Exercises Algebraic Geometry

 Sheet 5

 Sheet 5}

1. (a) Let X be a prevariety.
i. Show that X is noetherian.
ii. Let $U \subset X$ be open. Show that U is a prevariety.
(b) Let X_{1}, \ldots, X_{n} be prevarieties and suppose that X is obtained by gluing the X_{i} 's along open subsets $U_{i j} \subset X_{i}$. Show that X is irreducible.
2. (a) Let \mathcal{F} be a sheaf on a topological space X and $s \in \mathcal{F}(U)$, where $U \subset X$ is open. Define the support of s in U by

$$
\operatorname{supp}(s):=\{x \in U \mid s(x) \neq 0\}
$$

Show that $\operatorname{supp}(s)$ is closed in U. Moreover, let

$$
\operatorname{supp}(\mathcal{F}):=\left\{x \in X \mid \mathcal{F}_{x} \neq 0\right\}
$$

(recall that \mathcal{F}_{x} denotes the germ of \mathcal{F} at $x \in X$). Try to give an example where $\operatorname{supp}(\mathcal{F})$ is not closed.
(b) Show that for a variety X and $U \subset X$ open, there are no sections $f \in \mathcal{O}_{X}(U)$ with $\emptyset \subsetneq \operatorname{supp}(f) \subsetneq$ U
(c) Let X be a variety over an algebraically closed field k. Let Y a closed subvariety. For any $U \subset X$ open, consider the ideal

$$
\mathcal{I}_{Y}(U):=\left\{f \in \mathcal{O}_{X}(U) \mid f(x)=0 \quad \forall x \in Y \cap U\right\}
$$

Show that $U \mapsto \mathcal{I}_{Y}(U)$ defines a sheaf, called the ideal sheaf of Y in X.
3. (a) Let $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ be a morphism of sheaves. Define $\operatorname{Ker}(\varphi)(U):=\operatorname{ker}(\varphi(u): \mathcal{F}(U) \rightarrow \mathcal{G}(U))$, $\widetilde{\mathcal{I} m}(\varphi)(U):=\operatorname{Im}(\varphi(u): \mathcal{F}(U) \rightarrow \mathcal{G}(U))$ and $\widehat{\mathcal{C o k e r}}(\varphi)(U):=\operatorname{coker}(\varphi(u): \mathcal{F}(U) \rightarrow \mathcal{G}(U))$. Show that $\mathcal{K} \operatorname{er}(\varphi), \widetilde{\mathcal{I} m}(\varphi)$ and $\widehat{\mathcal{C o k e r}}(\varphi)$ are presheaves, but that only $\mathcal{K} \operatorname{er}(\varphi)$ is a sheaf. We denote by $\operatorname{Coker}(\varphi)$ resp. $\mathcal{I} m(\varphi)$ the sheafification of $\widetilde{\mathcal{C o k e r}}(\varphi)$ resp. $\widetilde{\mathcal{I} m}(\varphi)$. We say that φ is injective iff (if and only if) $\mathcal{K} e r(\varphi)=0$.
(b) Show that the sheafification \mathcal{F}^{+}of a presheaf \mathcal{F} has the following universal property: for any sheaf \mathcal{G} and any morphism (of presheaves) $\psi: \mathcal{F} \rightarrow \mathcal{G}$, there is a unique morphism $\Psi: \mathcal{F}^{+} \rightarrow \mathcal{G}$ such that $\Psi \circ \phi=\psi$, where $\phi: \mathcal{F} \rightarrow \mathcal{F}^{+}$is the morphism of presheaves defined in exercise two of the last sheet.
(c) Show that for any morphism $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ of sheaves, the universal property gives a morphism $\mathcal{I} m(\varphi) \rightarrow \mathcal{G}$ which is injective. This means that we can consider $\operatorname{Im}(\varphi)$ as a subsheaf of \mathcal{G} (in general, a subsheaf \mathcal{F}^{\prime} of \mathcal{F} is a sheaf such that $\mathcal{F}^{\prime}(U)$ is a subgroup of $\mathcal{F}(U)$ for any U and the restriction maps $\phi_{U V}$ of \mathcal{F}^{\prime} are induced by those of $\left.\mathcal{F}\right)$. We say the φ is surjective iff $\mathcal{I} m(\varphi)=\mathcal{G}$. Show that φ is surjective iff for any $U \subset X$ open and for any $g \in \mathcal{G}(U)$ there is a covering $U=\cup_{i} U_{i}$ and $f_{i} \in \mathcal{F}\left(U_{i}\right)$ such that $\varphi\left(U_{i}\right)\left(f_{i}\right)=g_{\mid U_{i}}$. Show that we do not have neccessarily surjectivity of $\varphi(U): \mathcal{F}(U) \rightarrow \mathcal{G}(U)$.
4. Let $>$ be a monomial order on $k\left[x_{1}, \ldots, x_{n}\right]$. Define

$$
S_{>}^{-1} k[\underline{x}]:=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in k[\underline{x}], \operatorname{LM}(g)=1\right\}
$$

Show that
(a) $k[\underline{x}] \subset S_{>}^{-1} k[\underline{x}] \subset k[\underline{x}]_{(\underline{x})}$ (Recall that the latter ring is the localization of $k[\underline{x}]$ at the complement of the maximal ideal $\left(x_{1}, \ldots, x_{n}\right)$.)
(b) $k[\underline{x}]=S_{>}^{-1} k[\underline{x}]$ iff $>$ is global.
(c) $k[\underline{x}]_{(x)}=S_{>}^{-1} k[\underline{x}]$ iff $>$ is local (this means that for any monomial $x^{I} \neq 1$ we have $1>x^{I}$).
5. Compute by hand a standard representation in the following situations.
(a) $>:=l e x$ (called $l p$ in Singular, see below) sowie $>:=l e x(l o c)$ (called $l s$ in Singular), $f=1$, $G:=\{x-1\}$.
(b) $>:=$ Dlex (called $d p$ in Singular), $f=x^{4}+y^{4}+z^{4}+x y z, G:=J_{f}:=\left\{\partial_{x} f, \partial_{y} f, \partial_{z} f\right\}$.
6. Check by hand whether the following functions are contained in the respective ideals.
(a) $f=x y^{3}-z^{2}+y^{5}-z^{3}, I_{1}=\left(-x^{3}+y, x^{2} y-z\right) \subset \mathbb{Q}[x, y, z]$.
(b) $g=x^{3} z-2 y^{2}, I_{2}=\left(y z-y, x y+2 x^{2}, y-z\right) \subset \mathbb{Q}[x, y, z]$.
7. Determine the closure of the image of the following map

$$
\begin{aligned}
\varphi: \mathbb{C}^{2} & \longrightarrow \mathbb{C}^{4} \\
(s, t) & \longmapsto\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)
\end{aligned}
$$

Is $\operatorname{Im}(\varphi)=\overline{\operatorname{Im}(\varphi)}$?
(Hint: For this and the following exercises, you might use Singular. Computations in Singular are done by declaring a ring like

```
ring R=0,(x,y,z),lp;
```

here 0 is the characteristic, x, y, z are the variables and $l p$ is the monomial order (lex in our case). Then ideals are defined like

```
ideal i=(f,g,h);
```

where f, g, h are polynomials in x, y, z. The most important procedure is

```
ideal j=std(i);
```

which computes a standard basis (i.e., Gröbner basis in our case) of the ideal i. See
http://www.singular.uni-kl.de
for further information).
8. Do exercise 6. in the ring $\mathbb{Q}[x, y, z]_{(x, y, z)}$.
9. Compute the kernel of the homomorphism of rings

$$
\begin{aligned}
\varphi: \mathbb{Q}[x, y, z] & \longrightarrow \mathbb{Q}[t] /\left(t^{12}\right) \\
(x, y, z) & \longmapsto\left(t^{5}, t^{7}+t^{8}, t^{11}\right)
\end{aligned}
$$

