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1. The tensor product and product of varieties: We first introduce a rather basic algebraic con-
struction, discuss some properties and then use it to describe the coordinate rings of products of affine
varieties. Let A be a ring and M and N two A-modules (one particular case that you should keep in
mind is when A is a field k and M and N are (finitely generated) k-algebras, e.g., coordinate rings of
algebraic sets). The we define M ⊗A N (called the tensor product of M and N over A) to be the quo-
tient of the free A-module generated by all symbols m⊗ n with m ∈M and n ∈ N by the submodule
generated by all elements of the form

(m1 +m2)⊗ n−m1 ⊗ n−m2 ⊗ n; m⊗ (n1 + n2)−m⊗ n1 −m⊗ n2

r(m⊗ n)−m⊗ rn; rm⊗ n−m⊗ rn

for any m,m1,m2 ∈M , n, n1, n2 ∈ N and r ∈ A. Show that

(a) The quotient map ϕ : M ×N →M ⊗A N given by (m,n) 7→ m⊗ n is bilinear. (Recall that given
A-modules P,Q,R, then a map of sets ϕ : P ×Q→ R is called bilinear iff ϕ(r1x1 + s1y1, r2x2 +
s2y2) = r1r2ϕ(x1, x2) + r1s2ϕ(x1, y2) + s1r2ϕ(y1, x2) + s1s2ϕ(y2, y2) for all r1, r2, s1, s2 ∈ A and
all x1, x2 ∈ P , y1, y2 ∈ Q).

(b) The tensor product has the following universal property: Given any bilinear map ψ : M×N → R,
where R is an A-module, then it factors uniquely over ϕ, i.e., there is a unique homomorphism of
A-modules φ : M ⊗A N → R such that ψ = φ ◦ ϕ.

(c) We have isomorphisms M ⊗A A ∼= M ∼= A⊗A M .

(d) Functoriality: Let M ′ γ→ M be a homomorphism of A-modules and P be any A-module, then
there is an induced homomorphism

M ′ ⊗A P
γ⊗id−→ M ⊗A P

(e) Right-exactness: Let M ′ → M be a surjective homomorphism of A-modules, then the induced
homomorphismM ′⊗AP →M⊗AP is also surjective. More generally, given a short exact sequence
of A-modules

0 α→M ′′ β→M ′ γ→M
δ→ 0

(this means that for any two successive arrows, such as β and α or γ and β, we have that the
image of the first one equal the kernel of the second one, e.g. Im(β) = Ker(γ) etc. In particular,
any composition β ◦α, γ ◦ β, δ ◦ γ is zero. It also implies (check this!) that β is injective and that
γ is surjective) one obtains an exact sequence

M ′′ ⊗A P
β⊗id−→ M ′ ⊗A P

γ⊗id−→ M ⊗A P
δ⊗id−→ 0

(f) Let X ⊂ kn and Y ⊂ km be algebraic sets. Show that the product

X × Y := {(x, y) ∈ kn × km |x ∈ X, y ∈ Y } ⊂ kn+m

is algebraic (Hint: the defining ideal of X × Y must be given in terms of the vanishing ideals
I(X) and I(Y )). Show further that k[X × Y ] ∼= k[X]⊗k k[Y ]. (Hint: show first the isomorphism
k[x1, . . . , xn, y1, . . . , ym] ∼= k[x1, . . . , xn]⊗k k[y1, . . . , ym]).
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2. Another description of a sheaf: Let F be a presheaf of abelian groups on a topological space X.
Let Fx be the stalk of F at x ∈ X. Define

F̃ :=
⋃

x∈X

Fx

to be the union of all stalks. We have the obvious projection map π : F̃ → X which associates to any
germ [f ]x in Fx its base point x. We put a topology on F̃ generated by the following open neighborhoods
of a given germ [f ]x: Let f ∈ F(U) be a representative of [f ]x then the set

Ũ[f ]x := {[f ]y | y ∈ U}

is by definition open in F̃ .

(a) Verify that π is continuous with respect to this topology.

(b) We call a continuous map s : U → F̃ (where U is open in X) a section (of π or of F̃) over U if
π ◦ s = idU . Show that any map s : U → F̃ satisfying π ◦ s = idU is a section (i.e., continuous) iff
the following holds: Denote for any x ∈ U by fx ∈ F(Ux) a representative for the image (germ)
s(x) ∈ Fx. Then for any y ∈ Ux, we must have s(y) = [fy]y = [fx]y.
We denote by Γ(U, F̃) the set of all continuous sections of F over U . Show that any additional
structure of the presheaf descends to Γ(U, F̃), that is, Γ(U, F̃) is an ring resp. k-algebra resp.
module etc. if F is a presheaf of rings resp. k-algebras resp. modules and so on.

(c) Define for any open set U ⊂ X the following map

φU : F(U) −→ Γ(U, F̃)
f 7−→ (x 7→ [f ]x)

Show that φU is an isomorphism of abelian groups (rings, ....) iff F is a sheaf (and not only a
presheaf). This shows that for a sheaf, the data F(U) are equivalent to F̃ (which is called “espace
étalé” of the (pre)sheaf F).

(d) Show that for any presheaf F , the rule U 7→ Γ(U, F̃) defines a sheaf (which is by (c) the same as
F in case F is itself a sheaf). F̃ is called the sheafification of F . What is the sheafification of the
constant presheaf FX(U) := R on a topological space X?

3. The Grassmann varieties: This exercise gives a first glimpse of a huge part of algebraic geometry,
called the theory of moduli spaces. The basic idea is that whenever you want to classify or describe any
kind of (geometric) objects, you just gather them together in a set and try to put an extra structure
on it, e.g., that of an algebraic variety. This is what is called a moduli space. Here is the most basic
example, a variety parametrizing sub-vector spaces of fixed dimension of a given space.

(a) Let V be an n-dimensional vector space over any field k. Define (for any l ≤ n) Gr(l, n) to be the
set {L ⊂ V |L sub-vector space of V ; dimk(L) = l}. Chose any basis e1, . . . , en of V and consider
the map

Pl : Gr(l, n) −→ P(n
l)−1

L = spank 〈(e1, . . . , en) ·A〉 7−→ (. . . , Ai1,...,ik
, . . .)1≤i1<...<ik≤n

where Ai1,...,ik
is the l × l-minor of A ∈ M(n × l, k) obtained by taking the determinant of the

matrix consisting of the rows i1, . . . , ik of A. Show that this map is well-defined and injective. (It
is called the Plücker embedding.)

(b) Show that the image Pl(Gr(2, n)) is a projective subvariety in P(n
2)−1. (This statement is true

for any l but the proof is slightly more involved, although elementary). Therefore the Plücker
embedding endows Gr(2, n) with the structure of a projective variety.

(c) Show that the projective variety Pl(Gr(2, n)) has an open affine cover by affine spaces of dimension
2(n−2) (which implies that the dimension of Pl(Gr(2, n)) is 2(n−2), but we have not yet discussed
this).

(d) Show that Gr(2, 2) = {pt}, Gr(1, 3) ∼= Gr(2, 3) ∼= P2 and that Gr(2, 4) is a quadric in P5 (i.e., a
hypersurface cut out by a quadratic polynomial in k[x0, . . . , x5]).
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