Exercises Algebraic Geometry Sheet 5

- 1. (a) Let X be a prevariety.
 - i. Show that X is noetherian.
 - ii. Let $U \subset X$ be open. Show that U is a prevariety.
 - (b) Let X_1, \ldots, X_n be prevarieties and suppose that X is obtained by gluing the X_i 's along open subsets $U_{ij} \subset X_i$. Show that X is irreducible.
- 2. (a) Let \mathcal{F} be a sheaf on a topological space X and $s \in \mathcal{F}(U)$, where $U \subset X$ is open. Define the support of s in U by

$$\operatorname{supp}(s) := \{ x \in U \,|\, s(x) \neq 0 \}$$

Show that supp(s) is closed in U. Moreover, let

$$\operatorname{supp}(\mathcal{F}) := \{ x \in X \mid \mathcal{F}_x \neq 0 \}$$

(recall that \mathcal{F}_x denotes the germ of \mathcal{F} at $x \in X$). Try to give an example where $\operatorname{supp}(\mathcal{F})$ is not closed.

- (b) Show that for a variety X and $U \subset X$ open, there are no sections $f \in \mathcal{O}_X(U)$ with $\emptyset \subsetneq \operatorname{supp}(f) \subsetneq U$
- (c) Let X be a variety over an algebraically closed field k. Let Y a closed subvariety. For any $U \subset X$ open, consider the ideal

$$\mathcal{I}_Y(U) := \{ f \in \mathcal{O}_X(U) \mid f(x) = 0 \ \forall x \in Y \cap U \}$$

Show that $U \mapsto \mathcal{I}_Y(U)$ defines a sheaf, called the ideal sheaf of Y in X.

- 3. (a) Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Define $\mathcal{K}er(\varphi)(U) := ker(\varphi(u) : \mathcal{F}(U) \to \mathcal{G}(U))$, $\widetilde{\mathcal{Im}}(\varphi)(U) := Im(\varphi(u) : \mathcal{F}(U) \to \mathcal{G}(U))$ and $\widetilde{\mathcal{Coker}}(\varphi)(U) := coker(\varphi(u) : \mathcal{F}(U) \to \mathcal{G}(U))$. Show that $\mathcal{K}er(\varphi)$, $\widetilde{\mathcal{Im}}(\varphi)$ and $\widetilde{\mathcal{Coker}}(\varphi)$ are presheaves, but that only $\mathcal{K}er(\varphi)$ is a sheaf. We denote by $\mathcal{C}oker(\varphi)$ resp. $\mathcal{Im}(\varphi)$ the sheafification of $\widetilde{\mathcal{C}oker}(\varphi)$ resp. $\widetilde{\mathcal{Im}}(\varphi)$. We say that φ is injective iff (if and only if) $\mathcal{K}er(\varphi) = 0$.
 - (b) Show that the sheafification \mathcal{F}^+ of a presheaf \mathcal{F} has the following universal property: for any sheaf \mathcal{G} and any morphism (of presheaves) $\psi : \mathcal{F} \to \mathcal{G}$, there is a unique morphism $\Psi : \mathcal{F}^+ \to \mathcal{G}$ such that $\Psi \circ \phi = \psi$, where $\phi : \mathcal{F} \to \mathcal{F}^+$ is the morphism of presheaves defined in exercise two of the last sheet.
 - (c) Show that for any morphism $\varphi : \mathcal{F} \to \mathcal{G}$ of sheaves, the universal property gives a morphism $\mathcal{I}m(\varphi) \to \mathcal{G}$ which is injective. This means that we can consider $\mathcal{I}m(\varphi)$ as a subsheaf of \mathcal{G} (in general, a subsheaf \mathcal{F}' of \mathcal{F} is a sheaf such that $\mathcal{F}'(U)$ is a subgroup of $\mathcal{F}(U)$ for any U and the restriction maps ϕ_{UV} of \mathcal{F}' are induced by those of \mathcal{F}). We say the φ is surjective iff $\mathcal{I}m(\varphi) = \mathcal{G}$. Show that φ is surjective iff for any $U \subset X$ open and for any $g \in \mathcal{G}(U)$ there is a covering $U = \bigcup_i U_i$ and $f_i \in \mathcal{F}(U_i)$ such that $\varphi(U_i)(f_i) = g_{|U_i}$. Show that we do not have neccessarily surjectivity of $\varphi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$.

4. Let > be a monomial order on $k[x_1, \ldots, x_n]$. Define

$$S_{>}^{-1}k[\underline{x}] := \left\{ \frac{f}{g} \mid f, g \in k[\underline{x}], \mathrm{LM}(g) = 1 \right\}$$

Show that

- (a) $k[\underline{x}] \subset S_{>}^{-1}k[\underline{x}] \subset k[\underline{x}]_{(\underline{x})}$ (Recall that the latter ring is the localization of $k[\underline{x}]$ at the complement of the maximal ideal (x_1, \ldots, x_n) .)
- (b) $k[\underline{x}] = S_{>}^{-1}k[\underline{x}]$ iff > is global.
- (c) $k[\underline{x}]_{(x)} = S_{>}^{-1}k[\underline{x}]$ iff > is local (this means that for any monomial $x^{I} \neq 1$ we have $1 > x^{I}$).
- 5. Compute by hand a standard representation in the following situations.
 - (a) >:= lex (called lp in Singular, see below) sowie >:= lex(loc) (called ls in Singular), f = 1, $G := \{x 1\}$.
 - (b) >:= Dlex (called dp in Singular), $f = x^4 + y^4 + z^4 + xyz$, $G := J_f := \{\partial_x f, \partial_y f, \partial_z f\}$.
- 6. Check by hand whether the following functions are contained in the respective ideals.

(a)
$$f = xy^3 - z^2 + y^5 - z^3$$
, $I_1 = (-x^3 + y, x^2y - z) \subset \mathbb{Q}[x, y, z]$
(b) $g = x^3z - 2y^2$, $I_2 = (yz - y, xy + 2x^2, y - z) \subset \mathbb{Q}[x, y, z]$.

7. Determine the closure of the image of the following map

$$\begin{array}{cccc} \varphi: \mathbb{C}^2 & \longrightarrow & \mathbb{C}^4 \\ (s,t) & \longmapsto & (s^3, s^2t, st^2, t^3) \end{array}$$

Is $\operatorname{Im}(\varphi) = \overline{\operatorname{Im}(\varphi)}$?

(Hint: For this and the following exercises, you might use **Singular**. Computations in Singular are done by declaring a ring like

ring R=0,(x,y,z),lp;

here 0 is the characteristic, x, y, z are the variables and lp is the monomial order (lex in our case). Then ideals are defined like

ideal i=(f,g,h);

where f, g, h are polynomials in x, y, z. The most important procedure is

ideal j=std(i);

which computes a standard basis (i.e., Gröbner basis in our case) of the ideal i. See

http://www.singular.uni-kl.de

for further information).

- 8. Do exercise 6. in the ring $\mathbb{Q}[x, y, z]_{(x,y,z)}$.
- 9. Compute the kernel of the homomorphism of rings

$$\begin{array}{rcl} \varphi: \mathbb{Q}[x,y,z] &\longrightarrow & \mathbb{Q}[t]/(t^{12}) \\ (x,y,z) &\longmapsto & (t^5,t^7+t^8,t^{11}) \end{array}$$