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We study the problem of reconstructing a sparse polynomial in a

basis of Chebyshev polynomials (Chebyshev basis in short) from

given samples on aChebyshev grid of [−1, 1]. A polynomial is called

M-sparse in a Chebyshev basis, if it can be represented by a linear

combination of M Chebyshev polynomials. For a polynomial with

known and unknown Chebyshev sparsity, respectively, we present

efficient reconstructionmethods,whereProny-likemethodsareused.

The reconstruction results are mainly presented for bases of Cheby-

shev polynomials of first and second kind, respectively. But similar

issues can be obtained for bases of Chebyshev polynomials of third

and fourth kind, respectively.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The central issue of compressive sensing is the recovery of sparse signals from a rather small set of

measurements, where a sparse signal can be represented in some basis by a linear combination with

few nonzero coefficients. For example, a 1-periodic trigonometric polynomial of degree at most N − 1

with only M nonzero exponential terms can be recovered by O(M log4(N)) sampling points that are
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randomly chosen fromtheequidistant grid
{

j

N
; j = 0, . . . ,N − 1

}
,whereM � N (see [23]). Recently,

Rauhut and Ward [21] have presented a recovery method of a polynomial of degree at most N − 1

given in Legendre expansion withM nonzero terms, where O(M log4(N)) random samples are taken

independently according to the Chebyshev probabilitymeasure of [−1, 1]. The recovery algorithms in

compressive sensing are often based on �1-minimization. Exact recovery of sparse signals or functions

can be ensured only with a certain probability. The method of [21] can extended to sparse polynomial

interpolation in a basis of Chebyshev polynomials too.

In contrast to these random recovery methods, there exist also deterministic methods for the re-

construction of an exponential sum

H(t) :=
M∑
j=1

cj e
ifj t (t ∈ R)

with distinct frequencies fj ∈ [−π, π) and complex coefficients. Such methods are the Prony-like

methods [19], such as the classical Prony method, annihilating filter method [5], ESPRIT (Estimation

of Signal Parameters via Rotational Invariance Techniques) [22], matrix pencil method [10,9], and ap-

proximate Pronymethod [3,18]. This approach allows the recovery of all parameters of H, i.e.M, fj and

cj for j = 1, . . . ,M, from equidistant samples H(k) (k = 0, . . . , 2N − 1), where N ≥ M. Prony-like

methods can be applied also for the reconstruction of sparse trigonometric polynomials [19, Example

4.2]. Note that the classical Pronymethod is equivalent to the annihilating filtermethod. Unfortunately,

the classical Prony method is very sensitive to noise in the sampled data. Hence numerous modifica-

tions have been proposed in order to improve the numerical behavior of the Prony method. Efficient

Prony-like methods are important within many disciplines in sciences and engineering (see [15]). For

a survey of themost successful methods for the data fitting problemwith linear combinations of com-

plex exponentials, we refer to [14]. Note that a variety of papers compare the statistical properties of

the different algorithms, see e.g. [10,1,2,6]. Similar results for our new suggested algorithms are of

great interest, but are behind the scope of this paper.

In this paper, we present a new deterministic approach to sparse polynomial interpolation in a

basis of Chebyshev polynomials, if relatively few samples of a Chebyshev grid of [−1, 1] are given.

Note that Chebyshev grids are much better suited for the recovery of polynomials than uniform grids

(see [4]). For n ∈ N0, the nth Chebyshev polynomial of first kind can be defined by

Tn(x) := cos(n arccos x) (x ∈ [−1, 1])
(see for example [13, p. 2]). These polynomials are orthogonal with respect to the weight (1− x2)−1/2

on (−1, 1) (see [13, p. 73]) and form the Chebyshev-1 basis.

Let M be a positive integer. A polynomial

h(x) =
d∑

k=0

bk Tk(x)

of degree d � M is called to beM-sparse in the Chebyshev-1 basis, ifM coefficients bk are nonzero and

if the other d − M + 1 coefficients vanish. Then such a M-sparse polynomial h can be represented in

the form

h(x) =
M∑
j=1

cj Tnj(x) (1.1)

with cj := bnj �= 0 and 0 ≤ n1 < n2 < . . . < nM = d. The integer M is called the Chebyshev-1

sparsity of the polynomial (1.1).

Recently the authors have presented a unified approach to Prony-like methods for the parameter

estimation of an exponential sum [19], namely the classical Prony method, the matrix pencil method

[9], and the ESPRITmethod [22]. Themain idea is based on the evaluation of the eigenvalues of amatrix
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which is similar to the companion matrix of the Prony polynomial. To this end we have computed the

singular value decomposition (SVD) or the QR decomposition of a special Toeplitz-plus-Hankel matrix

(T+H matrix). The aim of this paper is to generalize this unified approach in order to obtain stable

algorithms for an interpolation problem of a sparse polynomial (1.1) in the Chebyshev-1 basis. Similar

sparse interpolation problems are formerly explored in [12,11,7] and solved by Prony methods. For

known Chebyshev-1 sparsity, Theorem 2.6 shows that an M-sparse polynomial (1.1) in a Chebyshev

basis can be reconstructed from only 2M samples on a special Chebyshev grid. Our method can be

considered as special case of a reconstruction of sparse sums of eigenfunctions of a Chebyshev-shift

operator, for details see [17, Remark 4.6].

A Prony-like method for sparse Legendre reconstruction was suggested in [16]. This method can be

also generalized to other polynomial systems, but one needs there high order derivatives of the sparse

polynomial. For the sparse interpolation of a multivariate polynomial, we refer to [8].

Theoutline of this paper is as follows. In Section2,we collect someuseful properties of T+Hmatrices

and Vandermonde-like matrices. Further we formulate the algorithms, if the Chebyshev-1 sparsityM

of (1.1) is known and if only 2M sampled data of (1.1) on a special Chebyshev grid are given. In Section

3, we obtain corresponding results on sparse polynomial interpolation for unknown Chebyshev-1

sparsity M of (1.1). Furthermore one can improve the numerical stability of the algorithms by using

more sampling values (see Section 5). In Section 4, we discuss the sparse interpolation in the basis of

Chebyshev polynomials of second kind. Finally we present some numerical experiments in Section 5,

where we apply our methods to sparse polynomial interpolation.

In the followingwe use standard notations. ByN andN0, respectively, we denote the set of all posi-

tive and nonnegative integers, respectively. The Kronecker symbol is δk . The linear space of all column

vectors withN real components is denoted byR
N , where o is the corresponding zero vector. The linear

space of all realM-by-N matrices is denoted by R
M×N , where OM,N is the corresponding zero matrix.

For a matrix AM,N ∈ R
M×N , its transpose is denoted by AT

M,N , and its Moore–Penrose pseudoinverse

by A
†
M,N . A square matrix AM,M is abbreviated to AM . By IM we denote theM-by-M identity matrix. By

nullAM,N we denote the null space of a matrix AM,N . Further we use the known submatrix notation.

Thus AM,M+1(1 : M, 2 : M + 1) is the submatrix of AM,M+1 obtained by extracting rows 1 throughM

and columns 2 through M + 1, and AM,M+1(1 : M, M + 1) means the last column vector of AM,M+1.

Definitions are indicated by the symbol :=. Other notations are introduced when needed.

2. Interpolation for known Chebyshev-1 sparsity

This section has an introductory character. Under the restricted assumption that the Chebyshev-1

sparsityM of the polynomial (1.1) is a priori known, we introduce the problem (2.1) of sparse polyno-

mial interpolation in the Chebyshev-1 basis and the related Prony polynomial (2.3). Then we collect

some useful properties of square T+Hmatrices and square Vandermonde-like matrices. We find a fac-

torization (2.8) of the T+Hmatrix and prove an interesting relation between the Prony polynomial (2.3)

and its companion matrix (see Lemma 2.5). Similar sparse interpolation problems in the Chebyshev-1

basis are formerly explored in [12,11,7] and solved by a Prony method (such as Algorithm 2.7). In

[12,11], the grid {Tk(a) = cosh (k arcosh a); k = 0, . . . , 2M − 1} with fixed a > 1 is used for the

interpolation. In [7], the grid
{
Tk

(
cos 2π

N

)
= cos 2kπ

N
; k = 0, . . . , 2M − 1

}
withN ≥ 2 nM is applied

for interpolation. The main results of Section 2 are the Algorithms 2.9 and 2.10.

Let N ∈ N be sufficiently large such that N > M and 2N − 1 is an upper bound of the degree of the

polynomial (1.1). For uN := cos π
2N−1

we form the nonequidistant Chebyshev grid
{
uN,k := Tk(uN) =

cos kπ
2N−1

; k = 0, . . . , 2M − 1
}

of the interval [−1, 1]. Note that T2N−1(uN,k) = (−1)k

(k = 0, . . . , 2M − 1). We consider the following problem of sparse polynomial interpolation in the

Chebyshev-1 basis: For given sampled data

hk := h(uN,k) = h

(
cos

kπ

2N − 1

)
(k = 0, . . . , 2M − 1) (2.1)
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determine all parameters nj and cj (j = 1, . . . ,M) of the sparse polynomial (1.1). If we substitute

x = cos t (t ∈ [0, π ]), then we see that the above interpolation problem is closely related to the

interpolation problem of the sparse, even trigonometric polynomial

g(t) := h(cos t) =
M∑
j=1

cj cos(njt) (t ∈ [0, π ]) , (2.2)

where the sampled values g
(

kπ
2N−1

)
= hk (k = 0, . . . , 2M − 1) are given (see [7,20]).

We introduce the Prony polynomial P of degree M with the leading coefficient 2M−1, whose roots

are xj := Tnj(uN) = cos
njπ

2N−1
(j = 1, . . . ,M), i.e.

P(x) = 2M−1
M∏
j=1

(
x − cos

njπ

2N − 1

)
. (2.3)

Then the Prony polynomial P can be represented in the Chebyshev-1 basis by

P(x) =
M∑
l=0

pl Tl(x) (pM := 1) . (2.4)

The coefficients pj of the Prony polynomial (2.4) can be characterized as follows:

Lemma2.1. For all k = 0, . . . , M−1, the sampled data hk and the coefficients pl of the Prony polynomial

(2.4) satisfy the equations

M−1∑
j=0

(hj+k + h|j−k|) pj = −(hk+M + h|M−k|) . (2.5)

Proof. Using cos(α + β) + cos(α − β) = 2 cosα cosβ , we obtain by (2.2) that

hj+k + h|j−k| = 2

M∑
l=1

cl

(
cos

nl(j + k)π

2N − 1
+ cos

nl(j − k)π

2N − 1

)

= 2

M∑
l=1

cl cos
nljπ

2N − 1
cos

nlkπ

2N − 1
. (2.6)

Thus we conclude that

M∑
j=0

(
hj+k + h|j−k|

)
pj = 2

M∑
l=1

cl cos
nlkπ

2N − 1

M∑
j=0

pj cos
nljπ

2N − 1

= 2

M∑
l=1

cl cos
nlkπ

2N − 1
P

(
cos

nlπ

2N − 1

)
= 0 .

By pM = 1, this implies the assertion (2.5). �

Introducing the vectors h(k) := (hj+k + h|j−k|)M−1
j=0 (k = 0, . . . ,M) and the square T+Hmatrix
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HM(0) := (hj+k + h|j−k|)M−1
j,k=0 =

(
h(0) h(1) . . . h(M − 1)

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 h0 2 h1 . . . 2 hM−1

2 h1 h2 + h0 . . . hM + hM−2

...
...

...

2 hM−1 hM + hM−2 . . . h2M−2 + h0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

then by (2.5) the vector p := (pk)
M−1
k=0 is a solution of the linear system

HM(0) p = −h(M) . (2.7)

Lemma 2.2. Let M and N be integers with 1 ≤ M ≤ N. Further let h be anM-sparse polynomial of degree

at most 2N − 1 in the Chebyshev-1 basis.

If h(uN,j) = 0 for j = 0, . . . ,M − 1, then h is identically zero. Further the Vandermonde-like matrix

VM(x) := (
Tnj(uN,k)

)M−1,M
k=0,j=1 = (

Tk(xj)
)M−1,M
k=0,j=1 =

(
cos

njkπ

2N − 1

)M−1,M

k=0,j=1

with x := (xj)
M
j=1 is nonsingular and the T+Hmatrix HM(0) can be factorized in the following form

HM(0) = 2VM(x) (diag c)VM(x)T (2.8)

and is nonsingular.

Proof. 1. Assume that the Vandermonde-like matrix VM(x) is singular. Then there exists a vector

d = (dl)
M−1
l=0 �= o such that dT VM(x) = oT. We consider the even trigonometric polynomial D

of order at mostM − 1 given by

D(t) =
M−1∑
l=0

dl cos(lt) (t ∈ R) .

Hence dT VM(x) = oT implies that tj = njπ

2N−1
∈ [0, π ] (j = 1, . . . ,M) are roots of D. These

M roots are distinct, because 0 ≤ n1 < . . . < nM < 2N. But this is impossible, since the even

trigonometric polynomialD �= 0 of degree atmostM−1 cannot haveM distinct roots in [0, π ].
Therefore, VM(x) is nonsingular.
If h(uN,j) = 0 for j = 0, . . . ,M − 1, then VM(x) c = o. Since VM(x) is nonsingular, c is equal

to o, such that h is identically zero.

2. The factorization (2.8)of theT+HmatrixHM(0) follows immediately from(2.6). Since cj �= 0 (j =
1, . . . ,M), diag c is nonsingular. Further the Vandermonde-like matrix VM(x) is nonsingular,

such that HM(0) is nonsingular too. �

Introducing the matrix

PM :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0 −p0

1 0 1 . . . 0 0 −p1

0 1 0 . . . 0 0 −p2
...

...
...

...
...

...

0 0 0 . . . 0 1 −pM−3

0 0 0 . . . 1 0 1 − pM−2

0 0 0 . . . 0 1 −pM−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

M×M
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and using the linear system (2.7), we see that

HM(0) PM = HM(1) +
(
o h(0) . . . h(M − 2)

)
with the T+H matrix

HM(1) :=
(
h(1) h(2) . . . h(M)

)
= (

hj+k+1 + h|j−k−1|
)M−1
j,k=0 ∈ R

M×M .

This T+H matrix has the following properties:

Lemma 2.3. The T+Hmatrix HM(1) can be factorized in the following form

HM(1) = 2VM(x) (diag c)V ′
M(x)T (2.9)

with the Vandermonde-like matrix V ′
M(x) := (

Tk(xj)
)M
k,j=1 . Further the matrices HM(1) and V ′

M(x) are

nonsingular.

Proof. 1. By Lemma 2.1 we know that

M∑
k=0

(hj+k + h|j−k|) pk = 0 (j = 0, . . . , 2N − M − 1) .

Consequently we obtain

HM(0) (pk)
M−1
k=0 = −h(M) , HM(1) (pk+1)

M−1
k=0 = −p0 h(0) ,

where

p0 = 2M−1 (−1)M
M∏
j=1

cos
njπ

2N − 1

does not vanish. This implies that

h(M) ∈ span {h(0), . . . , h(M − 1)} , h(0) ∈ span {h(1), . . . , h(M)} .

Thus we obtain that rankHM(0) = rankHM(1) = M.

2. The (j, k)th element of the matrix product 2VM(x) (diag c)V ′
M(x)T can be analogously com-

puted as (2.6) such that

2

M∑
l=1

cl Tnl(uN,j) Tnl(uN,k) = hj+k+1 + h|j−k−1| .

SinceHM(1),VM(x), and diag c are nonsingular, it follows from (2.9) that the Vandermonde-like

matrix V ′
M(x) is nonsingular too. �

In the following Lemmas 2.4 and 2.5 we show that the zeros of the Prony polynomial (2.4) can be

computed via solving an eigenvalue problem. To this end, we represent the Chebyshev polynomial TM
in the form of a determinant.
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Lemma 2.4. Let M be a positive integer. Further let EM := diag
(
1
2
, 1, . . . , 1

)T ∈ R
M and themodified

shift matrix

SM := (
δj−k−1 + δj−k+1

)M−1
j,k=0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0 0

1 0 1 . . . 0 0 0

0 1 0 . . . 0 0 0

...
...

...
...

...
...

0 0 0 . . . 0 1 0

0 0 0 . . . 1 0 1

0 0 0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

M×M .

Then

det (2x EM − SM) = TM(x) (x ∈ R) .

Proof. We show this by induction. For M = 1 and M = 2 it follows immediately the assertion. For

M ≥ 3 we compute the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 . . . 0 0 0

−1 2x −1 . . . 0 0 0

0 −1 2x . . . 0 0 0

...
...

...
...

...
...

0 0 0 . . . 2x −1 0

0 0 0 . . . −1 2x −1

0 0 0 . . . 0 −1 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
using cofactors of the last row (cf. [13, p. 18]). Then we obtain the known recursion of the Chebyshev

polynomials TM(x) = 2x TM−1(x) − TM−2(x) (see [13, p. 2]). This completes the proof. �

Nowweshowthat 1
2
E

−1
M PM is thecompanionmatrixof thePronypolynomial (2.4) in theChebyshev-

1 basis.

Lemma 2.5. Let M be a positive integer. Then 1
2
E

−1
M PM is the companion matrix of the Prony polynomial

(2.4) in the Chebyshev-1 basis, i.e.

det
(
2 x EM − PM

) = 2M−1 det

(
x IM − 1

2
E−1
M PM

)
= P(x) (x ∈ R) .

Proof. Applying Lemma 2.4 and

PM = SM −
(
o . . . o p

)
, (2.10)

we compute det (2 x EM − PM) using cofactors of the last column. Then we obtain on the one hand



68 D. Potts, M. Tasche / Linear Algebra and its Applications 441 (2014) 61–87

det
(
2 x EM − PM

) = TM(x) +
M−1∑
l=0

pl Tl(x) = P(x) (x ∈ R) .

On the other hand it follows that

det
(
2 x EM − PM

) = det (2 EM) det

(
x IM − 1

2
E−1
M PM

)

with det (2 EM) = 2M−1. This completes the proof. �

Theorem 2.6. Let M and N be integers with 1 ≤ M < N. Let h be a M-sparse polynomial of degree at

most 2N − 1 in the Chebyshev-1 basis.

Then the M coefficients cj ∈ R (j = 1, . . .M) and the M nonnegative integers nj (j = 1, . . .M) of

(1.1) can be reconstructed from the 2M samples hk = h
(
cos kπ

2N−1

)
(k = 0, . . . , 2M − 1).

Proof. Using Lemma2.1,weobtain the linear system (2.7). ThematrixHM(0) is nonsingular by Lemma

2.2. By Lemma 2.5, the eigenvalues of the companion matrix 1
2
E

−1
M PM of the Prony polynomial (2.4)

in the Chebyshev-1 basis coincide with the zeros of (2.4). By (2.10), we compute the zeros of the Prony

polynomial (2.4) via solving an eigenvalue problem such that we obtain the nonnegative integers nj
(j = 1, . . .M). We form the Vandermonde-like matrix VM(x) with xj = Tnj(uN) (j = 1, . . . ,M),

which is nonsingular by Lemma 2.2, and obtain finally the coefficients cj ∈ R (j = 1, . . . ,M). �

Thus we can summarize:

Algorithm 2.7. (Prony method for sparse Chebyshev-1 interpolation)

Input: N ∈ N with N > M, hk = h(uN,k) ∈ R (k = 0, . . . , 2M − 1), M ∈ N Chebyshev-1 sparsity

of the polynomial (1.1) of degree at most 2N − 1.

1. Solve the square system

HM(0) (pj)
M−1
j=0 = −h(M) .

2. Determine the simple roots xj (j = 1, . . .M) of the Prony polynomial (2.4), where 1 ≥ x1 > x2 >

. . . > xM ≥ −1, and compute then nj :=
[
2N−1

π
arccos xj

]
(j = 1, . . . ,M), where [x] := 	x + 0.5


means rounding of x ∈ R to the nearest integer.

3. Compute cj ∈ R (j = 1, . . . ,M) as solution of the square Vandermonde-like system

VM(x) c = (hk)
M−1
k=0

with c := (cj)
M
j=1 . Output: nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

Nowweshowthat thematrix pencilmethod followsdirectly fromthePronymethod. Firstweobserve

that

HM(0) = 2VM(x) (diag c)VM(x)T .

Since cj �= 0 (j = 1, . . . ,M), the matrix HM(0) has the rank M and is invertible. Note that the

Chebyshev-1 sparsity of the polynomial (1.1) coincides with the rank of HM(0).
Hence we conclude that
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det (2 xHM(0) EM − HM(0) PM) = det (HM(0)) det (2 x EM − PM)

= det (HM(0)) P(x)

such that the eigenvalues of the square matrix pencil

2 xHM(0) EM − HM(0) PM (x ∈ R) (2.11)

are exactly xj = cos
njπ

2N−1
∈ [−1, 1] (j = 1, . . . ,M). Each eigenvalue xj of the matrix pencil (2.11) is

simple and has a right eigenvector v = (vk)
M−1
k=0 with

vM−1 = TM(xj) = −
M−1∑
l=0

pl Tl(xj) ,

since P(xj) = 0 and P has the form (2.4). By this special choice of vM−1 one can easily determine the

other components vM−2, . . . , v0 which can be recursively computed from the linear system

PM v = 2 xj EM v .

Hence we obtain HM(0) PM v = 2 xj HM(0) EM v, where the matrices can be represented in the fol-

lowing form

HM(0) PM = HM(1) +
(
o h(0) . . . h(M − 2)

)
,

2HM(0) EM = HM(0) +
(
o h(1) . . . h(M − 1)

)
.

Example 2.8. In the caseM = 3 we have to solve the linear system

⎛⎜⎜⎜⎝
0 1 −p0

1 0 1 − p1

0 1 −p2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

v0

v1

v2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
xj v0

2xj v1

2xj v2

⎞⎟⎟⎟⎠
with

v2 = T3(xj) = −
2∑

l=0

pl Tl(xj) .

Then we determine the other components of the eigenvector v = (vl)
2
l=0 as

v1 = −p1 T0(xj) − (2p0 + p2) T1(xj) − p1 T2(xj) ,

v0 = −(p0 + p2) T0(xj) − 2p1 T1(xj) − 2p0 T2(xj) .

In the following, we factorize the square T+HmatricesHM(s) (s = 0, 1) simultaneously. Therefore

we introduce the rectangular T+H matrix

HM,M+1 :=
(
HM(0) HM(1)(1 : M, M)

)
=

(
h(0) h(1) . . . h(M)

)
(2.12)



70 D. Potts, M. Tasche / Linear Algebra and its Applications 441 (2014) 61–87

such that conversely

HM(s) = HM,M+1(1 : M, 1 + s : M + s) (s = 0, 1) . (2.13)

Then we compute the QR factorization of HM,M+1 with column pivoting and obtain

HM,M+1 �M+1 = QM RM,M+1

with an orthogonal matrix QM , a permutation matrix �M+1, and a trapezoidal matrix RM,M+1, where

RM,M+1(1 : M, 1 : M) is a nonsingular upper triangular matrix. Note that the permutation matrix

�M+1 is chosen such that the diagonal entries of RM,M+1(1 : M, 1 : M) have nonincreasing absolute

values. Using the definition

SM,M+1 := RM,M+1 �T
M+1 ,

we infer that by (2.13)

HM(s) = QM SM(s) (s = 0, 1) ,

where

SM(s) := SM,M+1(1 : M, 1 + s : M + s) (s = 0, 1) .

Hence we can factorize the matrices 2HM(0) EM and HM(0) PM in the following form

2HM(0) EM = HM(0) +
(
o h(1) . . . h(M − 1)

)
= QM S′

M(0) ,

HM(0) PM = HM(1) +
(
o h(0) . . . h(M − 2)

)
= QM S′

M(1) ,

where

S′
M(0) := SM(0) +

(
o SM(1)(1 : M, 1 : M − 1)

)
, (2.14)

S′
M(1) := SM(1) +

(
o SM(0)(1 : M, 1 : M − 1)

)
. (2.15)

Since QM is orthogonal, the generalized eigenvalue problem of the matrix pencil (2.11) is equivalent

to the generalized eigenvalue problem of the matrix pencil

x S′
M(0) − S′

M(1) = S′
M(0)

(
x IM − (

S′
M(0)

)−1
S′
M(1)

)
(x ∈ R) .

Since HM(0) is nonsingular by Lemma 2.2, the matrix 2HM(0) EM is nonsingular too. Hence S′
M(0) =

2Q ∗
M HM(0) EM is invertible.

We summarize this method:

Algorithm 2.9. (Matrix pencil factorization based on QR decomposition for sparse Chebyshev-1 in-

terpolation)

Input: N ∈ N with N > M, hk = h(uN,k) ∈ R (k = 0, . . . , 2M − 1), M ∈ N Chebyshev-1 sparsity

of the polynomial (1.1) of degree at most 2N − 1.
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1. Compute the QR factorization with column pivoting of the rectangular T+H matrix (2.12) and

form the matrices (2.14) and (2.15).

2. Determine the eigenvalues xj ∈ [−1, 1] (j = 1, . . . ,M) of the square matrix

(
S′
M(0)

)−1
S′
M(1) ,

where xj are ordered in the following way 1 ≥ x1 > x2 > . . . > xM ≥ −1. Form nj :=[
2N−1

π
arccos xj

]
(j = 1, . . . ,M).

3. Compute cj ∈ R (j = 1, . . . ,M) as solution of the square Vandermonde-like system

VM(x) c = (hk)
M−1
k=0

with x := (xj)
M
j=1 and c := (cj)

M
j=1 .

Output: nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

In contrast to Algorithm 2.9, we use now the singular value decomposition (SVD) of the rectangular

Hankel matrix (2.12) and obtain a method which is known as the ESPRIT method. Applying the SVD to

HM,M+1, we obtain

HM,M+1 = UM DM,M+1 WM+1

with orthogonal matrices UM , WM+1 and a diagonal matrix DM,M+1, whose diagonal entries are the

ordered singular values σ1 ≥ σ2 ≥ . . . ≥ σM > 0 of HM,M+1. Introducing

DM := DM,M+1(1 : M, 1 : M) , WM,M+1 := WM+1(1 : M, 1 : M + 1) ,

we can simplify the SVD of (2.12) by

HM,M+1 = UM DM WM,M+1 .

Note thatWM,M+1 W
T
M,M+1 = IM . Setting

WM(s) := WM,M+1(1 : M, 1 + s : M + s) (s = 0, 1) ,

it follows from (2.13) that HM(s) = UM DM WM(s) (s = 0, 1). Hence we can factorize the matrices

2HM(0) EM and HM(0) PM in the following form

2HM(0) EM = HM(0) +
(
o h(1) . . . h(M − 1)

)
= UM DM W ′

M(0) ,

HM(0) PM = HM(1) +
(
o h(0) . . . h(M − 2)

)
= UM DM W ′

M(1) ,

where

W ′
M(0) := WM(0) +

(
o WM(1)(1 : M, 1 : M − 1)

)
, (2.16)

W ′
M(1) := WM(1) +

(
o WM(0)(1 : M, 1 : M − 1)

)
. (2.17)



72 D. Potts, M. Tasche / Linear Algebra and its Applications 441 (2014) 61–87

Clearly,W ′
M(0) = 2D

−1
M UT

M HM(0) EM is a nonsingularmatrix by construction. Thenwe infer that the

generalized eigenvalue problem of the matrix pencil (2.11) is equivalent to the generalized eigenvalue

problem of the matrix pencil

xW ′
M(0) − W ′

M(1) = W ′
M(0)

(
x IM − (

W ′
M(0)

)−1
W ′

M(1)
)
,

since UM is orthogonal and DM is invertible. Therefore we obtain that

PM = (
HM(0)

)−1
UM DM W ′

M(1) .

Algorithm 2.10. (ESPRIT method for sparse Chebyshev-1 interpolation)

Input: N ∈ N with N > M, hk ∈ R (k = 0, . . . , 2M − 1), M ∈ N Chebyshev-1 sparsity of the

polynomial (1.1) of degree at most 2N − 1.

1. Compute the SVD of the Hankel matrix (2.12) and form the matrices (2.16) and (2.17).

2. Determine the eigenvalues xj ∈ [−1, 1] (j = 1, . . .M) of
(
W ′

M(0)
)−1

W ′
M(1), where xj are

ordered in the following form 1 ≥ x1 > x2 > . . . > xM ≥ −1. Form nj :=
[
2N−1

π
arccos xj

]
(j = 1, . . . ,M).

3. Compute the coefficients cj ∈ R (j = 1, . . . ,M) as solution of the square Vandermonde-like

system

VM(x) c = (hk)
M−1
k=0

with x := (xj)
M
j=1 and c := (cj)

M
j=1.

Output: nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

Remark 2.11. The last step of the Algorithms 2.7–2.10 can be replaced by the computation of the

real coefficients cj (j = 1, . . . ,M) as least squares solution of the overdetermined Vandermonde-like

V2M,M(x) c = (hk)
2M−1
k=0 with the rectangular Vandermonde-like matrix

V2M,M(x) := (
Tk(xj)

)2M−1,M
k=0,j=1 =

(
cos

njkπ

2N − 1

)2M−1,M

k=0,j=1

.

In the case of sparse Chebyshev-1 interpolation of (1.1) with known Chebyshev-1 sparsity M,

we have seen that each method determines the eigenvalues xj (j = 1, . . . ,M) of the matrix pen-

cil 2 x EM − PM , where 1
2
E

−1
M PM is the companion matrix of the Prony polynomial (2.4) in the

Chebyshev-1 basis.

3. Interpolation for unknown Chebyshev-1 sparsity

This section is the core of the paper. Here we consider the problem of sparse polynomial interpola-

tion in the important case of unknownChebyshev-1 sparsityM of thepolynomial (1.1).Weassumeonly

that an upper bound of the Chebyshev-1 sparsity is known. Roughly spoken, we generalize the results

of Section 2 to rectangular T+H matrices and rectangular Vandermonde-like matrices. We show fac-

torizations of rectangular T+Hmatrices and the interesting relation (3.8) between the modified Prony

polynomial (3.6) and the T+H matrices (see Lemma 3.2). The zeros of the modified Prony polynomial

can be computed via solving an eigenvalue problem of the related companionmatrix. Themain results

of Section 3 are the Algorithms 3.3–3.5. Numerical examples in Section 5 show that the Algorithms 3.4

and 3.5 are numerically stable in the floating point arithmetic.
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Let L ∈ N be convenient upper bound of the unknown Chebyshev-1 sparsity M of the polynomial

(1.1) of degree at most 2N − 1, where N ∈ N is sufficiently large with M ≤ L ≤ N. In order to

improve the numerical stability, we allow to choose more sampling points. Therefore we introduce

an additional parameter K with L ≤ K ≤ N such that we use K + L sampling points of (1.1), more

precisely we assume that noiseless sampled data hk = h(uN,k) (k = 0, . . . , L + K − 1) are given.

With the L + K sampled data hk ∈ R (k = 0, . . . , L + K − 1) we form the rectangular T+Hmatrices

HK,L+1 := (
hl+m + h|l−m|

)K−1,L
l,m=0 , (3.1)

HK,L(s) := (
hl+m+s + h|l−m−s|

)K−1,L−1
l,m=0 (s = 0, 1) . (3.2)

Then HK,L(1) is a shifted version of the T+H matrix HK,L(0) and

HK,L+1 =
(
HK,L(0) HK,L(1)(1 : K, L)

)
,

HK,L(s) = HK,L+1(1 : K, 1 + s : L + s) (s = 0, 1) . (3.3)

Note that in the special case M = L = K we obtain again the matrices (2.12) and (2.13). Using the

coefficients pk (k = 0, . . . ,M − 1) of the Prony polynomial (2.4), we form the vector pL := (pk)
L−1
k=0

with pM := 1, pM+1 = . . . = pL−1 := 0. By SL := (
δk−l−1 + δk−l+1

)L−1
k,l=0 we denote the sum

of forward and backward shift matrix, where δk is the Kronecker symbol. Analogously, we introduce

pL+1 := (pk)
L
k=0 with pL := 0, if L > M, and SL+1 := (

δk−l−1 + δk−l+1

)L
k,l=0.

Lemma 3.1. Let L, K, M, N ∈ N with M ≤ L ≤ K ≤ N be given. Furthermore, let hk = h(uN,k)
(k = 0, . . . , L+K − 1) be noiseless sampled data of the sparse polynomial (1.1) of degree at most 2N − 1

with coefficients cj ∈ R \ {0} (j = 1, . . . ,M). Then

rankHK,L+1 = rankHK,L(s) = M (s = 0, 1) . (3.4)

If L = M, then nullHK,M+1 = span {pM+1} and nullHK,M(s) = {o} for s = 0, 1. If L > M, then

nullHK,L+1 = span {pL+1, SL+1pL+1, . . . , SL−M
L+1 pL+1} ,

nullHK,L(s) = span {pL, SLpL, . . . , SL−M−1
L pL} (s = 0, 1)

and

dim (nullHK,L+1) = L − M + 1 ,

dim (nullHK,L(s)) = L − M (s = 0, 1) .

Proof. 1. For xj = Tnj(uN) (j = 1, . . . ,M), we introduce the rectangular Vandermonde-like matri-

ces

VK,M(x) := (
Tk−1(xj)

)K,M
k,j=1

=
(
cos

nj(k − 1)π

2N − 1

)K,M

k,j=1

, (3.5)

V ′
K,M(x) := (

Tk(xj)
)K,M
k,j=1 =

(
cos

njkπ

2N − 1

)K,M

k,j=1

,

which have the rank M, since VM(x) and V ′
M(x) are nonsingular by Lemmas 2.2 and 2.3. Then

the rectangular T+H matrices (3.1) and (3.2) can be factorized in the following form
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HK,L+1 = 2VK,M(x) (diag c)V L+1,M(x)T ,

HK,L(0) = 2VK,M(x) (diag c)V L,M(x)T ,

HK,L(1) = 2VK,M(x) (diag c)V ′
L,M(x)T

with x = (xj)
M
j=1 and c = (cj)

M
j=1. This can be shown in similar way as in the proof of Lemma

2.2. Since cj �= 0 and since xj ∈ [−1, 1] are distinct, we obtain (3.4). Using rank estimation,

we can determine the rank and thus the Chebyshev-1 sparsity of the sparse polynomial (1.1). By

(3.4) and HK,L+1 pM+1 = o (see (2.5)), the 1-dimensional null space of HK,L+1 is spanned by

pM+1. Furthermore, the null spaces of HK,L(s) are trivial for s = 0, 1.

2. Assume that L > M. From

M∑
m=0

pm
(
hl+m+s + h|l−m−s|

) = 0 (l = 0, . . . , 2N − M − s − 1; s = 0, 1)

it follows that

HK,L+1 (S
j
L+1 pL+1) = o (j = 0, . . . , L − M)

and analogously

HK,L(s) (S
j
L pL) = o (j = 0, . . . , L − M − 1; s = 0, 1) ,

where o denotes the corresponding zero vector. By pM = 1, we see that the vectors S
j
L+1 pL+1

(j = 0, . . . , L − M) and S
j
L pL (j = 0, . . . , L − M − 1) are linearly independent and located

in nullHK,L+1, and nullHK,L(s), respectively.
3. Let again L > M. Now we prove that nullHK,L+1 is contained in the linear span of the vectors

S
j
L+1pL+1 (j = 0, . . . , L − M). Let u = (ul)

L
l=0 ∈ R

L+1 be an arbitrary right eigenvector of

HK,L+1 related to the eigenvalue 0 and let U be the corresponding polynomial

U(x) =
L∑

l=0

ul Tl(x) (x ∈ R) .

Using the noiseless sampled data hk = h(uN,k) (k = 0, . . . , 2N − 1), we obtain

0 =
L∑

m=0

(hl+m + h|l−m|) um =
L∑

m=0

um

⎛⎝ M∑
j=1

cj
[
Tnj(uN,l+m) + Tnj(uN,|l−m|)

]⎞⎠ .

Thus by Tnj(uN,l+m) + Tnj(uN,|l−m|) = Tl+m(xj) + T|l−m|(xj) = 2 Tl(xj) Tm(xj) it follows that

0 = 2

M∑
j=1

cj Tl(xj)U(xj) (l = 0, . . . , 2N − L − 1)

and hence by (3.5)

VK,M(x)
(
cj U(xj)

)M
j=1 = o .
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Since xj ∈ [−1, 1] (j = 1, . . . ,M) are distinct by assumption, the square Vandermonde-like

matrix VM(x) is nonsingular by Lemma 2.2. Hence we obtain U(xj) = 0 (j = 1, . . . ,M) by

cj �= 0. Thus it follows that U(x) = P(x) R(x) with certain polynomial

R(x) =
L−M∑
k=0

rk Tk(x) (x ∈ R; rk ∈ R) .

But this means for the coefficients of the polynomials P, R, and U that

u = r0 pL+1 + 1

2
r1 SL+1 pL+1 + . . . + 1

2
rL−M S

L−M
L+1 pL+1 .

Hence the vectors S
j
L+1 pL+1 (j = 0, . . . , L −M) form a basis of nullHK,L+1 such that dim(null

HK,L+1) = L −M + 1. Similarly, one can show the results for the other T+Hmatrices (3.2). This

completes the proof. �

The Prony method for sparse Chebyshev-1 interpolation (with unknown Chebyshev-1 sparsity M)

is based on the following result.

Lemma 3.2. Let L, K,M, N ∈ NwithM ≤ L ≤ K ≤ N be given. Let hk = h(uN,k) (k = 0, . . . , L+K−1)
be noiseless sampled data of the sparse polynomial (1.1) of degree at most 2N − 1 with coefficients cj ∈
R \ {0}. Then following assertions are equivalent:

(i) The polynomial

Q(x) :=
L∑

k=0

qk Tk(x) (x ∈ R; qL := 1) (3.6)

with real coefficients qk has M distinct zeros xj ∈ [−1, 1] (j = 1, . . . ,M).

(ii) The vector q = (qk)
L−1
k=0 is a solution of the linear system

HK,L(0) q = −h(L) (h(L) := (
hL+m + h|L−m|

)K−1
m=0). (3.7)

(iii) The matrix Q L := SL −
(
o . . . o q

)
∈ R

L×L has the property

HK,L(0)Q L = HK,L(1) +
(
o h(0) . . . h(L − 2)

)
. (3.8)

Further the eigenvalues of 1
2
E

−1
L Q L coincide with the zeros of the polynomial (3.6).

Proof. 1. From (i) it follows (ii): Assume that Q(xj) = 0 (j = 1, . . . ,M). For m = 0, . . . , K − 1,

we compute the sums

sm :=
L∑

k=0

(hk+m + h|k−m|) qk .

Using hk = h(uN,k) (k = 0, . . . , L + K − 1), (1.1), and the known identities (see e.g. [13, p. 17

and p. 31])

2 Tj(x) Tk(x) = Tj+k(x) + T|j−k|(x) , Tj
(
Tk(x)

) = Tj+k(x) (j, k ∈ N0) ,
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we obtain

sm =
L∑

k=0

qk

[
h
(
Tk+m(uN)

) + h
(
T|k−m|(uN)

)]

=
M∑
l=1

cl

L∑
k=0

qk

[
Tk+m(xl) + T|k−m|(xl)

]
= 2

M∑
l=1

cl Tm(xl)Q(xl) = 0 .

By qL = 1 this implies that

L−1∑
k=0

(hk+m + h|k−m|) qk = −1 (hL+m + h|L−m|) (m = 0, . . . , K − 1) .

Hence we get (3.7).

2. From (ii) it follows (iii): Assume that q = (ql)
L−1
l=0 is a solution of the linear system (3.7). Then

by

HK,L(0) (δk−j)
L−1
k=0 = h(j) = (

hk+j + h|k−j|
)K−1
k=0 (j = 1, . . . , L − 1) ,

−HK,L(0) q = h(L) = (
hk+L + h|k−L|

)K−1
k=0 ,

we obtain (3.8) column by column.

3. From (iii) it follows (i): By (3.8)we obtain (3.7), since the last columnofQ L reads (δL−2−j)
L−1
j=0 −q

and since the last column of

HK,L(1) +
(
o h(0) . . . h(L − 2)

)
is equal to h(L) + h(L − 2). Then (3.7) implies

L∑
k=0

(hk+m + h|k−m|) qk = 0 (m = 0, . . . , K − 1).

As shown in the first step, we obtain

M∑
l=1

cl Tm(xl)Q(xl) = 0 (m = 0, . . . , K − 1) ,

i.e. by (3.5) finally VK,M(x)
(
cl Q(xl)

)M
l=1 = o . Especially we conclude that

VM(x)
(
cl Q(xl)

)M
l=1 = o .

Since xj ∈ [−1, 1] (j = 1, . . . ,M) are distinct, the square Vandermonde-like matrix VM(x) is
nonsingular by Lemma 2.2 such that Q(xj) = 0 (j = 1, . . . ,M).

4. From Lemma 2.5, it follows that

det
(
2x EL − Q L

) = Q(x) (x ∈ R) .

Hence the eigenvalues of the square matrix 1
2
E

−1
L Q L coincide with the zeros of the polynomial

(3.6). This completes the proof. �
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In the following, we denote a polynomial (3.6) as a modified Prony polynomial of degree L (M ≤
L ≤ N), if the corresponding coefficient vector q = (qk)

L−1
k=0 is a solution of the linear system (3.7).

Then (3.6) has the same zeros xj ∈ [−1, 1] (j = 1, . . . ,M) as the Prony polynomial (2.4), but (3.6)

has L − M additional zeros, if L > M. The eigenvalues of 1
2
E

−1
L Q L coincide with the zeros of the

polynomial (3.6).

Now we formulate Lemma 3.2 as an algorithm. Since the unknown coefficients cj (j = 1, . . . ,M)
do not vanish, we can assume that |cj| > ε for convenient bound ε (0 < ε � 1).

Algorithm 3.3. (Prony method for sparse Chebyshev-1 interpolation)

Input: L, K , N ∈ N (N � 1, 3 ≤ L ≤ K ≤ N), L is upper bound of the Chebyshev-1 sparsity M of

(1.1) of degree at most 2N − 1, hk = h(uN,k) ∈ R (k = 0, . . . , L + K − 1), 0 < ε � 1.

1. Compute the least squares solution q = (qk)
L−1
k=0 of the rectangular linear system (3.7).

2. Determine the simple roots x̃j ∈ [ − 1, 1] (j = 1, . . . , M̃) of the modified Prony polynomial

(3.6), i.e., compute all eigenvalues x̃j ∈ [ − 1, 1] (j = 1, . . . , M̃) of the companion matrix 1
2
E

−1
L Q L .

Assume that x̃j are ordered in the following form 1 ≥ x̃1 > x̃2 > . . . > x̃M̃ ≥ −1. Note that

rankHK,L(0) = M ≤ M̃.

3. Compute c̃j ∈ R (j = 1, . . . , M̃) as least squares solution of the overdetermined linear

Vandermonde-like system

V L+K,M̃(x̃) (c̃j)
M̃
j=1 = (hk)

L+K−1
k=0

with x̃ := (x̃j)
M̃
j=1 and V L+K,M̃(x̃) := (

Tk(x̃j)
)L+K−1,M̃
k=0,j=1 .

4. Delete all the x̃l (l ∈ {1, . . . , M̃} with |c̃l| ≤ ε and denote the remaining values by xj (j =
1, . . . ,M) withM ≤ M̃. Calculate nj :=

[
2N−1

π
arccos xj

]
(j = 1, . . . ,M).

5. Repeat step 3 and compute c = (cj)
M
j=1 ∈ R

M as least squares solution of the overdetermined

linear Vandermonde-like system

V L+K,M(x) c = (hk)
L+K−1
k=0

with x := (xj)
M
j=1 and V L+K,M(x) := (

Tk(xj)
)L+K−1,M
k=0,j=1 = (

cos
njkπ

2N−1

)L+K−1,M
k=0,j=1 .

Output: M ∈ N, nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

Now we show that the Prony method for sparse Chebyshev-1 interpolation can be improved to a

matrix pencil method. As known, a rectangular matrix pencil may not have eigenvalues in general. But

this is not the case for our rectangular matrix pencil

2xHK,L(0) EL − HK,L(0)Q L , (3.9)

which has xj ∈ [−1, 1] (j = 1, . . . ,M) as eigenvalues. Note that by (3.8) both matrices HK,L(0) EL

and HK,L(0)Q L are known by the given sampled data hk (k = 0, . . . , 2N − 1). The matrix pencil (3.9)

has at least the eigenvalues xj ∈ [−1, 1] (j = 1, . . . ,M). If v ∈ C
L is a right eigenvector related to xj ,

then by

(
2xj HK,L(0) EL − HK,L(0)Q L

)
v = HK,L(0)

(
2xj EL − Q L

)
v

and

det
(
2xj EL − Q L

) = Q(xj) = 0
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we see that v = (vk)
L−1
k=0 is a right eigenvector of the square eigenvalue problem

1

2
E−1
L Q L v = xj v .

A right eigenvector can be determined by

vL−1 = TL(xj) = −
L−1∑
l=0

ql Tl(xj) ,

whereas the other components vL−2, . . . , v0 can be computed recursively from the linear system

Q L v = 2xj EL v .

Nowwe factorize the rectangular T+H matrices (3.2) simultaneously. For this reason, we compute the

QR decomposition of the rectangular T+H matrix (3.1). By (3.4), the rank of the T+H matrix HK,L+1 is

equal toM. Hence HK,L+1 is rank deficient. Therefore we apply QR factorization with column pivoting

and obtain

HK,L+1 �L+1 = UK RK,L+1

with an orthogonal matrix UK , a permutation matrix �L+1, and a trapezoidal matrix

RK,L+1 =
⎛⎝ RK,L+1(1 : M, 1 : L + 1)

OK−M,L+1

⎞⎠ ,

where RK,L+1(1 : M, 1 : M) is a nonsingular upper triangular matrix. By the QR decomposition we

can determine the rank M of the T+H matrix (3.1) and hence the Chebyshev-1 sparsity of the sparse

polynomial (1.1). Note that the permutation matrix �L+1 is chosen such that the diagonal entries of

RK,L+1(1 : M, 1 : M) have nonincreasing absolute values. We denote the diagonal matrix containing

these diagonal entries by DM . With

SK,L+1 := RK,L+1 �T
L+1 =

⎛⎝ SK,L+1(1 : M, 1 : L + 1)

OK−M,L+1

⎞⎠ , (3.10)

we infer that by (3.3)

HK,L(s) = UK SK,L(s) (s = 0, 1)

with

SK,L(s) := SK,L+1(1 : K, 1 + s : L + s) (s = 0, 1) .

Hence we can factorize the matrices 2HK,L(0) EL and HK,L(0)Q L in the following form

2HK,L(0) EL = HK,L(0) +
(
o h(1) . . . h(L − 1)

)
= UK S′

K,L(0) ,

HK,L(0)Q L = HK,L(1) +
(
o h(0) . . . h(L − 2)

)
= UK S′

K,L(1) ,
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where

S′
K,L(0) := SK,L(0) +

(
o SK,L(1)(1 : K, 1 : L − 1)

)
,

S′
K,L(1) := SK,L(1) +

(
o SK,L(0)(1 : K, 1 : L − 1)

)
.

Since UK is orthogonal, the generalized eigenvalue problem of the matrix pencil (3.9) is equivalent to

the generalized eigenvalue problem of the matrix pencil

x S′
K,L(0) − S′

K,L(1) (x ∈ R) .

Using the special structure of (3.10), we can simplify the matrix pencil

x TM,L(0) − TM,L(1) (x ∈ R) (3.11)

with

TM,L(s) := SK,L(1 : M, 1 + s : L + s) (s = 0, 1) . (3.12)

Here one can use the matrix DM as diagonal preconditioner and proceed with

T ′
M,L(s) := D−1

M TM,L(s) . (3.13)

Then the generalized eigenvalue problem of the transposed matrix pencil

x T ′
M,L(0)

T − T ′
M,L(1)

T

has the same eigenvalues as thematrix pencil (3.11) except for the zero eigenvalues and it can be solved

as eigenvalue problem of theM-by-M matrix

F
QR

M :=
(
T ′
M,L(0)

T
)†

T ′
M,L(1)

T . (3.14)

Finally we obtain the nodes xj ∈ [−1, 1] (j = 1, . . . ,M) as the eigenvalues of (3.14).

Algorithm 3.4. (Matrix pencil factorization based on QR decomposition for sparse Chebyshev-1 in-

terpolation)

Input: L, K , N ∈ N (N � 1, 3 ≤ L ≤ K ≤ N), L is upper bound of the Chebyshev-1 sparsity M of

(1.1) of degree at most 2N − 1, hk = h(uN,k) ∈ R (k = 0, . . . , L + K − 1).
1. Compute QR factorization of the rectangular T+H matrix (3.1). Determine the rank of (3.1) and

form the matrices (3.12) and (3.13).

2. Determine the eigenvalues xj ∈ [−1, 1] (j = 1, . . . ,M) of the squarematrix (3.14). Assume that

xj are ordered in the following form 1 ≥ x1 > x2 > . . . > xM ≥ −1. Calculate nj := [ 2N−1
π

arccos xj]
(j = 1, . . . ,M).

3. Compute the coefficients cj ∈ R (j = 1, . . . ,M) as least squares solution of the overdetermined

linear Vandermonde-like system

V L+K,M(x) (cj)
M
j=1 = (hk)

L+K−1
k=0

with x := (xj)
M
j=1 and V L+K,M(x) := (

Tk(xj)
)L+K−1,M
k=0,j=1 = (

cos
njkπ

2N−1

)L+K−1,M
k=0,j=1 .

Output: M ∈ N, nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).
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In the following we derive the ESPRIT method by similar ideas as above, but now we use the SVD

of the T+H matrix (3.1), which is rank deficient by (3.4). Therefore we use the factorization

HK,L+1 = UK DK,L+1 W L+1 ,

where UK andW L+1 are orthogonal matrices and where DK,L+1 is a rectangular diagonal matrix. The

diagonal entries of DK,L+1 are the singular values of (3.1) arranged in nonincreasing order σ1 ≥ σ2 ≥
. . . ≥ σM > σM+1 = . . . = σL+1 = 0. Thus we can determine the rank M of the Hankel matrix (3.1)

which coincides with the Chebyshev-1 sparsity of the polynomial (1.1). Introducing the matrices

DK,M := DK,L+1(1 : K, 1 : M) =
⎛⎝ diag (σj)

M
j=1

OK−M,M

⎞⎠ ,

WM,L+1 := W L+1(1 : M, 1 : L + 1) ,

we can simplify the SVD of the Hankel matrix (3.1) as follows

HK,L+1 = UK DK,M WM,L+1 .

Note that WM,L+1 W
T
M,L+1 = IM . Setting

WM,L(s) = WM,L+1(1 : M, 1 + s : L + s) (s = 0, 1) , (3.15)

it follows from (3.3) thatHK,L(s) = UK DK,M WM,L(s) (s = 0, 1). Hencewe can factorize thematrices

2HK,L(0) EL and HK,L(0)Q L in the following form

2HK,L(0) EL = HK,L(0) +
(
o h(1) . . . h(L − 1)

)
= UK DK,M W ′

K,L(0) ,

HK,L(0)Q L = HK,L(1) +
(
o h(0) . . . h(L − 2)

)
= UK DK,M W ′

K,L(1) ,

where

W ′
K,L(0) := WK,L(0) +

(
o WK,L(1)(1 : K, 1 : L − 1)

)
,

W ′
K,L(1) := WK,L(1) +

(
o WK,L(0)(1 : K, 1 : L − 1)

)
.

Since UK is orthogonal, the generalized eigenvalue problem of the rectangular matrix pencil (3.9) is

equivalent to the generalized eigenvalue problem of the matrix pencil

x DK,M W ′
M,L(0) − DK,M W ′

M,L(1) . (3.16)

If we multiply the transposed matrix pencil (3.16) from the right side with

⎛⎝ diag (σ−1
j )Mj=1

OK−M,M

⎞⎠ ,

we obtain the generalized eigenvalue problem of the matrix pencil
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xW ′
M,L(0)

T − W ′
M,L(1)

T ,

which has the same eigenvalues as the matrix pencil (3.16) except for the zero eigenvalues. Finally we

determine the nodes xj ∈ [−1, 1] (j = 1, . . . ,M) as eigenvalues of the matrix

F SVD

M :=
(
W ′

M,L(0)
T
)†

W ′
M,L(1)

T . (3.17)

Thus the ESPRIT algorithm reads as follows:

Algorithm 3.5. (ESPRIT method for sparse Chebyshev-1 interpolation)

Input: L, K , N ∈ N (N � 1, 3 ≤ L ≤ K ≤ N), L is upper bound of the Chebyshev-1 sparsity M of

(1.1) of degree at most 2N − 1, hk = h(uN,k) ∈ R (k = 0, . . . , L + K − 1).
1. Compute the SVD of the rectangular T+H matrix (3.1). Determine the rank M of (3.1) and form

the matrices (3.15).

2. Compute all eigenvalues xj ∈ [−1, 1] (j = 1, . . . ,M) of the square matrix (3.17). Assume that

the eigenvalues are ordered in the following form 1 ≥ x1 > x2 > . . . > xM ≥ −1. Calculate

nj := [ 2N−1
π

arccos xj] (j = 1, . . . ,M).

3. Compute the coefficients cj ∈ R (j = 1, . . . ,M) as least squares solution of the overdetermined

linear Vandermonde-like system

V L+K,M(x) c = (hk)
L+K−1
k=0

with x := (xj)
M
j=1 and c := (cj)

M
j=1.

Output: M ∈ N, nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

4. Sparse polynomial interpolation in Chebyshev-2 basis

In this section, we discuss the sparse interpolation in the basis of Chebyshev polynomials of second

kind. Here we use analogous ideas as in Sections 2 and 3. Thus Lemma 4.1 corresponds to Lemma

2.1. Note that one can extend this approach to the Chebyshev polynomials of third and fourth kind,

respectively.

For n ∈ N0 and x ∈ (−1, 1), the Chebyshev polynomial of second kind is defined by

Un(x) := (1 − x2)−1/2 sin
(
(n + 1) arccos x

)
(see for example [13, p. 3]). These polynomials are orthogonal with respect to the weight (1 − x2)1/2

on [−1, 1] (see [13, p. 74]) and form the Chebyshev-2 basis.

ForM, N ∈ NwithM < N, we consider a polynomial h of degree atmost 2N−1,which isM-sparse

in the Chebyshev-2 basis, i.e.

h(x) =
M∑
j=1

cj Unj(x) (4.1)

with 0 ≤ n1 < n2 < . . . < nM ≤ 2N − 1. The integer M is called Chebyshev-2 sparsity of (4.1).

Note that the sparsity depends on the choice of Chebyshev basis. Using T0 = U0, T1 = U1/2 and

Tn = (Un − Un−2)/2 for n ≥ 2 (cf. [13, p. 4]), we obtain for N � 1

U2N−2 + U2N−1 = T0 + 2 (T1 + . . . + T2N−1) .
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Thus the 2-sparse polynomial U2N−2 + U2N−1 in the Chebyshev-2 basis is not a sparse polynomial

in the Chebyshev-1 basis. For sake of brevity, we restrict us on the discussion of the sparse polyno-

mial interpolation in the Chebyshev-2 basis. We present only the Prony method in the case of given

Chebyshev-2 sparsity (see Algorithm 4.2). But we emphasize that one can extend this approach the

Chebyshev polynomials of third and fourth kind (see [13, p. 5]), which are defined for n ∈ N0 by

Vn(x) := cos
((

n + 1
2

)
arccos x

)
cos

(
1
2
arccos x

) , Wn(x) := sin
((

n + 1
2

)
arccos x

)
sin

(
1
2
arccos x

) (x ∈ (−1, 1)).

Substituting x = cos t, we obtain for all t ∈ [0, π ]

h(cos t) sin t =
M∑
j=1

cj sin
(
(nj + 1) t)

)
. (4.2)

By sampling at t = πk
2N−1

(k = 0, . . . , 2N − 1), it follows that

h̃k := h

(
cos

πk

2N − 1

)
sin

πk

2N − 1
=

M∑
j=1

cj sin

(
(nj + 1)

πk

2N − 1

))
. (4.3)

Further we set h̃−k := −h̃k (k = 1, . . . , 2N − 1). In this case, we introduce the Prony polynomial by

P̃(x) := 2M−1
M∏
j=1

(
x − cos

(nj + 1)π

2N − 1

)
, (4.4)

which can be represented again in the Chebyshev-1 basis in the form

P̃(x) =
M∑
l=0

pl Tl(x) (pM = 1) .

The coefficients pl of the Prony polynomial (4.4) can be characterized as follows:

Lemma 4.1. For all k = 1, . . . ,M, the scaled sampled values (4.3) and the coefficients pl of the Prony

polynomial (4.4) fulfill the equations

M−1∑
j=0

(h̃j+k − h̃j−k) pj = −(h̃M+k − h̃M−k) .

Proof. Using sin(α + β) − sin(α − β) = 2 sinα cosβ , we obtain for j, k = 0, . . . ,M

h̃j+k − h̃j−k = 2

M∑
l=1

cl sin
(nl + 1)πk

2N − 1
cos

(nl + 1)π j

2N − 1
. (4.5)

Note that the Eq. (4.5) is trivial for k = 0 and therefore omitted. From (4.5) it follows that
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M∑
j=0

(h̃j+k − h̃j−k) pj = 2

M∑
j=0

pj

M∑
l=1

cl sin
(nl + 1)πk

2N − 1
cos

(nl + 1)π j

2N − 1

= 2

M∑
l=1

cl sin
(nl + 1)πk

2N − 1
P̃

(
cos

(nl + 1)π j

2N − 1

)
= 0 .

By pM = 1, this implies the assertion. �

If we introduce the T+H matrix

H̃M(0) := (
h̃j+k − h̃j−k

)M,M−1
k=1,j=0

and the vector h̃(M) := (h̃M+k − h̃M−k)
M
k=1, then by Lemma 4.1 the vector p := (pj)

M−1
j=0 is a solution

of the linear system

H̃M(0) p = −h̃(M) . (4.6)

By (4.5), the T+H matrix H̃M(0) can be factorized in the form

H̃M(0) = 2V s
M (diag c)

(
V c

M

)T
(4.7)

with the Vandermonde-like matrices

V c
M :=

(
cos

(nl + 1)π j

2N − 1

)M−1,M

j=0,l=1

, V s
M :=

(
sin

(nl + 1)πk

2N − 1

)M

k,l=1

and the diagonalmatrix of c = (cl)
M
l=1. Both Vandermonde-likematrices are nonsingular. Assume that

V c
M is singular. Then there exists a vector d = (dl)

M−1
l=0 �= o with dT V c

M = oT. Introducing

D(x) :=
M−1∑
l=0

dl cos(lx) ,

this even trigonometric polynomial of order at most M − 1 has M distinct zeros
(nl+1)π
2N−1

∈ (0, π ]
(j = 1, . . . ,M). But this can be only the case, if D vanishes identically. Similarly, one can see that V s

M

is nonsingular too. From (4.7) it follows that H̃M(0) is also nonsingular. Thus we obtain:

Algorithm 4.2. (Prony method for sparse Chebyshev-2 interpolation)

Input: N ∈ N with N > M, h̃k ∈ R (k = 0, . . . , 2M − 1), M ∈ N Chebyshev-2 sparsity of the

polynomial (4.1) of degree at most 2N − 1.

1. Solve the square linear system (4.6).

2. Determine the simple roots x̃j (j = 1, . . .M) of the Prony polynomial (4.4), where 1 ≥ x̃1 >

x̃2 > . . . > x̃M ≥ −1, and compute then nj := [ 2N−1
π

arccos x̃j] − 1 (j = 1, . . . ,M).

3. Compute cj ∈ R (j = 1, . . . ,M) as solution of the square Vandermonde-like system

V s
M c = (h̃k)

M−1
k=0

with c := (cj)
M
j=1 .

Output: nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).
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Table 5.1

Results of Example 5.1.

N K L Alg. 3.3 Alg. 3.4 Alg. 3.5 e(c)

101 5 5 + + + 4.26e-14

200 5 5 + + + 7.11e-15

300 5 5 − − − –

300 6 5 + + + 1.38e-14

400 6 5 − − − –

400 7 5 + + + 3.82e-14

500 7 5 − − − –

500 8 5 − − + 7.28e-14

500 9 5 + + + 3.82e-14

1000 70 5 − − + 6.22e-15

1000 65 10 + + − 6.22e-15

1000 73 5 + + − 5.33e-15

1000 90 5 + + + 2.66e-15

1000 100 100 − + + 4.44e-15

Immediately we can see that the Algorithms 3.4 and 3.5 can be generalized in a straightforward

manner, since the Prony polynomial P̃ is represented in the Chebyshev-1 basis. We will denote these

generalizations by Algorithms 3̃.4 and 3̃.5, respectively.

5. Numerical examples

Now we illustrate the behavior and the limits of the suggested algorithms. Using IEEE standard

floating point arithmetic with double precision, we have implemented our algorithms in MATLAB. In

the Examples 5.1–5.3, anM-sparse polynomial is given in the form (1.1) with Chebyshev polynomials

Tnj of degree nj and real coefficients cj �= 0 (j = 1, . . . ,M). We compute the absolute error of the

coefficients by

e(c) := max
j=1,...,M

|cj − c̃j| (c := (cj)
M
j=1) ,

where c̃j are the coefficients computed by our algorithms. In Example 5.4 we generalize the method

to a sparse nonpolynomial interpolation. Finally in Example 5.5, we present an example of sparse

polynomial interpolation in the Chebyshev-2 basis. In all examples we observe that the numerical

stability of the Algorithms 3.4 and 3.5 can be improved by using more sampling values.

Example 5.1. We start with the following example. We choose M = 5, cj = j, uN := cos π
2N−1

and

(n1, n2, n3, n4, n5) = (6, 12, 176, 178, 200) in (1.1). The symbols + and − in the Table 5.1 mean

that all degrees nj are correctly reconstructed and accordingly the reconstruction fails. Since after a

successful reconstruction the last step is the same in the Algorithms 3.3–3.5, we present the error e(c)
in the last column of the Table 5.1. Note that for the parameters N = 300 and K = L = 5 the T+H

matrix in step 1 of Algorithm 3.3, see (3.7), has a condition number cond(H5(0)) ≈ 1.06 · 1011. Due
to roundoff errors, some eigenvalues x̃j are not contained in [−1, 1]. We can improve the stability by

choosing more sampling values. Further we remark that the stability of computing the eigenvalues

x̃j depends on the stability of the different methods used in step 1 of the Algorithms 3.3, 3.4 and 3.5,

respectively.

Example 5.2. It is difficult to reconstruct a sparse polynomial (1.1) in the case, if some degrees nj of

the Chebyshev polynomials Tnj differ only a little. Therefore we consider the sparse polynomial (1.1)

with (n1, n2, n3, n4, n5) = (60, 120, 1760, 1780, 2000) and again cj = j (j = 1, . . . , 5). The results

are shown in Table 5.2.
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Table 5.2

Results of Example 5.2.

N K L Alg. 3.3 Alg. 3.4 Alg. 3.5 e(c)

2000 50 50 − + + 1.78e-15

4000 50 50 − + + 2.66e-15

5000 60 5 + + + 8.88e-16

Table 5.3

Results of Example 5.3.

N K L σ Alg. 3.3 Alg. 3.4 Alg. 3.5 e(c)

2000 10 10 98 − + + 2.17e-10

4000 10 10 3294 − + + 1.46e-05

5000 10 10 1586 − + + 6.08e-07

8000 10 10 3053 − + + 1.60e-04

Example 5.3. Similarly as in Example 5.1, we choose M = 5, cj = j (j = 1, . . . , 5) and (n1, n2, n3,
n4, n5) = (6, 12, 176, 178, 200).We reconstruct the sparsepolynomial (1.1) fromsamples of a random

Chebyshev grid. For this purpose, we choose a random integer σ ∈ [1,N − 1] such that its inverse

σ−1 modulo 2N − 1 exists. Assume that N fulfills the conditions nj ≤ 2N − 1. By

Tnj(uN,k) = cos

(
knjπ

2N − 1

)

=
⎧⎪⎪⎨⎪⎪⎩

cos

(
(σ k)(σ−1nj mod (2N−1))π

2N−1

)
if σ−1nj mod (2N − 1) ≤ N,

cos

(
(σ k)(2N−1−(σ−1nj mod (2N−1)))π

2N−1

)
if σ−1nj mod (2N − 1) > N

=
⎧⎨⎩ Tσ−1nj mod (2N−1)(uN,σ k) if σ−1nj mod (2N − 1) < N,

T2N−1−(σ−1nj mod (2N−1))(uN,σ k) if σ−1nj mod (2N − 1) ≥ N

weare able to recover the degrees nj from the sampling set uN,σ k = cos σ kπ
2N−1

for k = 0, . . . , K+L−1.

The main advantage is that the degrees σ−1nj are much better separated than the original degrees

nj . The results are shown in the Table 5.3. Note that the Algorithm 3.3 determines the eigenvalues x̃j ,

which give the correct degrees nj after step 2, but the selection of these correct degrees fails in general

in step 4.

Example 5.4. This example shows a straightforward generalization to a sparse nonpolynomial inter-

polation. We consider special functions the form

h(x) :=
M∑
j=1

cj cos(νj arccos(x)) (x ∈ [−1, 1]) ,

where νj ∈ R with 0 ≤ ν1 < . . . < νM < 2N are not necessarily integers. Using t = arccos(x), we

obtain

g(t) =
M∑
j=1

cj cos(νjt) (t ∈ [0, π ]) .
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Fig. 5.1. The sparse polynomial (1.1) of Example 5.3 for N = 300 and 100 samples with σ = 1 (left) and σ = 251 (right).

Table 5.4

Results of Example 5.4.

N K L Alg. 3.3 Alg. 3.4 Alg. 3.5 e(c)

120 10 10 1.64e+02 2.46e-09 2.48e-09 5.09e-09

120 20 20 1.23e+02 3.87e-10 3.92e-10 5.89e-10

As inExample5.1wechooseM = 5, cj = j,uN := cos π
2N−1

and (ν1, ν2, ν3, ν4, ν5) = (6.1, 12.2, 176.3,

178.4, 200.5). We compute the error of the values νj ∈ R by

e(ν) := max
j=1,...,5

|νj − ν̃j| (ν := (νj)
5
j=1) ,

where ν̃j are the values computed by our algorithms. This corresponding errors e(ν) are shown in the

Table 5.4. We sample the function g at the nodes kπ
2N−1

for k = 0, . . . , L+ K − 1 and present the error

e(c) in the last column of Table 5.4 based on Algorithm 3.3. The results show that the Algorithms 3.4

and 3.5 can be used to find the entries νj and the coefficients cj .

Example 5.5. Finally, we consider a sparse polynomial (4.1) in Chebyshev-2 basis. To this end, we

chooseM = 5, cj = j (j = 1, . . . , 5),uN := cos π
2N−1

and (n1, n2, n3, n4, n5) = (6, 12, 176, 178, 190).

The symbols + and − in the Table 5.5 mean that all degrees nj of the Chebyshev polynomials Unj are

correctly reconstructed and accordingly the reconstruction fails. Remember that the generalizations

of Algorithms 3.4 and 3.5 for the Chebyshev-2 basis are denoted by Algorithms 3̃.4 and 3̃.5, respec-

tively. Since after a successful reconstruction the last step is the same in our algorithms, we present

the error e(c) in the last column of the Table 5.5. From Table 5.5 we observe that the algorithms for

sparse polynomial interpolation in Chebyshev-2 basis behaves very similar as the algorithms for sparse

polynomial interpolation in Chebyshev-1 basis.

Similar as in Example 5.4, we can deal with functions of the form h(t) = ∑M
j=1 dj sin(μjt) by using

the relation (4.2), and furthermore with functions of the form

f (t) =
M∑
j=1

(
cj cos(νjt) + dj sin(μjt)

)
(t ∈ [0, π ]) .
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Table 5.5

Results of Example 5.5.

N K L Alg. 4.2 Alg. 3̃.4 Alg. 3̃.5 e(c)

100 5 5 + + + 2.35e-14

200 5 5 + + + 5.86e-14

300 5 5 − − − –

300 6 5 + + + 7.84e-02

300 7 5 + + + 1.38e-13

We determine the unknown coefficients cj ∈ R and νj ∈ R by sampling the function f (t) + f (−t),
and analogously the coefficients dj ∈ R and μj ∈ R by sampling the function f (t) − f (−t), see also

[7].
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