}(\widetilde{Y})\right.$ so that $\operatorname{dim}(J(\widetilde{X}, \widetilde{Y})) \geq \operatorname{dim}(\widetilde{X})+\operatorname{dim}(\widetilde{Y})+1$ as required.
3. Exercise: Let $f: X \rightarrow Y$ be a dominant morphism between varieties (i.e., the image $f(X)$ is dense in Y) which is closed (i.e., which sends closed sets to closed sets). Then there is a non-empty open subset $U \subset Y$ such that for any $y \in U$, we have that $\operatorname{dim}(X)=\operatorname{dim}(Y)+\operatorname{dim}\left(Z_{y}\right)$ for any component Z_{y} of $f^{-1}(y)$.
(a) We first discuss a special case, namely, let $X \subset k^{n+1}$ be an affine variety and suppose that f is the restriction to X of the projection $\pi_{n+1}: k^{n+1} \rightarrow k^{n}$ which sends $\left(x_{1}, \ldots, x_{n+1}\right)$ to $\left(x_{1}, \ldots, x_{n}\right)$. Let $k(X)$ resp. $k(Y)$ the fields of rational functions on X resp. Y (note that $k(Y)=k(\overline{f(X)})$. The induced map $f^{*}: k(Y) \rightarrow k(X)$ turns $k(X)$ into a field extension of $k(Y)$. It is clear that this extension is generated by x_{n+1} as this is already true for the coeffient rings (i.e., $k[X]$ is generated as $k[Y]$-algebra by x_{n+1}). There are two possibilities: Either x_{n+1} is algebraic over $k(Y)$ or it is transcendental. In the first case, there are elements $a_{0}, \ldots, a_{d} \in k(Y)$ such that

$$
a_{0} x_{n+1}^{d}+\ldots+a_{d}=0 \quad \text { in } k(X)
$$

(note that by multiplying with the least common multiple of the denominators of the a_{i}, we might assume that $\left.a_{i} \in k[X]\right)$. For fixed $y \in f(X)$, the fibre $f^{-1}(y)$ is precisely the vanishing locus of $a_{0}(y) x^{d}+\ldots+a_{d}(y) \in k\left[x_{n+1}\right]$ which is a finite number of points except if $a_{i}(y)=0$ for all i. This means that for $k(Y)$ algebraic over $k(X)$, there is a non-empty open set (the a_{i} are not all constant) $U=f(X) \backslash \bigcup_{i} V\left(a_{i}\right) \subset Y$ with fibres of constant dimension (namely, of dimension zero).
Let us now suppose that x_{n+1} is transcendental over $k(Y)$. This means precisely that there is no polynomial $p(t)$ in $k(Y)[t]$ such that $p\left(x_{n+1}\right)=0$ in $k(X)$. In other words, for any $f=a_{0} x_{n+1}^{d}+\ldots+a_{d} \in I(X)$ (with $a_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$), we must have $a_{i} \in I(Y)$ as otherwise we would get a relation (a polynomial $p(t) \in k(Y)[t]$ as above) in $k[X]$ (and thus also in $k(X)$). This means that for any fixed $y \in f(X)$, the whole fibre $f^{-1}(Y)$ is contained in X so that $X=Y \times k$. Again we have an open subset (which is Y itself) with constant fibre dimension.
(b) The next step is to generalize the situation slightly: Let $X \subset k^{n+m}$ be an affine variety and $f: X \rightarrow k^{m}$ the restriction of the projection sending $\left(x_{1}, \ldots, n_{n+m}\right)$ to $\left(x_{1}, \ldots, x_{m}\right)$. Denote, as before, by $Y:=\overline{f(X)}$ and by $p_{i}: k^{n+m} \rightarrow k^{n+i}$ the intermediate projections. Let finally $X_{i}:=\overline{p_{i}(X)} \subset k^{n+i}$. The we have a tower of maps

$$
f: X=X_{m} \xrightarrow{\pi_{m-1}} X_{m-1} \xrightarrow{\pi_{m-2}} \ldots \xrightarrow{\pi_{0}} X_{0}=Y \subset k^{n}
$$

where at each step, π_{i} is the restriction of the projection $k^{n+i+1} \rightarrow k^{n+i}$ to X_{i+1}. For any $\pi_{i}: X_{i+1} \rightarrow X_{i}$, either $X_{i+1} \cong X_{i} \times k$ or there is an open set $U_{i} \subset X_{i}$ such that $\pi_{i}^{-1}(y)$ is of constant dimension zero for all $y \in U_{i}$, denote the set of indices i where the former hypothesis occurs by I. Then $U:=f\left(\cap_{i \notin I} p_{i}^{-1}\left(U_{i}\right)\right) \subset Y$ is open (here the closedness of f is needed) and f has constant fibre dimension over U, namely, $\# I=\operatorname{dim}(X)-\operatorname{dim}(Y)$.
(c) The next more general case is that of an arbitrary dominant and closed morphism of affine varieties $f: X \rightarrow Y$ with $X \subset k^{n}$ and $Y \subset k^{m}$. But this can easily be reduced to the case just treated by considering the graph $\Gamma_{f} \subset k^{n+m} \rightarrow Y \subset k^{m}$.
Now the general case is obtained by choosing an open affine cover $Y=\cup_{i} V_{i}$ and $X=\cup_{i} f^{-1}\left(V_{i}\right)$. We obtain open subsets U_{i} of V_{i} with constant fibre dimension equal to $\operatorname{dim}(X)-\operatorname{dim}(Y)$. These U_{i} can be patched together to give an open subset U of Y with the desired properties.
4. Exercise: Suppose that we are given a closed morphism of varieties $f: X \rightarrow Y$ and a closed subset $Z \subset X$ with $f_{\mid Z}$ dominant such that for all $y \in Y$, the sets $f^{-1}(y) \cap Z$ are irreducible and of constant dimension n. Then Z itself is irreducible.
(a) An argument similar to the last exercise (see, e.g., Shafarevich, volume 1, 6.3) shows that the sets

$$
Y_{r}:=\left\{y \in Y \mid \operatorname{dim}\left(f^{-1}(y) \cap Z\right) \geq r\right\}
$$

are closed in Y. Suppose now that $Z=\bigcup_{i} Z_{i}$ where Z_{i} are the irreducible components of Z. For any $y \in Y$, let $d_{i}(y)$ be the dimension of the fibre over y of $f_{\mid Z_{i}}$. Then by hypothesis we have that for all $y \in Y, \max _{i} d_{i}(Y)=n$. This implies that $Y=\bigcup_{i}\left\{y \in Y \mid d_{i}(y) \geq n\right\}$. As these sets are closed and Y is irreducible, there must be an index i such that $Y=\left\{y \in Y \mid d_{i}(y) \geq n\right\}$. Therefore, for all $y \in Y, f_{\mid Z_{i}}^{-1}(y) \subset f^{-1}(y) \cap Z$ is of dimension n, which implies that $f_{\mid Z_{i}}^{-1}(y)=f^{-1}(y) \cap Z$ so that $Z=Z_{i}$.
(b) The following examples shows that the assumption of constant fibre dimension of $f_{\mid Z}: Z \rightarrow Y$ is essential: Let $Z=V(z) \cup V(x, y) \subset k^{3}=: X$ be the union of a plane with a line, and let $f: X \rightarrow Y:=k^{2}$ be the projection $f(x, y, z)=(x, y)$. Then for each $(x, y) \neq(0,0)$, the fibre $f_{\mid Z}^{-1}(x, y)$ is (x, y) itself, thus irreducible (and of dimension zero), and for $(x, y)=(0,0)$, the fibre $f_{\mid Z}^{-1}(0,0)$ is the whole line $V(x, y)$, which is also irreducible, but of dimension one. We see that in this case, all fibres are irreducible but Z itself is not.

