Local Rings and Localization

Local rings

By definition, a local ring is a (commutative) ring (with unit) with exactly one maximal ideal. The following exercises are hints to the proof of the

Lemma 1 A ring R is local iff (if and only if) the set

$$NU := \{a \in R \mid a \text{ is not a unit}\}$$

is an ideal in R.

- 1. Let $x \in R$. Show that x is a unit iff (x) = R. (Remember that (x) denotes the ideal generated by x in R).
- 2. Follow from Zorn's Lemma (which implies that any proper ideal in R is contained in a maximal ideal) that

$$NU = \bigcup_{\mathbf{m} \text{ is maximal in R}} \mathbf{m}$$

This is used to show \Rightarrow in the lemma.

- 3. Conversely, suppose that NU is an ideal in R. Show that it is maximal.
- 4. Deduce that there cannot be any other maximal ideal, so that R must be local, thus showing \Leftarrow of the above lemma.

To get used to work with local rings, here are some simple statements about them:

- 1. Show that if (R, \mathbf{m}) is local, then for any $x \in \mathbf{m}$, the element 1 + x is a unit in R.
- 2. Let R be a local ring and $I \subset R$ any ideal. Show that the factor ring R/I is also local.
- 3. Let $\mathbb{R}[[x_1, \ldots, x_n]]$ be the ring of formal power series over \mathbb{R} . Show that it is a local ring. Give an explicit expression for the inverse of 1+x for $x \in \mathbf{m}$. Show that the polynomial ring $\mathbb{R}[x_1, \ldots, x_n]$ is not local.

We will now specialize to one particular local ring, which already occurred in the lecture.

- 1. Let \mathcal{E}_n the ring (more precisely, the \mathbb{R} -algebra) of germs of smooth functions on \mathbb{R}^n at the origin. Show that this is a local ring. (Hint: the maximal ideal is given by all functions $f \in \mathcal{E}_n$ with f(0) = 0.)
- 2. For any local ring, define $k := R/\mathbf{m}$. Then k is a field, called the residue class field of (R, \mathbf{m}) . Show that the residue class field of \mathcal{E}_n is isomorphic to \mathbb{R} .
- 3. Let

$$\mathbf{m}^k := \underbrace{\mathbf{m} \cdot \ldots \mathbf{m}}_{k-times}$$

(recall that the product $I \cdot J$ of ideal is the ideal generated by all elements $f \cdot g$ with $f \in I$ and $g \in J$). Then we have a descending chain of ideals

$$R \supseteq \mathbf{m}^1 \supseteq \mathbf{m}^2 \supseteq \dots$$

(this is called a filtration by ideals). Show that the kernel of the surjective map of rings (even of \mathbb{R} -algebras):

$$T^k: \mathcal{E}_n \to \mathbb{R}[x_1, \dots, x_n]_{\leq k}; \quad f \longmapsto \sum_{|\nu| \leq k} \frac{1}{\nu!} (D^{\nu} f)(0) x^{\nu}$$

(the Taylor development) is exactly the ideal \mathbf{m}^{k+1} . What is the kernel of the full Taylor expansion map $T : \mathcal{E}_n \to \mathbb{R}[[x_1, \dots, x_n]]$?

4. Let (R, \mathbf{m}) be local and define by

$$H_R(d) := \dim_k(\mathbf{m}^d / \mathbf{m}^{d+1})$$

the Hilbert function of the local ring R. Calculate the Hilbert function for the following local rings

- (a) $R = \mathcal{E}_n, R = \mathbb{R}[[x_1, \dots, x_n]],$
- (b) $R = \mathbb{R}[[x, y]]/(xy),$
- (c) $R = \mathbb{R}[[x, y]]/(x^2 y^3).$
- 5. Consider the local ring $(\mathcal{E}_n, \mathbf{m})$ and let $\Psi := (\Psi_1, \dots, \Psi_n) \in (\mathbf{m})^n \subset (\mathcal{E}_n)^n = \mathcal{E}_{n,n}$ (caution: $(\mathbf{m})^n$ denotes the direct sum $\mathbf{m} \oplus \ldots \oplus \mathbf{m}$).
 - (a) Show that the substitution map (also called pull-back or inverse image)

$$\begin{array}{cccc} \Psi^*:R & \longrightarrow & R \\ f & \longmapsto & f \circ \Psi \end{array}$$

is an algebra homomorphism preserving the identity. Show further that $\Psi^*(\mathbf{m}^k) \subset \mathbf{m}^k$. (b) Deduce from (a) that Ψ induces linear maps

$$(\Psi^*)_k : \mathbf{m}^k / \mathbf{m}^{k+1} \longrightarrow \mathbf{m}^k / \mathbf{m}^{k+1}.$$

Show that Ψ is an automorphism iff $(\Psi^*)_1$ is invertible.

Localization

Here is a way to construct systematically local rings from arbitrary ones. Let R be a commutative ring with unit and $S \subset R$ be any subset of R. We say that S is mutiplicatively closed iff it contains 1 and iff for any $a, b \in S$ we have $a \cdot b \in S$. Given such a multiplicatively closed subset $S \subset R$, we define the ring of fractions $S^{-1}R$ to be the set of equivalence classes of pairs $(a,b) \in R \times S$ with respect to the relation $(a,b) \sim (a',b')$ iff there exists an $r \in S$ such that $r(a \cdot b' - a' \cdot b) = 0$. This set acquires a ring structure by putting (a,b) + (a',b') := (ab' + ba',bb') and $(a,b) \cdot (a',b') := (aa',bb')$. For notational convenience, we denote by $\frac{a}{b}$ the equivalence class of (a,b).

- 1. Show that $S^{-1}R$ is again commutative with unit.
- 2. Let \mathfrak{p} be a prime ideal of R. Show that $S := R \setminus \mathfrak{p}$ is multiplicatively closed, so that we can form the ring $S^{-1}R$, which is denoted by $R_{\mathfrak{p}}$.
- 3. Let R be an integral domain, $S \subset R$ multiplicatively closed with $0 \notin S$ and $i: R \to S^{-1}R$ be the map defined by $r \mapsto (r, 1)$. Show that i is an injective ring homomorphism.
- 4. Let R integral and $S := R \setminus \{0\}$ which is obviously multiplicatively closed. Show that $S^{-1}R$ is a field, which is called the quotient field of R and denoted by Q(R). What are the quotient fields of \mathbb{Z} and of $\overline{\mathbb{Z}}$ (ring of algebraic integers)?
- 5. Let $\mathfrak{p} \subset R$ prime. Show that $R_{\mathfrak{p}}$ is a local ring and describe its maximal ideal.
- 6. Consider again the polynomial ring $R = \mathbb{R}[x_1, \ldots, x_n]$ and the maximal ideal **m** generated by x_1, \ldots, x_n . Decide whether the local rings $R_{\mathbf{m}}$ and $\mathbb{R}[[x_1, \ldots, x_n]]$ are isomorphic.