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Exercises Algebraic Geometry
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1. Exercise: (The join of projective varieties) Let X, Y ⊂ Pn be disjoint projective varieties. Then let J(X, Y ) :=⋃
l {l ⊂ Pn line |l ∩X 6= ∅, l ∩ Y 6= ∅} ⊂ Pn. Show that J(X, Y ) is a closed subset of Pn.

(a) Let (Pn)∗ ∼= G(2, n + 1) be the dual projective space. It can be defined either as P
(
(kn+1)∗

)
or as the space

(the Grassmanian) of two-dimensional subspaces of kn+1. Then let

Inc := {(l, p) ∈ (Pn)∗ × Pn | p ∈ l}

be the Incidence variety. We will show that Inc is closed in (Pn)∗ × Pn: We have the canonical projection
π : (kn)∗ × kn � (Pn)∗ × Pn and it is sufficient to show that π−1(Inc) (the affine cone) is a closed affine
algebraic set in (kn)∗ × kn. But this is obvious, as we have

π−1(Inc) = {(ϕ, v) ∈ (kn)∗ × kn) |ϕ(v) = 0}

(b) Consider the following diagram of projective morphisms

(Pn)∗ × Pn

π1

��?
??

??
??

??
?

π2

����
��

��
��

��

Inc
?�

OO

(Pn)∗ Pn

For any closed subset Z ⊂ (Pn)∗, denote by LZ the union ∪ll in Pn of all lines l such that l ∈ Z. Obviously
(check this!), we have LZ := π1

(
π−1

2 (Z) ∩ Inc
)
. This shows (main theorem on projective varieties), that LZ is

a closed subset of Pn.

(c) For any subvariety X of Pn, consider ZX := π2

(
π−1

1 (X) ∩ Inc
)
⊂ (Pn)∗. It is clear (check this!) that points

of ZX are the lines in Pn passing through X. Again we see that ZX is closed in (Pn)∗. On the other hand, we
have J(X, Y ) = LZX∩ZY

so that J(X, Y ) is a closed subset of Pn by part (b).

2. Exercise: Prove that for X, Y ⊂ Pn closed subvarieties, if dim(X) + dim(X)− n ≥ 0, then X ∩ Y is not empty.

(a) First note that we can chose closed embeddings

j1 : Pn −→ P2n+1 j2 : Pn −→ P2n+1

(x0 : . . . : xn) 7−→ (x0 : . . . : xn : 0 : . . . : 0) (y0 : . . . : yn) 7−→ (0 : . . . : 0 : y0 : . . . : yn)

such that X̃ = j1(X) ∼= X and Ỹ = j2(Y ) ∼= Y are disjoint. It therefore makes sense to consider the join
J(X̃, Ỹ ). Then it is obvious that X∩Y = J(X̃, Ỹ )∩V ((xi − yi)i=0,...,n). In order to conclude, it will be sufficient

to show that dim
(
J(X̃, Ỹ )

)
≥ dim(X)+dim(Y )+1, as then we obtain dim(X∩Y ) ≥ dim

(
J(X̃, Ỹ )

)
−(n+1) ≥

0. To show this, we proceed by induction on k = dim(X̃) + dim(Ỹ ). For k = 0, the result is clear: A line which
is the join of two points has dimension one. Otherwise, let dim(X̃) = l and ∅ 6= X̃0 ( X̃1 ( . . . ( X̃l = X̃ be a
chain of closed subvarieties of maximal length. Then J(X̃l−1, Ỹ ) is a proper closed subset of J(X̃, Ỹ ) which by
induction hypotheses implies that dim(J(X̃, Ỹ )) > dim(J(X̃l−1, Ỹ ) ≥ l− 1 + dim(Ỹ ) + 1 = dim(X̃) + dim(Ỹ )
so that dim(J(X̃, Ỹ )) ≥ dim(X̃) + dim(Ỹ ) + 1 as required.
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3. Exercise: Let f : X → Y be a dominant morphism between varieties (i.e., the image f(X) is dense in Y ) which
is closed (i.e., which sends closed sets to closed sets). Then there is a non-empty open subset U ⊂ Y such that for
any y ∈ U , we have that dim(X) = dim(Y ) + dim(Zy) for any component Zy of f−1(y).

(a) We first discuss a special case, namely, let X ⊂ kn+1 be an affine variety and suppose that f is the restriction
to X of the projection πn+1 : kn+1 → kn which sends (x1, . . . , xn+1) to (x1, . . . , xn). Let k(X) resp. k(Y ) the
fields of rational functions on X resp. Y (note that k(Y ) = k(f(X)). The induced map f∗ : k(Y ) → k(X)
turns k(X) into a field extension of k(Y ). It is clear that this extension is generated by xn+1 as this is already
true for the coeffient rings (i.e., k[X] is generated as k[Y ]-algebra by xn+1). There are two possibilities: Either
xn+1 is algebraic over k(Y ) or it is transcendental. In the first case, there are elements a0, . . . , ad ∈ k(Y ) such
that

a0x
d
n+1 + . . . + ad = 0 in k(X)

(note that by multiplying with the least common multiple of the denominators of the ai, we might assume that
ai ∈ k[X]). For fixed y ∈ f(X), the fibre f−1(y) is precisely the vanishing locus of a0(y)xd+. . .+ad(y) ∈ k[xn+1]
which is a finite number of points except if ai(y) = 0 for all i. This means that for k(Y ) algebraic over k(X),
there is a non-empty open set (the ai are not all constant) U = f(X)\

⋃
i V (ai) ⊂ Y with fibres of constant

dimension (namely, of dimension zero).
Let us now suppose that xn+1 is transcendental over k(Y ). This means precisely that there is no polynomial
p(t) in k(Y )[t] such that p(xn+1) = 0 in k(X). In other words, for any f = a0x

d
n+1 + . . . + ad ∈ I(X) (with

ai ∈ k[x1, . . . , xn]), we must have ai ∈ I(Y ) as otherwise we would get a relation (a polynomial p(t) ∈ k(Y )[t]
as above) in k[X] (and thus also in k(X)). This means that for any fixed y ∈ f(X), the whole fibre f−1(Y )
is contained in X so that X = Y × k. Again we have an open subset (which is Y itself) with constant fibre
dimension.

(b) The next step is to generalize the situation slightly: Let X ⊂ kn+m be an affine variety and f : X → km the
restriction of the projection sending (x1, . . . , nn+m) to (x1, . . . , xm). Denote, as before, by Y := f(X) and by
pi : kn+m → kn+i the intermediate projections. Let finally Xi := pi(X) ⊂ kn+i. The we have a tower of maps

f : X = Xm
πm−1−→ Xm−1

πm−2−→ . . .
π0−→ X0 = Y ⊂ kn

where at each step, πi is the restriction of the projection kn+i+1 → kn+i to Xi+1. For any πi : Xi+1 → Xi, either
Xi+1

∼= Xi × k or there is an open set Ui ⊂ Xi such that π−1
i (y) is of constant dimension zero for all y ∈ Ui,

denote the set of indices i where the former hypothesis occurs by I. Then U := f(∩i/∈Ip
−1
i (Ui)) ⊂ Y is open

(here the closedness of f is needed) and f has constant fibre dimension over U , namely, #I = dim(X)−dim(Y ).

(c) The next more general case is that of an arbitrary dominant and closed morphism of affine varieties f : X → Y
with X ⊂ kn and Y ⊂ km. But this can easily be reduced to the case just treated by considering the graph
Γf ⊂ kn+m → Y ⊂ km.
Now the general case is obtained by choosing an open affine cover Y = ∪iVi and X = ∪if

−1(Vi). We obtain
open subsets Ui of Vi with constant fibre dimension equal to dim(X) − dim(Y ). These Ui can be patched
together to give an open subset U of Y with the desired properties.

4. Exercise: Suppose that we are given a closed morphism of varieties f : X → Y and a closed subset Z ⊂ X with
f|Z dominant such that for all y ∈ Y , the sets f−1(y)∩Z are irreducible and of constant dimension n. Then Z itself
is irreducible.

(a) An argument similar to the last exercise (see, e.g., Shafarevich, volume 1, 6.3) shows that the sets

Yr :=
{
y ∈ Y | dim(f−1(y) ∩ Z) ≥ r

}
are closed in Y . Suppose now that Z =

⋃
i Zi where Zi are the irreducible components of Z. For any y ∈ Y , let

di(y) be the dimension of the fibre over y of f|Zi
. Then by hypothesis we have that for all y ∈ Y , maxi di(Y ) = n.

This implies that Y =
⋃

i {y ∈ Y | di(y) ≥ n}. As these sets are closed and Y is irreducible, there must be an
index i such that Y = {y ∈ Y | di(y) ≥ n}. Therefore, for all y ∈ Y , f−1

|Zi
(y) ⊂ f−1(y) ∩ Z is of dimension n,

which implies that f−1
|Zi

(y) = f−1(y) ∩ Z so that Z = Zi.

(b) The following examples shows that the assumption of constant fibre dimension of f|Z : Z → Y is essential: Let
Z = V (z) ∪ V (x, y) ⊂ k3 =: X be the union of a plane with a line, and let f : X → Y := k2 be the projection
f(x, y, z) = (x, y). Then for each (x, y) 6= (0, 0), the fibre f−1

|Z (x, y) is (x, y) itself, thus irreducible (and of
dimension zero), and for (x, y) = (0, 0), the fibre f−1

|Z (0, 0) is the whole line V (x, y), which is also irreducible,
but of dimension one. We see that in this case, all fibres are irreducible but Z itself is not.
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