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1. The tensor product and Hom: We discuss here the relationship of the tensor product with the Hom-functor.
We start with a property of the Hom-groups which is in some sense dual to the one for the tensor product we are
interested in.

Lemma 1. Let A be a ring and
0 →M ′′ β→M ′ γ→M → 0

be a short exact sequence of A-modules (remember: this means β is injective, γ is surjective and ker(γ) = im(β)).
Then for any A-module Q (in particular, for A itself) there is an exact sequence

0 → HomA(M,Q)
γ∗→ HomA(M ′, Q)

β∗→ HomA(M ′′, Q)

(note that the β∗ is not surjective in general). Conversely, a sequence

0 →M ′′ β→M ′ γ→M → 0

(this means that γ ◦ β = 0 so im(β) ⊂ ker(γ) but not im(β) = ker(γ) in general) is exact if for all A-modules Q,
we have that

0 → HomA(M,Q)
γ∗→ HomA(M ′, Q)

β∗→ HomA(M ′′, Q) (1)

is exact. Note that it follows from γ ◦ β = 0 that β∗ ◦ γ∗ = 0 (see the proof), so that it makes sense to call (1) a
sequence.

Proof. First the definition of the maps γ∗ and β∗: this is just the generalization of the dual map (hence the names):
given f ∈ HomA(M,Q) (resp. g ∈ HomA(M ′, Q)), we put γ∗(f) := f ◦ γ (resp. β∗(g) := g ◦ β). It is easy to show
that the maps defined in this way are homomorphisms of A-modules. Let us show that γ∗ is injective: suppose that
γ∗(f)(a) = 0 for all a ∈M ′, then f is necessarily zero in HomA(M,Q), otherwise, given any b ∈M with f(b) 6= 0,
we take a lift ã of b to M ′, that is, any preimage under γ, and then γ∗(f)(ã) 6= 0. The next step is to show that
im(γ∗) = ker(β∗): First, the composition β∗ ◦ γ∗ is obviously zero because β∗ ◦ γ∗(f) = f ◦ γ ◦ β = 0 as already
γ ◦ β = 0. So let g ∈ ker(β∗) ⊂ HomA(M ′, Q) be given, this means that g ◦ β is zero in HomA(M ′′, Q). We will
construct f ∈ HomA(M,Q) with γ∗(f) = g: given b ∈ M , take any lift a as above (i.e. γ(a) = b) and define
f(b) := g(a). A priori, this may not be well-defined, it seems to depend on the choice of the lift a ∈ γ−1(b). But
in fact it does not, suppose ã to be another choice, then a − ã ∈ ker(γ) = im(β) so that there is c ∈ M ′′ with
β(c) = a− ã. Therefore g(a− ã) = (g ◦ β)(c) = 0 by assumption. So we see that f is well-defined which shows that
g ∈ im(β∗).

For the other direction, note that given
M ′′ β→M ′ γ→M

with γ ◦ β = 0, if γ is not surjective, then the canonical projection π : M → M/im(γ) = coker(γ) is an element
in HomA(M, coker(γ)), different from zero, but the composition γ∗(π) = π ◦ γ is zero in HomA(M ′, coker(γ)).

So there is an A-module Q := coker(γ) such that HomA(M,Q)
γ∗→ HomA(M ′, Q) is no injective. Similarly, let

ψ : M ′ → M ′/im(β) = coker(β) be the canonical projection, this is an element in ker(β∗) ⊂ HomA(M ′, Q)
(because β∗(ψ) = ψ ◦ β = 0) where Q := coker(β). If im(β) ( ker(γ) then there cannot be any Ψ ∈ HomA(M,Q)
with ψ = Ψ ◦ γ: If there were such an Ψ, take any non-zero element x ∈ ker(γ)\im(β), then ψ(x) 6= 0, but γ(x) = 0
so that ψ ◦ γ(x) = 0, a contradiction. This finishes the proof.
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The next step is a reinterpretation of the tensor product in terms of the Hom-groups.

Lemma 2. Let M,N,Q A-modules, then there are natural isomorphisms

BilinA(M ×N,Q) ∼= HomA(M ⊗A N,Q) ; BilinA(M ×N,Q) ∼= HomA(M,HomA(N,Q))

where BilinA(M ×N,Q) is A-module of bilinear maps from M ×N to Q.

Proof. The first isomorphism is the universal property of the tensor product, namely it is given by sending a
bilinear map ψ to the map defined by m ⊗ n 7→ ψ(m,n). The second isomorphism is also obvious: given ψ ∈
BilinA(M ×N,Q), we have that for any m ∈ M , the map ψm : N → Q sending n ∈ N to ψm(n) := ψ(m,n) ∈ Q
is A-linear, i.e., ψm ∈ HomA(N,Q), and that the map sending m→ ψm is also A-linear. This means that ψ gives
an element in HomA(M,HomA(N,Q)) and one checks that both modules are isomorphic under this map (namely,
construct the obvious inverse).

We can now use these two lemmas to prove the following result.

Corollary 1. Let the above exact sequence of A-modules be given, then for any A-module P , there is an exact
sequence

M ′′ ⊗A P
β⊗id−→ M ′ ⊗A P

γ⊗id−→ M ⊗A P −→ 0 (2)

Note that this does not mean that β ⊗ id is injective.

Proof. The second part of the first lemma shows that it is sufficient to show that

0 −→ HomA(M ⊗A P,N)
(γ⊗id)∗−→ HomA(M ′ ⊗A P,N)

(β⊗id)∗−→ HomA(M ′′ ⊗A P,N)

is exact for any A-module N . By the second lemma, we know that this is equivalent to

0 −→ HomA(M,HomA(P,N))
(γ⊗id)∗−→ HomA(M ′,HomA(P,N))

(β⊗id)∗−→ HomA(M ′′,HomA(P,N))

but that this sequence is exact follows simply by applying the first part of the first lemma for Q := HomA(P,N).

2. Exterior product and the Grassmann varieties: We will use the exterior product to determine (in a special
case) the image of the Plücker embedding. This will show that the Grassmannian is a projective variety. We start
with a definition

Definition 0.1. Let A be a ring (we will use here only the case where A is a field) and M an A-module. Then we
define

p∧
A

M :=

M ⊗A . . .⊗A M︸ ︷︷ ︸
p times

 /N

where N is the submodule generated by all elements of the form m1⊗ . . .⊗mp such that there is i 6= j with mi = mj.
Denote by x1 ∧ . . . ∧ xp ∈

∧p
M the class of x1 ⊗ . . .⊗ xn. There is a homomorphism of A-modules∧p

M ⊗A

∧q
M −→

∧p+q
M

(x1 ∧ . . . ∧ xp)⊗ (y1 ∧ . . . ∧ yq) 7−→ x1 ∧ . . . ∧ xp ∧ y1 ∧ . . . ∧ yq

which satisfies x ∧ y = (−1)pqy ∧ x for all x ∈
∧p

M and y ∈
∧q

M (This can be expressed by saying that∧•
M := ⊕p≥0

∧p
M is a graded-commutative algebra, note that similarly ⊕p≥0⊗pM is a non-commutative algebra).

In particular, x ∧ y = −y ∧ x for any x, y ∈ M , this can of course already be seen from the very definition of the
exterior product.

Lemma 3. (a) Let M be a finitely generated free A-module, i.e., there are elements m1, . . . ,mk such that

Ak ∼= ⊕Aei → M
ei 7→ mi

is an isomorphism (here ei denots the ith standard basis vector of Ak). Then
p∧
M

∼=−→ A(k
p) ∼= ⊕1≤i1<...ip≤kA ei1 ∧ . . . ∧ eip

We denote the vector ei1 ∧ . . .∧ eip
∈
∧p

M by ei1,...,ip
. In particular,

∧k
M is free of rank one (with generator

e1,2,...,n = e1 ∧ . . . ∧ en), i.e., isomorphic to A and
∧p

M = 0 for all p > k.
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(b) For any f ∈ HomA(M,N) and any p ∈ N there is an induced homomorphism
∧p

f :
∧p

M →
∧p

N .
Let M ∼= ⊕k

i=1Aei, N ∼= ⊕l
j=1Aẽj and (Fji) ∈ M(l × k,A) the matrix of f with respect to e and ẽ (i.e.,

f(ei) =
∑l

j=1 Fjiẽj). Then the matrix of
∧p

f with respect to (ei1,...,ip
) and (ẽj1,...,jp

) is given by

(
p∧
f)(ei1,...,ip

) =
∑

1≤j1<...<ip≤l

(F j1,...,jp

i1,...,ip
) · ẽj1,...,jp

where F
j1,...,jp

i1,...,ip
is the determinant of the submatrix of (Fji) consisting of the i1, . . . , ip-th column and the

j1, . . . , jp-th row.

Proof. The first part simply follows from the properties of the exterior product, i.e.,(
n∑

i=1

λiei

)
∧

(
n∑

i=1

µiei

)
=
∑
i<j

(λiµj − µiλj)ei ∧ ej =
∑
i<j

∣∣∣∣ λi µi

λj µj

∣∣∣∣ ei ∧ ej

and similar for the higher exterior products. A similar calculation shows the second part (i.e., the last formula is

already the proof of (b) for the case p = 2, here (Fji) would be the matrix
(
λ1 λ2 . . . λn

µ1 µ2 . . . µn

)
.

This lemma allows us to rewrite the Plücker embedding as follows (in the sequel the ring A from above is the field
k).

Pl : Gr(l, n) −→ P(
∧l

kn) ∼= P(n
l)−1

L := span〈v1, . . . , vl〉 = span〈e ·A〉 7−→ v1 ∧ . . . ∧ vl = (
∑n

i=1Ai1ei) ∧ . . . ∧ (
∑n

i=1Ailei)

=
∑

1≤i1<...<il≤n

Ai1,...,il
ei1 ∧ . . . ∧ eil

Note that in order to link the notation to that of the last lemma, we can write L := im(A), where A : kl → kn

is defined as A(ei) =
∑n

j=1Ajiej for all i ∈ {1, . . . , l}. Then the minor Ai1,...,il
is (in the notation from above)

Ai1,...,il

1,...,l .

The homogenous coordinates on P(n
l)−1 are written as (λ1,...,1 : λ2,1...,1 : . . . : λi1,...,il

: . . .) so that Pl can be
expressed by saying that λi1...il

:= Ai1...il
. We see that any w ∈ P(

∧l
kn) is in the image of the Plücker map iff

there are vectors v1, . . . vn ∈ kn such that w = v1 ∧ . . . ∧ vn. Let us now specify to the case l = 2.

Lemma 4. A vector w ∈
∧2

kn lies in the image of the Plücker embedding if and only if w ∧ w = 0 in
∧4

kn.

Proof. We give an elementary proof: Let w =
∑

1≤i<j≤n λijeij , then

w ∧ w =
∑

1≤i<j<k<l≤n

(λijλkl − λikλjl + λilλjk) eijkl

which we write as

w ∧ w = (λ12λ34 − λ13λ24 + λ14λ23) e1234 +
∑

1≤i<j<k<l;l>4

(λijλkl − λikλjl + λilλjk) eijkl

We can suppose that at least one of the coefficients λ12, λ34, λ13, λ24, λ14λ23 is non-zero, if not, we have reduced the
length of the sum representing w by one and we continue inductively. So let λ14 6= 0. We set e(1)1 := λ14e1 +λ24e2 +
λ34e3, e

(1)
i := ei for all i > 1, and we obtain new coefficients λ(1)

ij defined by

w =
∑
i<j

λ
(1)
ij e

(1)
i ∧ e(1)j

The choice of e(1)1 implies that λ(1)
24 = λ

(1)
34 = 0 and λ

(1)
14 = 1. But the equation w ∧ w = 0 also gives λ(1)

12 λ
(1)
34 −

λ
(1)
13 λ

(1)
24 + λ

(1)
14 λ

(1)
23 = 0, so that λ(1)

23 = 0. This shows that we can write w as

w = e
(1)
1 ∧

(
λ

(1)
12 e

(1)
2 + λ

(1)
13 e

(1)
3 + λ

(1)
14 e

(1)
4

)
+

∑
i<j,j>4

λ
(1)
ij e

(1)
i ∧ e(1)j
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Now put: e(2)1 := e
(1)
1 , e(2)2 := λ

(1)
12 e

(1)
2 + λ

(1)
13 e

(1)
3 + λ

(1)
14 e

(1)
4 , e(2)i := e

(1)
i for all i > 2 and, as before, define the new

coefficients by
w =

∑
i<j

λ
(2)
ij e

(2)
i ∧ e(2)j

so that
w = e

(2)
1 ∧ e(2)2 +

∑
i<j;j>4

λ
(2)
ij e

(2)
i ∧ e(2)j (3)

We continue the expansion as

w = e
(2)
1 ∧ e(2)2 + λ

(2)
15 e

(2)
1 ∧ e(2)5 + λ

(2)
25 e

(2)
2 ∧ e(2)5 + λ

(2)
35 e

(2)
3 ∧ e(2)5 + λ

(2)
45 e

(2)
4 ∧ e(2)5 +

∑
i<j;j>5

λ
(2)
ij e

(2)
i ∧ e(2)j

On the other hand, the equation w ∧ w = 0 also gives

λ
(2)
12 λ

(2)
35 − λ

(2)
13 λ

(2)
25 + λ

(2)
15 λ

(2)
23 = 0 ; λ

(2)
12 λ

(2)
45 − λ

(2)
14 λ

(2)
25 + λ

(2)
15 λ

(2)
24 = 0

but as λ(2)
13 = λ

(2)
23 = λ

(2)
14 = λ

(2)
24 = 0 and λ(2)

12 = 1, we obtain λ(2)
35 = λ

(2)
45 = 0 so that

w = e
(2)
1 ∧ e(2)2 + λ

(2)
15 e

(2)
1 ∧ e(2)5 + λ

(2)
25 e

(2)
2 ∧ e(2)5 +

∑
i<j;j>5 λ

(2)
ij e

(2)
i ∧ e(2)j

= (e(2)1 − α
(2)
25 e

(2)
5︸ ︷︷ ︸

e
(3)
1

) ∧ (e(2)2 + α
(2)
15 e

(2)
5︸ ︷︷ ︸

e
(3)
2

) +
∑

i<j;j>5

λ
(2)
ij e

(2)
i ∧ e(2)j

so that by putting e(3)i = e
(2)
i for all i > 2, we obtain the same expression as equation (3), but with the index j > 5,

so that by induction, we can finish the proof.

Using this lemma, we can write down equations for the image of Pl, namely, with w =
∑

1≤i<j≤n λijeij ∈
∧2

kn,
we have, as already used in the proof, that

w ∧ w =
∑

1≤i<j<k<l≤n

(λijλkl − λikλjl + λilλjk) eijkl

This shows that
Im(Pl) = V (λijλkl − λikλjl + λilλjk)1≤i<j<k<l≤n

which is a closed subset of P(n
2)−1. In particular, for n = 4 we have a single equation Gr(2, 4) ∼= V (λ12λ34−λ13λ24 +

λ14λ23, where (λ12 : λ13 : λ14 : λ23 : λ24 : λ34) are the homogenous coordinates of P5.

The following considerations show that the canonical affine cover of Im(Pl : Gr(2, n) → P(n
2)−1) with respect to the

above coordinates can be simply described in terms of the matrices representing the point of Gr(2, n). Let

L = span

〈
(e) ·

(
a1 . . . ai . . . aj . . . an

b1 . . . bi . . . bj . . . bn

)tr
〉
∈ Gr(2, n)

and suppose that ai 6= 0 and that bj − bi
aj

ai
6= 0, then we may write

L = span

〈
(e) ·

(
ã1 . . . 1 . . . 0 . . . ãn

b̃1 . . . 0 . . . 1 . . . b̃n

)tr
〉
∈ Gr(2, n)

It is easy to see that the Plücker coordinate xij is equal to one, i.e, the subset{
L ∈ Gr(2, n) |L = span

〈
(e) ·

(
ã1 . . . 1 . . . 0 . . . ãn

b̃1 . . . 0 . . . 1 . . . b̃n

)tr
〉}

is precisely the affine chart Uij := Gr(2, n)∩{xij 6= 0}. As Pl is an isomorphism, we see that Pl−1(Uij) ∼= k2(n−1) ={
(ãk, b̃l)k,l 6=i,j

}
.
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