
Numerical Stability of Fast Trigonometric Transforms –

A Worst Case Study

D. Potts

Institute of Mathematics

Medical University of Luebeck

D – 23560 Luebeck, Germany

e–mail: potts@math.mu-luebeck.de

G. Steidl

Faculty of Mathematics and Informatics

University of Mannheim

D – 68131 Mannheim, Germany

e–mail: steidl@math.uni-mannheim.de

M. Tasche∗

Department of Mathematics

University of Rostock

D – 18051 Rostock, Germany

e–mail: manfred.tasche@mathematik.uni-rostock.de

Abstract

This paper presents some new results on numerical stability for various fast trigono-
metric transforms. In a worst case study, we consider the numerical stability of
the classical fast Fourier transform (FFT) with respect to different precomputation
methods for the involved twiddle factors and show the strong influence of precompu-
tation errors on the numerical stability of the FFT. The examinations are extended
to fast algorithms for the computation of discrete cosine and sine transforms and to
efficient computations of discrete Fourier transforms for nonequispaced data. Nu-
merical tests confirm the theoretical estimates of numerical stability.

∗

Contact author: Manfred Tasche, Mailing address: Department of Mathematics,University
of Rostock,D – 18051 Rostock, Germany, Tel. 0049 / 381 – 498 – 1549, Fax 0049 / 381 – 498 –
1520, e–mail: manfred.tasche@mathematik.uni-rostock.de

1

2 Daniel Potts, Gabriele Steidl, and Manfred Tasche

2000 AMS subject classification: 65T50, 65G50, 94A11.

Key words and phrases: Numerical stability, roundoff error, worst case study, fast
trigonometric transform, fast Fourier transform, fast cosine transform, fast Fourier
transform for nonequispaced data.

1 Introduction

Discrete Fourier transforms and related discrete trigonometric transforms (such as
discrete cosine transforms and discrete sine transforms) have found wide applications
in numerical analysis and digital signal processing (see [15, 5]). Repeated use of
discrete Fourier transforms occurs in fast convolutions and deconvolutions (see [15,
pp. 205 – 209]), more general in solving of Toeplitz–plus–Hankel systems [11, 17].
If the transform length is large, then it is important to have fast and numerically
stable realizations of discrete Fourier transforms.
In this paper we consider the numerical stability of the fast Fourier transform (FFT).
In a worst case study, we show that various precomputation schemes of twiddle fac-
tors lead to different behaviour of the numerical stability of the FFT. As always
observed in [20], the twiddle factors can be the dominate source of roundoff errors.
As conclusion, these twiddle factors should be pretabulated to high accuracy. The
methods of repeated subvector scaling and recursive bisection possess both low com-
plexity and good numerical stability. On the other hand, the often used method of
forward recursion leads to a bad numerical stability of the FFT.
We use the following concept of numerical stability: Let x = (xk)

N−1
k=0 ∈ C

N be an
arbitrary input vector, FN ∈ C

N,N be the unitary Fourier matrix

FN := N−1/2(wjk
N)N−1

j,k=0 , wN := e−2πi/N (1.1)

and y := FNx be the exact output vector. Let ŷ ∈ C
N be the vector computed by

floating point arithmetic with unit roundoff u. Then ŷ can be represented in the
form

ŷ = FN (x + ∆x) (∆x ∈ C
N) .

By ‖x‖2 :=
(
∑N−1

k=0 |xk|2
)1/2

we denote the Euclidean norm of x. An algorithm
used for computing FNx is called normwise backward stable (see [13, p. 142]), if
there exists a positive constant kN with kNu� 1 such that for all vectors x ∈ C

N

‖∆x‖2 ≤
(

kN u+ O(u2)
)

‖x‖2 . (1.2)

Note that the size of kN , i.e. its asymptotic behaviour with respect to N , is a
natural measure of numerical stability for the used algorithm. Since FN is unitary,
we conclude that

‖∆x‖2 = ‖FN (∆x)‖2 = ‖ŷ − y‖2 , ‖x‖2 = ‖FNx‖2 = ‖y‖2 .

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 3

Consequently, we have also normwise forward stability by

‖ŷ − y‖2 ≤
(

kN u+ O(u2)
)

‖y‖2 .

An important example of a fast and numerically stable algorithm is the FFT. For
the Cooley–Tukey and Gentleman–Sande algorithms with N = 2n (see [15, pp. 17 –
22, 64 – 75]), G. U. Ramos [18], C. Y. Chu [7], M. Arioli et al. [1] and P. Y. Yalamov
[28] have shown that kN = O(logN) under the assumption that all twiddle factors
are exactly known or precomputed by direct call. See also [12, pp. 9 – 14]. These
results can be proved by a clever factorization of the Fourier matrix into a product
of sparse unitary matrices which goes back to C. F. Gauss (see [15, pp. 20 – 21]).
Using this factorization technique, M. Tasche and H. Zeuner have recently presented
both worst case and average case analysis of roundoff errors for various FFTs (see
[24, 25]) and for different precomputation methods of twiddle factors (see [26]).
This paper is organized as follows: In Section 2, we consider seven different methods
for the precomputation of complex exponentials and present corresponding error
estimates in binary floating point arithmetic. We are interested in methods with
low complexity and small roundoff error. A new unified approach to error estimates
with small constants is derived by means of difference equations. In Section 3,
we consider the numerical stability for the direct computation of discrete Fourier
transforms and for the FFT (Cooley–Tukey and Gentleman–Sande algorithm) with
precomputed twiddle factors. We examine the dependence of the numerical stability
of the FFT on precomputation errors. The stability estimates are mainly based on
the factorization of the Fourier matrix into a product of unitary sparse matrices.
Numerical tests illustrate the theoretical results. In Section 4, we consider fast
algorithms for discrete cosine transforms (DCT) and discrete sine transforms (DST).
We obtain remarkably stable realizations of DCT and DST by using FFT. Finally
in Section 5, we describe a fast and robust algorithm for the computation of discrete
Fourier transforms for nonequispaced data.

2 Precomputation of roots of unity

In the following, we use the standard model of binary floating point arithmetic in
R (see [13], p. 44). If ξ ∈ R is represented by the floating point number fl (ξ), then

fl (ξ) = ξ (1 + ε) (|ε| ≤ u) ,

where u denotes the unit roundoff (or machine precision). For arbitrary ξ, η ∈ R

and any operation ◦ ∈ {+,−,×, /} the exact value ξ ◦ η and the computed value
fl (ξ ◦ η) are related by

fl (ξ ◦ η) = (ξ ◦ η)(1 + ε◦) (|ε◦| ≤ u) .

In the case of single precision (24 bits for the mantissa (with 1 sign bit), 8 bits for
the exponent), we have u = 2−24 ≈ 5.96× 10−8 and for double precision (53 bits for

4 Daniel Potts, Gabriele Steidl, and Manfred Tasche

the mantissa (with 1 sign bit), 11 bits for the exponent) u = 2−53 ≈ 1.11 × 10−16.
Since complex arithmetic is implemented using real operations, the complex floating
point error model is a consequence of the corresponding real arithmetic model (see
[13, pp. 78 – 80]). For arbitrary ξ, η ∈ C, we have

fl (ξ + η) = (ξ + η)(1 + ε+) (|ε+| ≤ u),

fl (ξη) = ξ η (1 + ε×)
(

|ε×| ≤ 2
√

2u

1 − 2u
= 2

√
2u+ O(u2)

)

.
(2.1)

For simplicity, we omit the O(u2)–term and use 2
√

2u as upper bound of |ε×|. Note
that C. Y. Chu [7] has obtained a better upper bound of |ε×| in (2.1), namely
(1 +

√
2)u. But the best possible upper bound of |ε×| is 4

√
3u/3, see [26]. In

particular, if ξ ∈ R ∪ iR and η ∈ C, then

fl (ξη) = ξ η (1 + ε×) (|ε×| ≤ u). (2.2)

Now we compare different methods for precomputing wk
N (k = 1, . . . , N − 1) with

N := 2n andNj := 2−jN (j = 0, . . . , n) (see [7], [15, pp. 23 – 28]). Using symmetries
of the complex exponentials, we only need to precompute N3 − 1 values wk

N (k =
1, . . . , N3 − 1). The other complex exponentials wl

N (l = N3, . . . , N − 1) can be
obtained by

ŵN2−k
N := −i ŵk

N , ŵN2+k
N := −i ŵk

N , ŵN1−k
N := − ŵk

N , ŵN1+k
N := − ŵk

N

for k = 1, . . . , N3 − 1 and by

ŵN3

N := ŵ8 = fl
(√

2/2
)

(1 − i) , ŵN2

N := w4 = −i , ŵN1

N := w2 = −1 .

The most obvious method is to call repeatedly library routines for cosine and sine
functions:

Algorithm 2.1 (Direct call)
Input: N := 2n (n ≥ 4), ϕ := 2π/N .

For k = 1 (1)N3 − 1 form

ŵk
N := fl (cos(kϕ)) − i fl (sin(kϕ)) .

Output: ŵk
N precomputed value of wk

N (k = 1, . . . , N3 − 1).

This algorithm involves almost N2 trigonometric function calls. If the cosine and
sine functions are quality library routines, then very accurate roots of unity are
precomputed such that with some c > 0

|ŵk
N − wk

N | ≤ c u (k = 1, . . . , N3 − 1). (2.3)

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 5

Let us assume that cosine and sine are internally computed with higher precision
and then rounded towards the next binary floating point number. Within [−1, 1]
these floating point numbers are spaced with a distance ≤ u. Therefore we have

| fl (cos (kϕ)) − cos (kϕ)| ≤ u/2 , | fl (sin (kϕ)) − sin (kϕ)| ≤ u/2

such that c =
√

2/2 in (2.3). Since direct calls are time consuming, we consider
other methods for on–line computation of wk

N .
The next algorithm uses only two trigonometric function calls and is based on re-
peated multiplication wk

N = wN wk−1
N :

Algorithm 2.2 (Repeated multiplication)
Input: N := 2n (n ≥ 4), ϕ := 2π/N .

1. Form by direct call

ŵN := fl (cos ϕ) − i fl (sin ϕ) .

2. For k = 2 (1)N3 − 1 form

ŵk
N := fl

(

ŵN ŵk−1
N

)

.

Output: ŵk
N precomputed value of wk

N (k = 1, . . . , N3 − 1).

Since one complex multiplication requires 4 real multiplications and 2 real additions
(i.e. 6 flops), a total of 6 (N3 − 1) < 3N2 flops and 2 function calls are involved.
Using Algorithm 2.2, it follows from (2.1) that

ŵk
N = ŵN ŵk−1

N (1 + ε×k) = wN ŵk−1
N + µk (k ≥ 2) , (2.4)

where
µk := Ω1 ŵ

k−1
N + ε×k ŵN ŵk−1

N = Ω1w
k−1
N + ε×k w

k
N + O(u2) ,

|ε×k | ≤ 2
√

2u, and Ω1 := ŵN − wN . As usual, we omit the O(u2)–term such that
|µk| ≤ 5

√
2u/2. Setting Ωk := ŵk

N − wk
N , we obtain by (2.4) that

Ωk = wN Ωk−1 + µk (k ≥ 1)

with Ω0 := 0, µ1 := Ω1. Then the solution of this two–term recursion reads as
follows

Ωk =
k
∑

j=1

µj w
k−j
N

such that

|ŵk
N − wk

N | = |Ωk| ≤
k
∑

j=1

|µj| ≤ c u k (k = 1, . . . , N3 − 1) (2.5)

6 Daniel Potts, Gabriele Steidl, and Manfred Tasche

with c := 5
√

2/2.
The third method combines the accuracy of Algorithm 2.1 with the arithmetical
simplicity of Algorithm 2.2 by using the fact that

(

w2j+k
N

)2j−1

k=1
= w2j

N

(

wk
N

)2j−1

k=1
(j = 1, . . . , n− 4).

Algorithm 2.3 (Repeated subvector scaling)
Input: N := 2n (n ≥ 5).
1. For j = 0 (1)n− 4 form

ŵNj
= ŵ2j

N := fl (cos ϕj) − i fl (sin ϕj)

with ϕj := 2π/Nj by direct call.

2. For j = 1 (1)n− 4 multiply

(

ŵ2j+k
N

)2j−1

k=1
:= fl

(

ŵNj

(

ŵk
N

)2j−1

k=1

)

.

Output: ŵk
N precomputed value of wk

N (k = 1, . . . , N3 − 1).

This algorithm requires about 3N2 flops and 2n − 3 < 2 log2N function calls. By
the same method as before we can estimate the roundoff error

|ŵk
N − wk

N | ≤
{ √

2u/2 k = 2j (j = 0, . . . , n− 4),

5
√

2 (j + 1)u/2 2j < k < 2j+1 (j = 1, . . . , n− 4) .

Thus we obtain

|ŵk
N − wk

N | ≤ 5
√

2 (n− 3)u/2 (k = 1, . . . , N3 − 1) . (2.6)

This is a fast and stable method and therefore very convenient for practical imple-
mentations of FFT.
The next algorithm uses the fact that wk

N satisfies the three–term recursion

wk
N = τ wk−1

N − wk−2
N (k ≥ 2) (2.7)

with the real multiplicator τ = 2 cosϕ (ϕ := 2π/N). In other words, both ak =
sin(kϕ) and ak = cos(kϕ) fulfill

ak = τ ak−1 − ak−2 (k ≥ 2) .

Algorithm 2.4 (Forward recursion)
Input: N := 2n (n ≥ 4), ϕ := 2π/N .

1. Set ŵ0
N := 1 and evaluate by direct call

τ̂ := 2 fl (cosϕ) , ŵ1
N = fl (cosϕ) − i fl (sinϕ) .

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 7

2. For k = 2 (1)N3 − 1 form

ŵk
N = fl

(

τ̂ ŵk−1
N − ŵk−2

N

)

. (2.8)

Output: ŵk
N precomputed value of wk

N (k = 1, . . . , N3 − 1).

The forward recursion uses only 4 (N3 − 2) < N1 flops and 2 direct calls. Now we
estimate the roundoff error of ŵk

N computed with Algorithm 2.4. Since the binary
floating point numbers of the interval [1, 2] are equispaced with the distance 2u, we
can assume that τ̂ = τ + δτ ∈ R (|δτ | ≤ u). Using (2.1) – (2.2), it follows from (2.8)
that

ŵk
N =

(

(τ + δτ) ŵk−1
N (1 + ε×k) − ŵk−2

N

)

(1 + ε+k)

= τ ŵk−1
N − ŵk−2

N + µk (2.9)

with |ε×k |, |ε+k | ≤ u and

µk = τ wk−1
N ε×k + δτ wk−1

N − wk−2
N ε+k + O(u2) .

As usual, we omit the O(u2)–term in µk such that

|µk| ≤ (τ + 2)u ≤ 4u (k ≥ 2) .

Setting Ωk := ŵk
N − wk

N , we obtain by (2.7) and (2.9)

Ωk = τ Ωk−1 − Ωk−2 + µk (k ≥ 2) (2.10)

with Ω0 := 0 and Ω1 := ŵ1
N − wN .

Lemma 2.5 The inhomogeneous three–term recursion (2.10) has the solution

Ωk =

k
∑

j=1

µj
sin(k − j + 1)ϕ

sinϕ
(2.11)

with µ1 := ŵ1
N − wN .

The proof is a straightforward calculation and therefore omitted. Note that

g(j, k) :=
sin(|k − j| + 1)ϕ

sinϕ

is the discrete Green function of (2.10) (see [8, pp. 164 – 167]). By (2.11) and

k−1
∑

j=1

sin(jϕ)

sinϕ
=

1

2

(

1 − cos(kϕ)

1 − cosϕ
− sin(kϕ)

sinϕ

)

(k ≥ 2) (2.12)

8 Daniel Potts, Gabriele Steidl, and Manfred Tasche

we can estimate for k = 1, . . . , N3 − 1

|ŵk
N − wk

N | = |Ωk| ≤
k
∑

j=1

|µj|
sin(k − j + 1)ϕ

sinϕ

≤ 2u
sin(kϕ)

sinϕ
+ 4u

k−1
∑

j=1

sin(jϕ)

sinϕ
= 2u

1 − cos(kϕ)

1 − cosϕ
.

Hence we obtain the estimate

|ŵk
N − wk

N | ≤ 2 k2 u (k = 1, . . . , N3 − 1) .

This popular method is “unstable” and hence unsuitable for practical implementa-
tion of FFT.
In order to improve the “stability” of Algorithm 2.4 , C. Reinsch (see [8, p. 173])
has proposed the following procedure. By (2.7) we have

wk−1
N − wk

N = σ wk−1
N + wk−2

N − wk−1
N

with σ := 2 − τ = (2 sinϕ/2)2. Setting dk := wk−1
N − wk

N , we obtain a system of
two–term recursions

dk = σ wk−1
N + dk−1 ,

wk
N = wk−1

N − dk
(k ≥ 2) ,

where d1 := 1 − wN , w1
N := wN . This leads to:

Algorithm 2.6 (Stabilized forward recursion)
Input: N = 2n (n ≥ 5), ϕ := 2π/N .

1. Evaluate by direct call

σ̂ := fl
(

(fl (2 sinϕ/2))2
)

, ŵ1
N := fl (1 − σ̂/2)− i fl (sinϕ) , d̂1 = σ̂/2 + i fl (sinϕ) .

2. For k = 2 (1)N3 − 1 form

d̂k := fl
(

σ̂ ŵk−1
N + d̂k−1

)

, ŵk
N := fl

(

ŵk−1
N − d̂k

)

. (2.13)

Output: ŵk
N precomputed value of wk

N (k = 1, . . . , N3 − 1).

Algorithm 2.6 requires 6(N3 − 2) + 2 < 3N2 flops and 2 direct calls. Now we
estimate the roundoff error of ŵk

N computed by Algorithm 2.6. The precomputation
of σ̂ yields σ̂ = σ + δσ ∈ R with |δσ| ≤ 3ϕ2 u. Using (2.1) – (2.2), from (2.13) it
follows that

d̂k =
(

(σ + δσ) ŵk−1
N (1 + ε×k) + d̂k−1

)

(1 + ε+k)

= σ ŵk−1
N + d̂k−1 + µk (2.14)

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 9

with |ε×k |, |ε+k | ≤ u and µk = σ wk−1
N ε×k + dk ε

+
k + wk−1

N δσ + O(u2) and further

ŵk
N = (ŵk−1

N − d̂k)(1 + ε−k) = ŵk−1
N − d̂k + νk (2.15)

with |ε−k | ≤ u and νk = wk
N ε−k + O(u2). Again we omit the O(u2)–terms in µk

and νk such that |µk| ≤ (ϕ + 4ϕ2)u and |νk| ≤ u. Setting Ωk := ŵk
N − wk

N and

∆k := d̂k − dk, we obtain by (2.13) – (2.15)

∆k = σΩk−1 + ∆k−1 + µk ,
Ωk = Ωk−1 − ∆k + νk

(k = 2, . . . , N3 − 1) , (2.16)

where ∆1 := d̂1 − d1 and Ω1 := ŵN − wN such that |∆1| ≤ 3
2 ϕ

2 u + ϕu and

|Ω1| ≤ 1
2

√
2u. With σ = 2 − τ , we conclude from (2.16) that

Ωk = τ Ωk−1 − Ωk−2 + νk − νk−1 − µk (k = 2, . . . , N3 − 1)

with Ω0 := 0, Ω1 := ŵN−wN and ν1 := Ω1+∆1. By Lemma 2.5, this inhomogeneous
three–term recursion has the solution

Ωk = (ŵN − wN)
sin(kϕ)

sinϕ
+

k
∑

j=2

(νj − νj−1 − µj)
sin(k − j + 1)ϕ

sinϕ

= (ŵN − wN − ν1)
sin(kϕ)

sinϕ
+ νk +

k−1
∑

j=2

νj
sin(k − j + 1)ϕ− sin(k − j)ϕ

sinϕ

−
k
∑

j=2

µj
sin(k − j + 1)ϕ

sinϕ
.

Using (2.12) and ŵN − wN − ν1 = −∆1, we obtain for k = 2, . . . , N3 − 1

|Ωk| ≤ sin(kϕ)

sinϕ

(3

2
ϕ2 + ϕ

)

u+ u+
sin(k − 1)ϕ− sinϕ

sinϕ
u

+
1

2

(1 − cos(kϕ)

1 − cosϕ
− sin(kϕ)

sinϕ

)

(ϕ+ 4ϕ2)u

≤
(1

2
(ϕ− ϕ2) k + k − 1

)

u+ (
1

2
+ 2ϕ)ϕk2u .

Since kϕ ≤ π/4, we can estimate

|ŵk
N − wk

N | ≤
(

1 +
π

8

)

(k + 1)u (k = 1, . . . , N3 − 1) .

Using the trigonometric identities

cos(2s +m)ϕ = 2 cos(2sϕ) cos(mϕ) − cos(2s −m)ϕ ,

sin(2s +m)ϕ = 2 cos(2sϕ) sin(mϕ) + sin(2s −m)ϕ

10 Daniel Potts, Gabriele Steidl, and Manfred Tasche

we obtain the recursion

w2s+m
N = τ2s wm

N − w2s−m
N (2.17)

with τ2s := 2Rew2s

N . If w2s

N (s = 0, . . . , n− 4) are precomputed by direct call, then
the rest of roots of unity can be derived recursively by (2.17).

Algorithm 2.7 (Logarithmic recursion)

Input: N = 2n (n ≥ 5), ϕ := 2π/N .

1. For s = 0 (1)n− 4 form by direct call

ŵ2s

N := fl (cos(2sϕ)) − i fl (sin(2sϕ)) .

2. For s = 1 (1)n− 4 compute

j := 2s , τ̂j := 2 fl
(

Re ŵj
N

)

and for m = 1 (1) j − 1 form

ŵj+m
N := fl

(

τ̂jŵ
m
N − ŵj−m

N

)

. (2.18)

Output: ŵk
N precomputed value of wk

N (k = 1, . . . , N3 − 1).

This algorithm requires almost N1 flops and 2(n − 3) < 2 log2N direct calls. Now
we sketch an estimate of the roundoff error. Assume that τ̂j = τj + δτ

j (|δτ
j | ≤ u).

Using (2.1) – (2.2), from (2.18) it follows that

ŵj+m
N := τjŵ

m
N − ŵj−m

N + µj,m (2.19)

with

µj,m = τj w
m
N ε×j,m + δτ

j w
m
N + wj+m

N ε+j,m + O(u2) (|ε×j,m|, |ε+j,m| ≤ u) .

Omitting the O(u2)–term, we see that |µj,m| ≤ 4u. Then we obtain by (2.17) and
(2.19) that

Ωj+m = τj Ωm − Ωj−m + µj,m

and hence

|Ωj+m| ≤ 2 |Ωm| + |Ωj−m| + 4u .

By induction one can show that

|ŵk
N − wk

N | = |Ωk| ≤ ((

√
2

2
+ 2)k − 2)u (k = 1, . . . , N3 − 1).

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 11

The last method of recursive bisection (see [6]) is based on recursive application of
the trigonometric identities

cosα =
1

2 cosβ

(

cos(α− β) + cos(α+ β)
)

,

sinα =
1

2 cosβ

(

sin(α− β) + sin(α+ β)
)

.

Assume that w2s

N = wNs
(s = 0, . . . , n − 3) are precomputed by direct call. Then

the other roots of unity wj
N (j = 1, . . . , N3 − 1) can be determined stepwise by

wj
N = hp (wj−p

N + wj+p
N) , (2.20)

where hp := (2Rewp
N)−1 = (2 cos(pϕ))−1 and p is the largest power of 2 dividing j.

Algorithm 2.8 (Recursive bisection)

Input: N = 2n (n ≥ 5), ϕ := 2π/N .

1. For s = 0 (1)n− 3 form by direct call

ŵ2s

N := fl (cos(2sϕ)) − i fl (sin(2sϕ)) .

2. For s = 1 (1)n− 4 compute

p := 2n−s−4 , ĥp := fl
(

fl
(

(2Re ŵp
N)
)−1
)

and for j = 3p (2p)N3 − p form

ŵj
N := fl

(

ĥp(ŵ
j−p
N + ŵj+p

N)
)

.

Output: ŵk
N precomputed value of wk

N (k = 1, . . . , N3 − 1).

This algorithm requires 4 (N3 − n) < N1 flops and 2(n − 2) < 2 log2N direct
calls. Now we estimate the roundoff error of ŵk

N computed by Algorithm 2.8. The

computation of ĥp yields ĥp = hp (1 + εh
p) ∈ R with |εh

p | ≤ 2u.
Using (2.1) – (2.2), it follows that

ŵj
N = hp (1 + εh

p)(ŵj−p
N + ŵj+p

N)(1 + ε+j)(1 + ε×j)

= hp (ŵj−p
N + ŵj+p

N) + µj , (2.21)

where |ε+j |, |ε×j | ≤ u and µj = wj
N (ε+j + ε×j + εh

p)+O(u2). We omit the O(u2)–term
in µj such that |µj| ≤ 4u. By (2.20) and (2.21) we obtain

Ωj = hp (Ωj−p + Ωj+p) + µj . (2.22)

12 Daniel Potts, Gabriele Steidl, and Manfred Tasche

By direct call we know that

|Ω2s | ≤
√

2u/2 (s = 0, . . . , n− 3) .

Now we show that

|ŵj
N − wj

N | = |Ωj | ≤ 3
log2 j�u (j = 3, . . . , N3 − 1) . (2.23)

Similar to Algorithm 2.6 we estimate |Ωj| by (2.22). Without lost of generality we
consider only j ∈ {N4 +1, . . . , N3−1}, i.e.
log2 j� = n−3. It is sufficient to prove
by induction on s that

|Ωj | ≤ (2 + 3 s)u , (2.24)

if 2n−s−4 is the largest power of dividing j. For s = 1, i.e. p = 2n−5 and hp =
(2 cos(π/16))−1 <

√
2/2, we have by (2.22)

Ω3p = hp (Ω2p + Ω4p) + µ3p

and hence |Ω3p| ≤ 5u. For s = 2, i.e. p = 2n−6 and hp = (2 cos(π/32))−1, we have
by (2.22)

Ω5p = hp (Ω4p + Ω6p) + µ5p

and hence |Ω5p| ≤ 8u. The same estimate is true for |Ω7p|.
For s ∈ {3, . . . , n − 4} (n ≥ 7), i.e. p = 2n−s−4 and hp = (2 cos(pϕ))−1 = 1/2 + δp
with 0 < δp < 4−s, we have by (2.22) with j = N4 + p (2p)N3 − p

|Ωj | ≤ (1/2 + δp)(|Ωj−p| + |Ωj+p|) + 4u .

Note that |Ωj−p| and |Ωj+p| have been estimated before in different “levels” s − 1
and ≤ s− 2 such that

|Ωj−p| + |Ωj+p| ≤ (6 s− 5)u .

By simple calculations it follows (2.24). This completes the proof of (2.23) for
j ∈ {N4 + 1, . . . , N3 − 1}.

3 Numerical stability of FFT

Let x = (xk)
N−1
k=0 ∈ C

N be an arbitrary input vector and y := FNx be the exact
output vector. Further let ŷ be the computed output vector using floating point
arithmetic with unit roundoff u.
First we consider the direct computation of FNx.

Theorem 3.1 Let N = 2n. Assume that

|ŵk
N − wk

N | ≤ cN u (k = 1, . . . , N − 1) .

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 13

Then the direct computation of FNx is normwise backward stable with the constant

kN =

{

N1/2(N + 2 + cN) for recursive summation,

N1/2(log2N + 3 + cN) for cascade summation.

Proof. 1. For arbitrary x, y ∈ C
N , we evaluate xTy by recursive and cascade

summation, respectively. Then we obtain for the roundoff error (see [13, p. 539 and
p. 69]) that

| fl
(

xTy
)

− xTy| ≤







(N+2)u
1−(N+2) u |x|T |y| for recursive summation,

(n+3)u
1−(n+3)u |x|T |y| for cascade summation,

where |x| := (|xj|)N−1
j=0 .

2. The above result can be extended to the matrix–vector product FNx. Setting

F̂N := N−1/2 (ŵjk
N)N−1

j,k=0 ,

a direct computation of FNx with precomputed roots of unity yields the componen-
twise estimate

| fl
(

F̂Nx
)

−FNx| ≤
{

(

(N + 2 + cN)u+ O(u2)
)

|FN | |x| for recursive summation,
(

(n+ 3 + cN)u+ O(u2)
)

|FN | |x| for cascade summation

with |FN | := N−1/2 (1)N−1
j,k=0. Note that ‖ |x| ‖2 = ‖x‖2 and that the spectral norm

‖ |FN | ‖2 = N1/2. Taking the Euclidean norm of above inequality, we obtain

‖fl
(

F̂Nx
)

−FNx‖2 ≤
{

(

N1/2(N + 2 + cN)u+ O(u2)
)

‖x‖2 for recursive summation,
(

N1/2(n+ 3 + cN)u+ O(u2)
)

‖x‖2 for cascade summation.

This completes the proof.

For direct computation of FNx, where the entries of FN are precomputed by direct
call, the roundoff error is relatively large, namely

kN =

{

O(N3/2) for recursive summation,

O(N1/2 log2N) for cascade summation.

Now we consider the roundoff error of FFT. We will see that FFT is very stable
provided that accurately precomputed twiddle factors are used. Further we will
show that FFT is very sensitive for errors of precomputation. The results are mainly
based on a factorization of FN into a product of sparse unitary matrices. As known

14 Daniel Potts, Gabriele Steidl, and Manfred Tasche

(see [15, pp. 17 – 18]), the Cooley–Tukey algorithm for computing FNx corresponds
to the factorization

FN = 2−n/2 M
(n)
N M

(n−1)
N . . . M

(1)
N BN (N = 2n), (3.1)

where BN is the bit–reversal permutation matrix and M
(j)
N is the Kronecker product

M
(j)
N := INj

⊗ A2j (j = 1, . . . , n; Nj = N/2j) (3.2)

with

A2j :=

(

I2j−1 W2j−1

I2j−1 −W2j−1

)

, W2j−1 := diag
(

wk
2j

)2j−1−1

k=0
. (3.3)

Clearly, M
(j)
N contains only 2 nonzero entries in each row and column, respec-

tively. The nontrivial entries
= ±1 of M
(j)
N are called twiddle factors. Furthermore,

2−1/2 M
(j)
N is unitary, since

A2j (A2j)T = 2 I2j

and hence

1

2
M

(j)
N (M

(j)
N)T =

1

2
(INj

⊗ A2j A
T
2j) = INj

⊗ I2j = IN .

Consequently, for 0 ≤ j < k ≤ n we see that the matrix product

(2−1/2 M
(k)
N) . . . (2−1/2 M

(j+1)
N)

is also unitary and has the spectral norm 1, i.e.

‖M(k)
N . . .M

(j+1)
N ‖2 = 2(k−j)/2. (3.4)

We summarize:

Algorithm 3.2 (Cooley–Tukey Algorithm)
Input: N := 2n (n ≥ 5), x ∈ C

N .

0. Precompute wk
N (k = 1, . . . , N1 − 1) by a method of Section 2.

1. Permute

x0 := BNx.

2. For j = 1 (1)n form

xj := M
(j)
N xj−1.

3. Multiply

y := 2−n/2xn.

Output: y = FNx.

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 15

Algorithm 3.2 is an example of a decimation–in–time FFT. Since all twiddle factors

are precomputed by one of the algorithms in Section 2, we use matrices M
(j)
N with

precomputed entries ŵk
N in step 2. These matrices will be denoted by M̂

(j)
N . Now

we describe the influence of the precomputed twiddle factors and the floating point

arithmetic in the roundoff error of the FFT. Assume that the entries wk
2j = w

Njk
N

(j = 3, . . . , n ; k = 1, . . . , 2j−1−1) of M
(j)
N (see (3.2) – (3.3)) have been precomputed

up to an absolute error at most cN u. By Section 2, we have

|ŵNjk
N − wk

2j | ≤ cN u , (3.5)

where

cN :=























































√
2

2 for direct call,

5
√

2
16 N for repeated multiplication,

5
√

2
2 log2N for repeated subvector scaling,

1
32 N

2 for forward recursion,
8+π
64 N for stabilized forward recursion,
√

2+4
16 N for logarithmic recursion,

3 log2N for recursive bisection.

.

Theorem 3.3 Let N = 2n (n ≥ 5). Assume that

|ŵNjk
N − wk

2j | ≤ cN u (j = 3, . . . , n; k = 1, . . . , 2j−1 − 1) .

Then the Cooley–Tukey Algorithm 3.2 is normwise backward stable with the constant

kN = (
√

2 cN + 4 +
√

2) log2N . (3.6)

As always observed in [20], the twiddle factors can be the dominate source of roundoff
error. Theorem 3.3 implies that

kN =



























O(log2N) for direct call,

O((log2N)2) for repeated subvector scaling and recursive bisection,

O(N log2N) for repeated multiplication, stabilized forward recursion
and logarithmic recursion,

O(N2 log2N) for forward recursion.

Hence, the best asymptotic behaviour of kN is obtained for direct call, repeated sub-
vector scaling, and recursive bisection, respectively. For the other precomputation
methods, the size of kN is mainly determined by the precomputation error. If we
use the popular forward recursion for precomputation of twiddle factors, then the
numerical stability of FFT is worse.

16 Daniel Potts, Gabriele Steidl, and Manfred Tasche

Proof. Let x̂0 = x0 := BNx. By x̂j , we denote the computed vector M̂
(j)
N x̂j−1

(j = 1, . . . , n), i.e.

x̂j := fl
(

M̂
(j)
N x̂j−1

)

.

Then we introduce the error vector ej ∈ C
N of step j (j = 1, . . . , n) by

x̂j = M̂
(j)
N x̂j−1 + ej , (3.7)

i.e., ej contains the error of floating point arithmetic for computing M̂
(j)
N x̂j−1 and

the precomputation errors of wk
2j (k = 1, . . . , 2j−1 − 1), too.

1. Step j = 1: Note that

M̂
(1)
N = M

(1)
N = I2n−1 ⊗ A2, A2 =

(

1 1
1 −1

)

.

Hence the first step consists of N/2 butterfly operations

η1 := ξ1 + ξ2 ,

η2 := ξ1 − ξ2
(ξ1, ξ2 ∈ C). (3.8)

By (2.1) we obtain for the computed values

η̂1 := (ξ1 + ξ2)(1 + ε+1) = η1 + (ξ1 + ξ2)ε
+
1 ,

η̂2 := (ξ1 − ξ2)(1 + ε+2) = η2 + (ξ1 + ξ2)ε
+
2

(|ε+1 |, |ε+2 | ≤ u)

and hence

|η̂1 − η1|2 + |η̂2 − η2|2 ≤ u2 (|ξ1 + ξ2|2 + |ξ1 − ξ2|2) = 2u2 (|ξ1|2 + |ξ2|2).

Consequently, we have

‖e1‖2 ≤
√

2u ‖x0‖2 =
√

2u ‖x‖2. (3.9)

2. Step j = 2: Note that

M̂
(2)
N = M

(2)
N = I2n−2 ⊗ A4

with

A4 =

(

I2 W2

I2 −W2

)

, W2 =

(

1 0
0 −i

)

.

Then the second step consists of N/4 butterfly operations (3.8) and of N/4 butterfly
operations

η1 := ξ1 − i ξ2 ,
η2 := ξ1 + i ξ2

(ξ1, ξ2 ∈ C).

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 17

Analogously to the first step, we get the estimate ‖e2‖2 ≤
√

2u ‖x̂1‖2. By (3.7) and
(3.9), we see that

‖x̂1‖2 ≤ ‖M(1)
N ‖2 ‖x̂0‖2 + ‖e1‖2 ≤

√
2 (1 + u) ‖x‖2

and therefore

‖e2‖2 ≤ (2u+ O(u2)) ‖x‖2. (3.10)

3. Step j (j ∈ {3, . . . , n}): Using the structure of M
(j)
N (see (3.2) – (3.3)), it follows

that step j consists of 2n−j butterfly operations of the form

η1 := ξ1 + wk
2j ξ2 ,

η2 := ξ1 − wk
2j ξ2

(ξ1, ξ2 ∈ C ; k = 0, . . . , 2j−1 − 1). (3.11)

Now wk
2j is precomputed by

ŵk
2j = wk

2j + δk
2j (δ02j := 0) , (3.12)

where by our assumption |δk
2j | ≤ cN u. Using complex floating point arithmetic (see

(2.1)), we obtain the computed values

η̂1 =
(

ξ1 + ŵk
2j ξ2 (1 + ε×)

)

(1 + ε+1) ,

η̂2 =
(

ξ1 − ŵk
2j ξ2 (1 + ε×)

)

(1 + ε+2)
(3.13)

with

|ε×| ≤ 2
√

2u , |ε+1 |, |ε+2 | ≤ u . (3.14)

By (3.12) and (3.13), it follows that

η̂1 − η1 = ξ1ε
+
1 + ŵk

2j ξ2(ε
× + ε+1 + ε×ε+1) + δk

2j ξ2 + O(u2) .

Using (3.13) and (3.14), we obtain that

|η̂1 − η1| ≤ |ξ1|u+ |ξ2|
(

(2
√

2 + 1 + cN)u+ O(u2)
)

and hence

|η̂1 − η1|2 ≤ 2
(

(2
√

2 + 1 + cN)u+ O(u2)
)2

(|ξ1|2 + |ξ2|2) .

The same estimate is true for |η̂2 − η2|2 such that

|η̂1 − η1|2 + |η̂2 − η2|2 ≤ 4
(

(2
√

2 + 1 + cN)u+ O(u2)
)2

(|ξ1|2 + |ξ2|2) .

18 Daniel Potts, Gabriele Steidl, and Manfred Tasche

Thus for the error vector ej , we obtain the estimate

‖ej‖2 ≤ 2
(

(2
√

2 + 1 + cN)u+ O(u2)
)

‖x̂j−1‖2 .

From (3.4) and (3.7), it follows that

‖x̂j−1‖2 ≤
(

2(j−1)/2 + O(u)
)

‖x‖2

and hence

‖ej‖2 ≤ 2(j+1)/2
(

(2
√

2 + 1 + cN)u + O(u2)
)

‖x‖2. (3.15)

4. Now we estimate the roundoff error ‖x̂n − xn‖2. Applying repeatedly (3.7), we
obtain

x̂n = M
(n)
N x̂n−1 + en

= M
(n)
N M

(n−1)
N x̂n−2 + M

(n)
N en−1 + en

...

= M
(n)
N . . . M

(1)
N BN x + M

(n)
N . . . M

(2)
N e1 + . . . + M

(n)
N en−1 + en

such that by xn = M
(n)
N . . . M

(1)
N BN x (see Algorithm 3.2) and by (3.4), (3.9), (3.10)

and (3.15)

‖x̂n − xn‖2 ≤ ‖M(n)
N . . . M

(2)
N ‖2‖e1‖2 + . . . + ‖M(n)

N ‖2‖en−1‖2 + ‖en‖2

≤ 2n/2
(

2u+ (n− 2)
(

(
√

2 cN + 4 +
√

2)u+ O(u2)
)

)

‖x‖2.

5. The final step of Algorithm 3.2 is the scaling y = 2−n/2xn. Let ŷ := fl(2−n/2x̂n).
Using (2.2), (3.4) and (3.7), we obtain that

‖ŷ − 2−n/2 x̂n‖2 ≤ 2−n/2u ‖x̂n‖2 ≤
(

u+ O(u2)
)

‖x‖2

and hence

‖ŷ − y‖2 ≤ ‖ŷ − 2−n/2x̂n‖2 + 2−n/2 ‖x̂n − xn‖2

≤
(

(
√

2 cN + 4 +
√

2)(n− 2)u+ 3u+ O(u2)
)

‖x‖2 .

This completes the proof.

For x = (xk)
N−1
k=0 ∈ C we introduce the norms

‖x‖1 :=
N−1
∑

k=0

|xk| , ‖x‖∞ := max
k=−N/2,... ,N/2

|xk| .

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 19

Corollary 3.4 Under the assumptions of Theorem 3.3 we have the estimates

‖∆x‖∞ ≤
(

kN u + O(u2)
)

‖x‖1 , ‖ŷ − y‖∞ ≤
(

kN u + O(u2)
)

‖y‖1 .

Proof. Use ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 (x ∈ C
N) in the results of Theorem 3.3.

By taking the transpose of the Cooley–Tukey factorization (3.1), we obtain another
sparse unitary factorization of the Fourier matrix

FN = 2−n/2 BN (M
(1)
N)T (M

(2)
N)T . . . (M

(n)
N)T (N = 2n).

On this fact, the following FFT (see [15, pp. 65 – 67]) is based:

Algorithm 3.5 (Gentleman–Sande algorithm)

Input: N := 2n (n ≥ 5), x ∈ C
N .

0. Precompute wk
N (k = 1, . . . , N1 − 1) by a method of Section 2.

1. For j = 0 (1)n− 1 form

xj+1 := (M
(n−j)
N)Txj (x0 := x) . (3.16)

2. Permute

xn+1 := BNxn.

3. Multiply

y := 2−n/2xn.

Output: y = FNx.

Algorithm 3.5 is an example of a decimation–in–frequency FFT. Comparing with
Algorithm 3.2, we see that other butterfly operations occur in (3.16), namely

η1 = ξ1 + ξ2 ,

η2 = (ξ1 − ξ2)w
k
2n−j

(j = 0, . . . , n− 1 ; k = 0, . . . , 2n−j − 1) .

For that reason, we obtain another constant kN for Algorithm 3.5.

Theorem 3.6 Let N = 2n (n ≥ 5). Assume that

|ŵNjk
N − wk

2j | ≤ cN u (j = 3, . . . , n; k = 1, . . . , 2j−1 − 1) .

Then the Gentleman–Sande Algorithm 3.5 is normwise backward stable with the

constant

kN = (cN + 2
√

2 + 1) log2N .

The proof is omitted here, since it follows similar lines as the proof of Theorem 3.3.

20 Daniel Potts, Gabriele Steidl, and Manfred Tasche

Figure 1. Relative errors (3.17) and theoretical error bounds for direct call (left) and
repeated subvector scaling (right)

Figure 2. Relative errors (3.17) and theoretical error bound for repeated multiplica-
tion

Finally, we confirm our theoretical results by numerical experiments. As example,
we choose 10 vectors x := (xk)

216−1
k=0 ∈ C

2n

with random Rexk and Imxk from

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 21

normal N(0, 1) distribution. For each subsampled vector

x2n := (x216−nk)
2n−1
k=0 (n = 2, . . . , 16) ,

we evaluate
x̃2n = J′

2n fl (F2n fl (F2n x2n))

by Cooley–Tukey Algorithm 3.2 in double precision, where J′
2n denotes the flip

matrix J′
2n := 1 ⊕ J2n−1, JN := (δj,N−1−k)

N−1
j,k=0 means the counteridentity matrix,

and where the twiddle factors are precomputed by Algorithm 2.1, 2.2, and 2.3,
respectively. Note that F−1

2n = J′
2nF2n . Figures 1 – 2 show the behaviour of the

relative errors

log10 (‖x̃2n − x2n‖2/‖x2n‖2) (n = 2, . . . , 16) (3.17)

and the approximate error bound log10 (2k2nu) of Theorem 3.3. The algorithms
were implemented in C and tested in double precision.

4 Numerical stability of DCT and DST

We introduce four discrete cosine transforms (DCT) and four discrete sine trans-
forms (DST) as classified by Wang [27] (see also [19, pp. 11 – 21]). These transforms
are generated by the following matrices:

DCT–I : CI
N+1 :=

(

2

N

)1/2 (

εNj ε
N
k cos

jkπ

N

)N

j,k=0

∈ R
N+1,N+1,

DCT–II : CII
N :=

(

2

N

)1/2 (

εNj cos
j(2k + 1)π

2N

)N−1

j,k=0

∈ R
N,N ,

DCT–III : CIII
N :=

(

CII
N

)T ∈ R
N,N ,

DCT–IV : CIV
N :=

(

2

N

)1/2 (

cos
(2j + 1)(2k + 1)π

4N

)N−1

j,k=0

∈ R
N,N

and

DST–I : SI
N−1 :=

(

2

N

)1/2 (

sin
(j + 1)(k + 1)π

N

)N−2

j,k=0

∈ R
N−1,N−1,

DST–II : SII
N :=

(

2

N

)1/2 (

εNj+1 sin
(j + 1)(2k + 1)π

2N

)N−1

j,k=0

∈ R
N,N ,

DST–III : SIII
N :=

(

SII
N

)T ∈ R
N,N ,

DST–IV : SIV
N :=

(

2

N

)1/2 (

sin
(2j + 1)(2k + 1)π

4N

)N−1

j,k=0

∈ R
N,N ,

22 Daniel Potts, Gabriele Steidl, and Manfred Tasche

where εNk :=
√

2/2 (k = 0, N) and εNk := 1 otherwise. We refer to the corresponding
transforms as discrete trigonometric transforms. It is well–known that the above
matrices are orthogonal and that a fast multiplication of such matrix with an arbi-
trary vector takes only O(N logN) arithmetical operations.
We consider the orthogonal matrix CIII

N . Let N = 2n (n > 1). By

cos
(2(2N − 2j − 1) + 1)kπ

2N
= cos

(4j + 1)kπ

2N

we obtain the representation

ẼNCIII
N =

√

2

N
C̃NDN , (4.1)

where

C̃N :=

(

cos
(4j + 1)kπ

2N

)N−1

j,k=0

, DN := diag
(

εNk
)N−1

k=0

and where ẼN denotes the modified even–odd permutation matrix

ẼN :=



































1 0
1 0

1 0 ··················
1 0

10
10

10··················
10



































∈ R
N,N .

Note that the even–odd permutation matrix

EN :=



































1 0
1 0

1 0 ··················
1 0

0 1
0 1

0 1 ··················
0 1



































∈ R
N,N

is related to the bit–reversal permutation matrix BN (see [15, pp. 20 – 21]) by

BN = (IN2
⊗ E4) . . . (I2 ⊗ EN1

)EN . (4.2)

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 23

As known, fast algorithms for computing y = CIII
N x for arbitrary given vectors

x ∈ R
N are based on a factorization of C̃N into a product of sparse matrices. By

observing

C̃N = Re
(

w
(4j+1)k
4N

)N−1

j,k=0
=

√
N Re

(

FN diag
(

wk
4N

)N−1

k=0

)

with the Fourier matrix FN defined in (1.1), we obtain

CIII
N =

√
2Re

(

ẼT
NFN diag

(

εNk w
k
4N

)N−1

k=0

)

. (4.3)

Using the Cooley–Tukey factorization (3.1) of FN , we get:

Theorem 4.1 Let N = 2n (n > 1). Then CIII
N has the complex factorization

CIII
N = Re

(

ẼT
NM

(n−1)
N . . .M

(1)
N BN diag

(√
2 εNk w

k
4N

)N−1

k=0

)

. (4.4)

This complex factorization is closely related to a fast complex algorithm for com-
puting y = CIII

N x. This algorithm is mainly based on the FFT of length N , but
not on a FFT of length 2N (compare with [15, pp. 49 – 53]).

Algorithm 4.2 (Fast DCT–III via FFT)

Input: N = 2n (n ≥ 5), x = (xk)
N−1
k=0 ∈ R

N .

1. Form

y0 :=
(
√

2 εNk wk
4N xk

)N−1

k=0
.

2. Form y1 := FNy0 by Algorithm 3.2.

3. Take the real part of y1, i.e.

y2 := Re y1.

4. Permute

y := ẼT
N y2.

Output: y := CIII
N x.

This algorithm needs 3Nn real additions and 5
2nN + 2N real multiplications, if one

complex multiplication is realized by two real additions and four real multiplications.

Let x ∈ R
N be an arbitrary input vector and y = CIII

N x be the exact output vector.
Let ŷ be the computed vector using floating point arithmetic with unit roundoff u.

Since CIII
N is regular, ŷ can be represented in the form

ŷ = CIII
N (x + ∆x) (∆x ∈ R

N).

24 Daniel Potts, Gabriele Steidl, and Manfred Tasche

Note that an algorithm used for computing CIII
N x is normwise backward stable, if

there exists a positive constant k∗N with k∗Nu� 1 such that for all vectors x ∈ R
N

‖∆x‖2 ≤
(

k∗Nu+ O(u2)
)

‖x‖2.

Since CIII
N is orthogonal, we have also normwise forward stability by

‖ŷ − y‖2 ≤
(

k∗Nu+ O(u2)
)

‖y‖2 .

We precompute the needed roots of unity wk
4N (k = 0, . . . , N − 1) by means of

w4k+l
4N = wl

4N wk
N (l = 0, 1, 2, 3 ; k = 0, . . . , N2 − 1) .

This implies by (2.1) and (3.5) that

|ŵk
4N − wk

4N | ≤ (cN +
5

2

√
2)u + O(u2) (k = 1, . . . , N − 1) . (4.5)

Theorem 4.3 Under the assumptions of Theorem 3.3, Algorithm 4.2 is normwise

backward stable with constant

k∗N =
√

2 (cN + kN) ,

where kN is given by (3.6).

Proof. Algorithm 4.2 is based on (4.4) and the FFT. As usual we denote the com-
puted vectors with a hat accent.

1. First we analyze the error of step 1 in Algorithm 4.2. We obtain an error vector
e0 := (e0,k)

N−1
k=0 ∈ C

N such that ŷ0 = y0 + e0. By

ŷ0,k =
√

2εNk ŵ
k
4Nxk(1 + ε×k) , |ε×k | ≤ 2 u

and by (2.2) and (4.5) we conclude that

|ŷ0,k − y0,k| = |e0,k| ≤ (
√

2 cN + 8)u |xk| (k = −N/2, . . . , N/2)

and hence

‖e0‖2 ≤ (
√

2 cN + 8)u ‖x‖2 ,

where the O(u2)–term is omitted. Consequently, we have

‖ŷ0‖2 ≤ ‖y0‖2 + ‖e0‖2 ≤
(
√

2 + (
√

2 cN + 8)u
)

‖x‖2 . (4.6)

2. Step 2 implies the FFT of length N . By Theorem 3.3, we know that

ŷ1 = FN (ŷ0 + ∆ŷ0) , (4.7)

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 25

where ∆ŷ0 ∈ C
N fulfills

‖∆ŷ0‖2 ≤
(

kN u+ O(u2)
)

‖ŷ0‖2 .

Then by (4.6), it follows that

‖∆ŷ0‖2 ≤
(
√

2 kNu+ O(u2)
)

‖x‖2 .

By (4.7), we get

ŷ1 − y1 = FN (e0 + ∆ŷ0)

with

‖FN (e0 + ∆ŷ0)‖2 ≤
(
√

2 (cN + 4
√

2 + kN)u+ O(u2)
)

‖x‖2.

This completes the proof, since steps 3 and 4 contain no further floating point op-
erations.

We discuss the numerical stability for computing Cx with C ∈ {CI
N+1,C

II
N ,C

IV
N }.

Using

CI
N+1 = 1

2 Re
(

RF2N P
)

, CII
N = (CIII

N)T

CIV
N = Re

(

w
(2j+1)(2k+1)
4N

)N−1

j,k=0
=

√
2 Re

(

diag
(

w2j+1
4N

)N−1

j=0
FN diag

(

wk
2N

)N−1

k=0

)

(4.8)

with

R :=















1/
√

2 0 0 · · · · · · 0 0
0 1 0 · · · · · · 0 1
...

. . . · · ·
0 1 0 1 0

0 · · · 0 1/
√

2 0 · · · 0















∈ R
N+1,2N

and

P :=





























√
2 0 0 · · · 0

0 1 0 · · · 0
...

. . .
...

0 1 0

0 · · · 0
√

2
0 1 0
... · · ·

...
0 1 0 · · · 0





























∈ R
2N,N+1 ,

we obtain a complex factorization for CI
N+1,C

II
N and CIV

N .

26 Daniel Potts, Gabriele Steidl, and Manfred Tasche

The numerical stability of the FFT has a strong influence on the numerical stability
of the DCT. Theorem 4.3 and straightforward computation implies that an algorithm
based on (4.8) for computing Cx with C ∈ {CI

N+1,C
II
N ,C

III
N ,CIV

N } is normwise
backward stable with

k∗N =



























O(log2N) for direct call,

O((log2N)2) for repeated subvector scaling and recursive bisection,

O(N log2N) for repeated multiplication, stabilized forward recursion
and logarithmic recursion,

O(N2 log2N) for forward recursion.

We consider now the DST. By observing

SI
N−1 =

1

2
Re
(

R̃F2N R̃T
)

with

R̃ :=







0 1 0 · · · · · · 0 1
...

. . . · · ·
0 1 0 1 0






∈ R

N−1,2N

we obtain a complex factorization. Fast algorithms for the remaining DST–II, DST–
III and DST–IV follow in a simple way by intertwining relations (see [11]): Let
ΣN := diag ((−1)k)N−1

k=0 . Then

SII
N = JN CII

N ΣN , SIII
N = ΣN CIII

N JN , SIV
N = ΣN CIV

N JN .

Since multiplications with JN and ΣN contain no further floating point operations,
we obtain the numerical stability immediately.
There exist algorithms for the fast multiplication of the above sine and cosine
matrices with an arbitrary vector which are based on direct factorizations of the
corresponding matrices into sparse (but unfortunately not orthogonal) matrices
[21, 23, 3]. These algorithms avoid arithmetic with complex numbers and have
a lower arithmetical complexity than Algorithm 4.2. However, in [2] it was proved
that the numerical stability of the FFT–based Algorithm 4.2 is better than the
numerical stability of these real fast algorithms.

5 Robustness of NDFT

In the last section, we are interested in discrete Fourier transforms for nonequispaced
data (NDFT). Let N ∈ N be a power of two. We want to evaluate the 1–periodic
trigonometric polynomial

f(v) :=

N/2−1
∑

k=−N/2

fk e−2πikv (5.1)

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 27

at arbitrary nodes wj ∈ [−1
2 ,

1
2) (j = −N/2, . . . , N/2 − 1). Again, it will be useful

to rewrite (5.1) in matrix–vector notation

f̂ = AN f ,

where

f̂ := (f(wj))
N/2−1
j=−N/2 , f := (fk)

N/2−1
k=−N/2 , AN :=

(

e−2πikwj

)N/2−1

j,k=−N/2
.

For the efficient realization of (5.1) we use the following approach [22]: We introduce
the oversampling factor α > 1 and set M := αN . Let ϕ be a 1–periodic function
with uniformly convergent Fourier series. We approximate f by

s1(v) :=

N/2−1
∑

l=−N/2

gl ϕ(v − l

M
). (5.2)

Switching to the frequency domain, we obtain

s1(v) =
∑

k∈ �

ĝk ck(ϕ) e−2πikv (5.3)

=

M/2−1
∑

k=−M/2

ĝk ck(ϕ) e−2πikv +
∑

r∈ � \{0}

M/2−1
∑

k=−M/2

ĝk ck+Mr(ϕ) e−2πi(k+Mr)v

with

ĝk :=

M/2−1
∑

l=−M/2

gl e
2πikl/M , (5.4)

ck(ϕ) :=

1/2
∫

−1/2

ϕ(v) e2πikv dv (k ∈ Z).

If the Fourier coefficients ck(ϕ) become sufficiently small for large |k| and if ck(ϕ)
= 0
for k = −N/2, . . . , N/2 − 1, then we suggest by comparing (5.1) with (5.3) to set

ĝk :=

{

fk/ck(ϕ) k = −N/2, . . . , N/2 − 1,
0 k = −M/2, . . . ,−N/2 − 1;N/2, . . . ,M/2 − 1.

(5.5)

Now the values gl can be obtained from (5.4) by the reduced inverse FFT of size
M . If ϕ is also well–localized in time domain such that it can be approximated by
a 1–periodic function ψ with suppψ ∩ [−1

2 ,
1
2) ⊆ [−m

M , m
M) (2m�M), then

f(wj) ≈ s1(wj) ≈ s(wj) =
∑

l∈IM,m(wj)

gl ψ(wj −
l

M
) (5.6)

28 Daniel Potts, Gabriele Steidl, and Manfred Tasche

with IM,m(wj) := {l = −N/2, . . . , N/2 − 1 : Mwj −m ≤ l ≤Mwj +m}. For fixed
wj ∈ [−1/2, 1/2), the above sum contains at most 2m+ 2 nonzero summands.
In summary, we obtain the following algorithm for the fast computation of (5.1)
with O(αN log(αN)) arithmetical operations:

Algorithm 5.1 (Fast computation of NDFT (5.1))

Input: N ∈ N, α > 1, M := αN , wj ∈ [−1
2 ,

1
2), fk ∈ C (j, k = −N/2, . . . , N/2− 1).

0. Precompute ck(ϕ) (k = −N/2, . . . , N/2−1), ψ(wj − l
M) (j = −N/2, . . . , N/2−1;

l ∈ IM,m(wj)).
1. Form ĝk := fk/ck(ϕ) (k = −N/2, . . . , N/2 − 1).

2. Compute by a modified Cooley–Tukey Algorithm 3.2

gl := M−1

N/2−1
∑

k=−N/2

ĝk e−2πikl/M (l = −M/2, . . . ,M/2 − 1).

3. Set

s(wj) :=
∑

l∈IM,m(wj)

gl ψ(wj −
l

M
) (j = −N/2, . . . , N/2 − 1) .

Output: s(wj) approximate value of f(wj) (j = −N/2, . . . , N/2 − 1).

Suitable functions ϕ are dilated, periodized Gaussian bells (see [10])

ϕ(v) := (πb)−1/2
∑

r∈ �
e−(M(v+r))2/b , (5.7)

dilated, periodized, centered cardinal B–splines of order 2m (see [4])

ϕ(v) :=
∑

r∈ �
M2m(M(v + r)) (m ≥ 1) (5.8)

or other window functions as prolate spheroidal functions and Kaiser–Bessel func-
tions [14], Gaussian kernels tapered with a Hanning window [9], Gaussian kernels
combined with sinc kernels [16] or special optimized windows [14, 9]. If ϕ has not
“local support”, then one can use a truncated version of ϕ as ψ, for example with
respect to (5.7)

ψ(v) := (πb)−1/2
∑

r∈ �
e−(M(v+r))2/b χ[−m,m](M(v + r)) . (5.9)

Here χ[−m,m] denotes the characteristic function of [−m,m]. Estimates of the ap-
proximation error

max{|f(wj) − s(wj)| : j = −N/2, . . . , N/2 − 1}

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 29

for the window functions (5.7) and (5.8) are given in [10, 4, 9, 22].
We are interested in stability properties of Algorithm 5.1. Let

F̃M :=
1√
M

(

e−2πijk/M
)M/2−1

j,k=−M/2
= (J2 ⊗ IM/2)FM (J2 ⊗ IM/2) .

Clearly, the multiplication of F̃M with a vector can be realized by FFT with the
same stability estimates as in Section 3. Now Algorithm 5.1 reads in matrix–vector
notation as

AN f ≈
√
M BF̃MDf ,

where B denotes the sparse matrix

B :=

(

ψ(wj −
l

M
)

)N/2−1,M/2−1

j=−N/2,l=−M/2

(5.10)

and

D :=
(

O | diag(1/(M ck(ϕ)))
N/2−1
k=−N/2 |O

)T
(5.11)

with (N ,(M −N)/2)–zero matrices O.

Theorem 5.2 Let m,N ∈ N and let M := αN (α > 1) be a power of 2 with

2m � M . Let h be a nonnegative even function, which decreases monotonically in

[0,∞), and let

ϕ(x) :=
∑

r∈ �
h(M(x+ r)) , ψ(x) :=

∑

r∈ �
(χ[−m,m]h)(M(x+ r)) .

Suppose that ϕ has a uniform convergent Fourier expansion with monotone decreas-

ing absolute values of Fourier coefficients

ck(ϕ) =
1

M
ĥ(

2πk

M
) (k ∈ Z) .

Let the nodes wj ∈ [−1
2 ,

1
2), wj ±1 (j ∈ −N/2, . . . , N/2−1) be distributed such that

each “window”
[

−m
M + l

M , m
M + l

M

)

(l = −M/2, . . . ,M/2−1) contains at most γ/α
nodes. If (5.1) is computed by Algorithm 5.1 with the above functions ϕ, ψ, i.e.,

f̃ :=
√
M BF̃M Df (f ∈ R

N) ,

where D ∈ C
M,N and B ∈ R

N,M are determined by (5.10) – (5.11), then the roundoff

error of Algorithm 5.1 can be estimated by

‖fl(f̃) − f̃‖2 ≤
(

β
√

γ N (kM + 2m)u + O(u2)
)

‖f‖2 ,

where kM is defined by (3.6) and

β := (h2(0) + ||h||2L2
)1/2 |ĥ(π/α)|−1 .

30 Daniel Potts, Gabriele Steidl, and Manfred Tasche

Note that γ ≈ 2m for “uniformly distributed” nodes wj .

Proof. 1. First, we estimate the spectral norms of D and B ([13, p. 120]). By
assumption and by (5.11), we see immediately that

‖D‖2 = max
k=−N/2,... ,N/2−1

|M ck(ϕ)|−1 = (M |cN/2(ϕ)|)−1 = |ĥ(π/α)|−1 . (5.12)

Since ψ is even and monotonically decreasing in [0,∞), it is easy to check the integral
estimate

1

M

M/2−1
∑

l=−M/2

ψ2(wj −
l

M
) ≤ 1

M
ψ2(0) +

∫ 1

2

− 1

2

ψ2(x) dx .

Then it follows by definition of ψ that

M/2−1
∑

l=−M/2

ψ2(wj −
l

M
) ≤ h2(0) +M

∫ m/M

−m/M
h2(Mx) dx

≤ h2(0) + ||h||2L2
. (5.13)

By definition (5.10) of the sparse matrix

B = (bj,k)
N/2−1,M/2−1
j=−N/2,k=−M/2 , bj,k := ψ(wj −

k

M
) ,

we get for the j–th component (By)j of By (y = (yk)
M/2−1
k=−M/2 ∈ C

M) that

|(By)j|2 ≤
(

2m
∑

r=1

|bj,kr
| |ykr

|
)2

(bj,kr
> 0, kr ∈ {−M/2, . . . ,M/2 − 1})

≤
(

2m
∑

r=1

b2j,kr

) (

2m
∑

r=1

|ykr
|2
)

.

By (5.13), we have

2m
∑

r=1

b2j,kr
≤

M/2−1
∑

k=−M/2

ψ(wj −
k

M
)2 ≤ h2(0) + ||h||2L2

such that

|(By)j|2 ≤ (h2(0) + ||h||2L2
)

2m
∑

r=1

|ykr
|2 . (5.14)

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 31

By assumption, each “window” [−m
M + l

M , m
M + l

M) (l = −M/2, . . . ,M/2−1) contains
at most γ/α nodes wj , wj ± 1. Therefore each column of B contains at most γ/α
nonzero entries such that by (5.14)

‖By‖2
2 =

N/2−1
∑

j=−N/2

|(By)j|2 ≤ γ

α
(h2(0) + ||h||2L2

) ‖y‖2
2

and consequently

‖B‖2 ≤
√

γ

α
(h2(0) + ||h||2L2

)1/2 =: β̃ . (5.15)

2. Next, it is easy to check that by (2.2) and (5.12)

‖fl(Df) − Df‖2 ≤ u |ĥ(π/α)|−1 ‖f‖2 . (5.16)

Now from (5.12) it follows that

‖fl(Df)‖2 ≤ ‖fl(Df) − Df‖2 + ‖Df‖2 ≤ |ĥ(π/α)|−1(u+ 1) ‖f‖2 . (5.17)

3. Set ŷ := fl(
√
M F̃M (fl(Df)) and y :=

√
M F̃MDf . Then we can estimate

‖ŷ − y‖2 ≤ ‖ŷ −
√
M F̃M (fl(Df))‖2 + ‖

√
M F̃M (fl(Df)) −

√
M F̃MDf‖2

such that by Theorem 3.3, (5.16) and (5.17)

‖ŷ − y‖2 ≤
(√

M (kM − 1)u + O(u2)
)

‖fl(Df)‖2

+
√
M ‖fl(Df) − Df‖2

≤ |ĥ(π/α)|−1
(√

M kM u+ O(u2)
)

‖f‖2. (5.18)

4. Finally, we consider the error between fl(f̃) := fl(Bŷ) and f̃ := By. By (5.15)
and (5.18), we obtain

‖fl(f̃) − f̃‖2 ≤ ‖fl(Bŷ) −Bŷ‖2 + ‖B(ŷ − y)‖2

≤ ‖fl(Bŷ) −Bŷ‖2 + β̃ |ĥ(π/α)|−1
(√

M kM u + O(u2)
)

‖f‖2 .(5.19)

By (2.1), (2.2) and (5.10), it follows from [13, p. 76], that

|fl(Bŷ) −Bŷ| ≤ 2mu

1 − 2mu
B |ŷ|

and consequently by (5.15) that

‖fl(Bŷ) − Bŷ‖2 ≤ 2mu

1 − 2mu
‖B‖2 ‖ŷ‖2

≤
(

2mβ̃ u + O(u2)
)

‖ŷ‖2 .

32 Daniel Potts, Gabriele Steidl, and Manfred Tasche

By (5.17) and (5.12), we obtain

‖ŷ‖2 ≤ ‖ŷ − y‖2 + ‖y‖2 = ‖
√
MF̃MDf‖2 + O(u) ‖f‖2

≤
(√

M |ĥ(π/α)|−1 + O(u)
)

‖f‖2 .

Thus

‖fl(Bŷ) − Bŷ‖2 ≤
(

2mβ̃
√
M |ĥ(π/α)|−1 u+ O(u2)

)

‖f‖2 . (5.20)

Together with (5.19) this yields the assertion.

Finally, we confirm our theoretical results by numerical experiments. Let N = 2n.
As example we consider the computation of

f(wj) =
2n−1
∑

k=0

e−2πikwj (j = −2n−1, . . . , 2n−1 − 1) (5.21)

with uniformly distributed random nodes wj ∈
[

−1
2 ,

1
2

)

.

The exact vector f̂ = (f(wj))
2n−1−1
j=−2n−1 is given by

f(wj) :=
e−2πiwj(2

n−1) − e2πiwj

1 − e2πiwj
.

Further, let f̃C ∈ C
2n

denote the vector, which was evaluated by cascade summation
of the right–hand side of (5.21), and let

EC(n) := log10(‖f̃C − f̂‖2)/‖f̂‖2) .

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 33

Figure 3. Left: (n,EC(n)) for n = 1, . . . , 13. Right: (n,ENDFT(n)) for n =
1, . . . , 15.

Figure 3 (left) shows the error EC(n) for 10 numerical tests with various random
nodes wj as function of n = log2N . For comparison, Figure 3 (right) presents the
corresponding error

ENDFT(n) := log10(‖f̃ − f̂‖2)/‖f̂‖2)

introduced by Algorithm 5.1, where ϕ and ψ are defined by (5.7) and (5.9), respec-
tively with α := 2, m := 15 and b := 20/π. The algorithms were implemented in C
and tested on a Sun SPARCstation 20 in double precision.

Acknowledgement

The authors wish to thank G. Baszenski for numerical experiments in Section 3.

References

[1] M. Arioli, H. Munthe–Kaas, and L. Valdettaro, Componentwise error analysis
for FFTs with applications to fast Helmholtz solvers, Numer. Algorithms 12,

34 Daniel Potts, Gabriele Steidl, and Manfred Tasche

65 – 88 (1996).

[2] G. Baszenski, U. Schreiber, and M. Tasche, Numerical stability of fast cosine
transforms, Numer. Funct. Anal. Optim. 21, 25 – 46 (2000).

[3] G. Baszenski and M. Tasche, Fast polynomial multiplication and convolution
related to the discrete cosine transform, Linear Algebra Appl. 252, 1 – 25 (1997).

[4] G. Beylkin, On the fast Fourier transform of functions with singularities, Appl.

Comput. Harmon. Anal. 2, 363 – 381 (1995).

[5] W. L. Briggs and V. E. Henson, The DFT, SIAM, Philadelphia, 1995.

[6] O. Buneman, Stable on–line creation of sines and cosines of successive angles,
Proc. IEEE 75, 1434 – 1435 (1987).

[7] C. Y. Chu, The fast Fourier transform on the hypercube parallel computers,
PhD thesis, Cornell University, Ithaca, 1988.

[8] P. Deuflhard and A. Hohmann, Numerische Mathematik, de Gruyter, Berlin,
1991.

[9] A. J. W. Duijndam and M. A. Schonewille, Nonuniform fast Fourier transform,
Geophysics 64, 539 – 551 (1999).

[10] A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM
J. Sci. Statist. Comput. 14, 1368 – 1393 (1993).

[11] G. Heinig and K. Rost, DFT representations of Toeplitz–plus–Hankel Be-
zoutians with application to fast matrix–vector multiplication, Linear Algebra

Appl. 284, 157 – 176 (1998).

[12] P. Henrici, Applied and Computational Complex Analysis, Vol. 3, J. Wiley &
Sons, New York, 1993.

[13] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philade-
phia, 1996.

[14] J. I. Jackson, Selection of a convolution function for Fourier inversion using
gridding, IEEE Trans. Medical Imaging 10, 473 – 478, 1991.

[15] C. Van Loan, Computational Frameworks for the Fast Fourier Transform,
SIAM, Philadelphia, 1992.

[16] J. Pelt, Fast computation of trigonometric sums with applications to frequency
analysis of astronomical data, in Astronomical Time Series (D. Maoz, A. Stern-
berg, and E. M. Leibowitz, eds.), Kluwer, Dordrecht, 1997, pp. 179 – 182.

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study 35

[17] D. Potts and G. Steidl, Preconditioners for ill–conditioned Toeplitz matrices,
BIT 39, 513 – 533 (1999).

[18] G. U. Ramos, Roundoff error analysis of the fast Fourier transform.
Math. Comp. 25, 757 – 768 (1971).

[19] K. R. Rao and P. Yip, Discrete Cosine Transforms, Academic Press, Boston,
1990.

[20] J. C. Schatzman, Accuracy of the discrete Fourier transform and the fast
Fourier transform, SIAM J. Sci. Comput. 17, 1150 – 1166 (1996).

[21] G. Steidl, Fast radix–p discrete cosine transform, Appl. Algebra Engrg. Comm.

Comput. 3, 39 – 46 (1992).

[22] G. Steidl, A note on fast Fourier transforms for nonequispaced grids, Adv. Com-

put. Math. 9, 337 – 353 (1998).

[23] G. Steidl and M. Tasche, A polynomial approach to fast algorithms for discrete
Fourier–cosine and Fourier–sine transforms, Math. Comp. 56, 281 – 296 (1991).

[24] M. Tasche and H. Zeuner, Roundoff error analysis for fast trigonometric trans-
forms, in Handbook of Analytic–Computational Methods in Applied Mathemat-

ics (G. A. Anastassiou, ed.), CRC Press, Boca Raton, 2000, pp. 357 – 406.

[25] M. Tasche and H. Zeuner, Worst and average case roundoff error analysis for
FFT, BIT 41, 563 – 581 (2001).

[26] M. Tasche and H. Zeuner, Improved roundoff error analysis for precomputed
twiddle factors, J. Comput. Anal. Appl. 4, 1 – 18 (2002).

[27] Z. Wang, Fast algorithms for the discrete W transform and for the discrete-
Fourier transform, IEEE Trans. Acoust. Speech Signal Process. 32, 803 – 816
(1984).

[28] P. Y. Yalamov, Improvements of some bounds on the stability of fast Helmholtz
solvers, Numer. Algorithms 26, 11 – 20 (2001).

An operatorial approach

to solutions of Boundary Value Problems

in the half-plane

C. Cassisa 1, P.E. Ricci1 1, and I. Tavkhelidze 2

1 Università di Roma “La Sapienza”, Dipartimento di Matematica

P.le A. Moro, 2, 00185 Roma, Italia

e-mail: cassisa@uniroma1.it, riccip@uniroma1.it

2 “I. Vekua” Institute of Applied Mathematics, Tbilisi State University,

2, University Street, 380043 Tbilisi, Republic of Georgia

e-mail: iliko@viam.hepi.edu.ge

Abstract

A unified approach to solutions of BVP in the half-plane is obtained by using

the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials in two variables.

Many generalization of classical canonical problems of hyperbolic and elliptic

type are treated by using the pseudo-hyperbolic or pseudo-circular functions of

the derivative operator.

2000 Mathematics Subject Classification. 33C45, 44A45, 35G15.

Key words and phrases. Hermite-Kampé de Fériet polynomials, Operational calcu-

lus, Boundary value problems.

1
Contact Author

37

