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Abstract A straightforward discretisation of high-dimensional problems of-
ten leads to a curse of dimensions and thus the use of sparsity has become a
popular tool. Efficient algorithms like the fast Fourier transform (FFT) have
to be customised to these thinner discretisations and we focus on two ma-
jor topics regarding the Fourier analysis of high-dimensional functions: We
present stable and effective algorithms for the fast evaluation and reconstruc-
tion of multivariate trigonometric polynomials with frequencies supported on
an index set I ⊂ Zd.

1 Introduction

Let d ∈ N be the spatial dimension and Td = Rd/Zd ' [0, 1)d denote the
torus. We consider multivariate trigonometric polynomials f : Td → C with
Fourier coefficients f̂k ∈ C supported on the frequency index set I ⊂ Zd of
finite cardinality. The evaluation of the trigonometric polynomial

f(x) =
∑
k∈I

f̂k e2πik·x (1)

at a sampling set X ⊂ Td of finite cardinality can be written as the matrix-
vector product
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f = A f̂ , f = (f(x))x∈X ∈ C|X |, f̂ = (f̂k)k∈I ∈ C|I|, (2)

with the Fourier matrix A = A(X , I) =
(

e2πik·x
)
x∈X ,k∈I ∈ C|X |×|I|.

We are interested in the following two problems:

1. Evaluation: given a support I ⊂ Zd, Fourier coefficients f̂k ∈ C, k ∈ I,
and sampling nodes X = {x` ∈ Td : ` = 0, . . . , L − 1}, evaluate the
trigonometric polynomial (1) efficiently, i.e., compute f = Af̂ by means of
a fast algorithm.

2. Reconstruction: given a support of Fourier coefficients I ⊂ Zd, construct a
set of sampling nodes X ⊂ Td with small cardinality L = |X | which allows
for the unique and stable reconstruction of all multivariate trigonometric
polynomials (1) from their sampling values f(x`). In particular, solve the
system of linear equations Af̂ ≈ f .

As an extension to the reconstruction problem, we considered the efficient ap-
proximate reconstruction of a smooth function from subspaces of the Wiener
algebra by a trigonometric polynomial (1), which guarantees a good approx-
imation to the function, cf. [37, 38].

2 Evaluation of multivariate trigonometric polynomials

One cornerstone in numerical Fourier analysis is the fast computation of
certain trigonometric sums. A straightforward evaluation of the trigonometric
polynomial (1) at all sampling nodes X ⊂ Td, or equivalently the matrix
vector multiplication (2), takes a quadratic number O(|X | · |I|) of floating
point operations. For equidistant cartesian grids, the well known fast Fourier
transform (FFT) reduces this complexity to an almost linear scaling and this
has proven an important reason for the success of numerical Fourier analysis
in the last century. More recently, the concept of sparse discretisations has
gained a lot of attention and we discuss three variants for the evaluation of
sparse trigonometric sums subsequently.

2.1 Fast Fourier transform

We consider multivariate trigonometric polynomials with frequencies sup-
ported on the full grid, i.e., with Fourier coefficients f̂k are defined on the

full d-dimensional set I := Ĝdn = Zd ∩×d
j=1(−2n−1, 2n−1] of refinement

n ∈ N and bandwidth N = 2n with the cardinality |I| = Nd. The evaluation
of the trigonometric polynomial
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f(x) =
∑
k∈Ĝdn

f̂k e2πik·x (3)

at all sampling nodes of an equispaced grid x ∈ X = (2−nĜdn mod 1), with the
cardinality |X | = Nd, requires only O(2ndn) = O(Nd logN) floating point
operations by the famous fast Fourier transform (FFT). A well understood
generalisation considers an arbitrary sampling set X = {x` ∈ Td : ` =
0, . . . , L− 1} and leads to the so-called nonequispaced fast Fourier transform
(NFFT) which takes O(2ndn+ | log ε|dL) = O(Nd logN + | log ε|dL) floating
point operations for a target accuracy ε > 0, see e.g. [16, 5, 60, 52, 40] and the
references therein. In both cases, already the huge cardinality of the support
Ĝdn of the Fourier coefficients f̂k causes immense computational costs for high
dimensions d even for moderate refinement n. Hence, we restrict the index
set I to smaller sets.

2.2 Hyperbolic cross FFT

Functions of dominating mixed smoothness can be well approximated by mul-
tivariate trigonometric polynomials with frequencies supported on reduced
frequency index sets, so called dyadic hyperbolic crosses

I = Hd
n :=

⋃
j∈Nd0
‖j‖1=n

(
Zd ∩×d

l=1
(−2jl−1, 2jl−1]

)

of dimension d and refinement n, cf. [58]. Compared to the trigonometric
polynomial in (3), we strongly reduce the number of used Fourier coefficients
|Hd

n| = O(2nnd−1) � 2nd. A natural spatial discretisation of trigonometric
polynomials with frequencies supported on the dyadic hyperbolic cross Hd

n is
given by the sparse grid

X = Sdn :=
⋃
j∈Nd0
‖j‖1=n

×d

l=1
2−jl(N0 ∩ [0, 2jl)).

The cardinalities of the sparse grid and the dyadic hyperbolic cross are
|Sdn| = |Hd

n| = O(2nnd−1). Fig. 1a(left) shows an example for a two-
dimensional dyadic hyperbolic cross and Fig. 1a(right) depicts the corre-
sponding sparse grid of identical cardinality. Based on [3, 27] there exists a
fast algorithm for evaluating the trigonometric polynomial with frequencies
supported on the hyperbolic cross Hd

n at all x ∈ Sdn in O(2nnd) floating point
operations, called hyperbolic cross fast Fourier transform (HCFFT). A gen-
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eralisation to sparser index sets, i.e., to index sets for so called energy-norm
based hyperbolic crosses, is presented in [22].
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Fig. 1b Rank-1 lattice (left) and gener-

ated set Λ(r,M) (right), M = 163.

2.3 Lattice and generated set FFT

Using lattices as sampling set X is motivated from the numerical integration
of functions of many variables by lattice rules, see [59, 48, 14] for an introduc-
tion. In contrast to general lattices which may be spanned by several vectors,
we only consider so-called rank-1 lattices and a generalisation of this concept
called generated sets [32]. For a given number L ∈ N of sampling nodes and
a generating vector r ∈ Rd, we define the generated set

X = Λ(r, L) := {x` = `r mod 1, ` = 0, . . . , L− 1} ⊂ Td.

For ` = 0, . . . , L − 1, the evaluation of a d-variate trigonometric polynomial
supported on an arbitrary frequency index set I simplifies dramatically since

f(x`) =
∑
k∈I

f̂k e2πik·x` =
∑
k∈I

f̂k e2πi`k·r =
∑
y∈Y

ĝy e2πi`y, (4)

with some set Y = {k · r mod 1 : k ∈ I} ⊂ T and the aliased coefficients

ĝy =
∑

k·r≡y (mod 1)

f̂k. (5)

Using a one-dimensional adjoint NFFT [40], this takes O(L logL + (d +
| log ε|)|I|) floating point operations for a target accuracy ε > 0. Moreover,
given L ∈ N and a generating vector r = z/L, z ∈ Zd, the sampling scheme
Λ(r, L) is called rank-1 lattice and the computational costs of the evaluation
reduce to O(L logL + d|I|) by applying a one dimensional FFT. We stress
on the fact that in both cases, the computational costs only depend on the
number L of samples subsequent to the aliasing step (5) which takes d|I|
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floating point operations. Fig. 1b(left) and Fig. 1b(right) show an example
for a two-dimensional rank-1 lattice and generated set, respectively.

2.4 Butterfly sparse FFT

Another generalisation of the classical FFT to nonequispaced nodes has been
suggested in [1, 63, 41]. While the above mentioned NFFT still relies on a
equispaced FFT, the so-called butterfly scheme only relies on local low rank
approximations of the complex exponentials - in particular this locality allows
for its application to sparse data. The idea of local low rank approximations
can be traced back at least to [21, 64, 4, 26] for smooth kernel functions and
to [46, 65, 49, 62, 13] for oscillatory kernels. In a linear algebra setting, it was
pointed out in [17] that certain blocks of the Fourier matrix are approximately
of low rank.

We consider real frequencies I ⊂ [0, 2n)d and nonequispaced evaluation
nodes x` ∈ X ⊂ [0, 1)d in

f(x`) =
∑
k∈I

f̂k e2πik·x` , ` = 0, . . . , L− 1. (6)

For ease of notation, we outline the main idea for the one-dimensional case.
We decompose both domains dyadically starting with the whole interval
[0, 2n) and [0, 1) as root, respectively, see also Fig. 2(left) and 2(middle).
Each pair of a frequency interval in the (n− j)-th level and a space interval
in the j-th level now fulfils the admissibility condition diam(I ′)diam(X ′) ≤ 1.
These pairs are depicted in Fig. 2(right), where an edge in this butterfly graph
is set if and only if the associated pairs of intervals are connected in both
trees. We note that the properly frequency shifted exponential function is a

X00

X10 X11

X20 X21 X22 X23 I00

I10 I11

I20 I21 I22 I23 X00,I20 X00,I21 X00,I22 X00,I23

X10,I10 X10,I11 X11,I10 X11,I11

X20,I00 X21,I00 X22,I00 X23,I00

X -tree. I-tree. Butterfly graph.

Fig. 2 Trees and butterfly graph for N = 4.

smooth function within the admissible region and can be well approximated
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by a trigonometric sum with equispaced frequencies interpolating in Cheby-
shev nodes, see [41, Thm. 2.6] for details.

The generalisation to spatial dimension d ≥ 2 is straightforward by de-
composing I ⊂ [0, 2n)d and X ⊂ [0, 1)d dyadically in each coordinate, using
a tensor product ansatz, and interpolate in a product grid. The butterfly
scheme now traverses the butterfly graph top down. We start in the zeroth
level, sum frequencies in the finest decomposition, and approximate on the
whole spatial domain. In each subsequent level, we sum up two predecessors
including more frequencies and approximate on each smaller spatial box. The
final approximation is a function piecewise defined on the finest spatial de-
composition. The butterfly scheme guarantees the following target accuracy.

Theorem 1. ([41, Thm. 3.1]). Let d, n, p ∈ N, p ≥ 5, I ⊂ [0, 2n)d,
X ⊂ [0, 1)d, and the trigonometric sum f as in (6), then the butterfly ap-
proximation g obeys the error estimate

‖f − g‖∞ ≤
(Cp + 1)(C

d(n+1)
p − 1)

Cp − 1
cp‖f̂‖1.

The constants are explicitly given by

Kp :=

(
2π2

(1−cos 2π
p−1 )(p−1)2

)p−1
, Kp ≤

π4

16
, lim

p→∞
Kp = 1,

Cp :=
√
Kp

(
1 + 2

π log p
)
, cp :=

1

πp

(
π

p− 1

)p
.

In particular, the butterfly scheme achieves relative error at most ε if the
local expansion degree fulfils p ≥ max{10, 2| log ε|, 2d(n+ 1)}.

In case 1 ≤ t < d and |X | = |I| = 2nt well distributed sets on smooth
t-dimensional manifolds, the dyadic decompositions of the sets remain sparse.
Consequently, the butterfly graph, which represents the admissible pairs
where computations are performed, remains sparse as well and the computa-
tion of (6) takes O(2ntn(n+ | log ε|)d+1) floating point operations only.

3 Reconstruction using multivariate trigonometric
polynomials

Beyond the fast evaluation of Fourier expansions, the sampling problem is
concerned with the recovery of the Fourier coefficients f̂k ∈ C, k ∈ I, from
a sequence of function samples f`, ` = 0, . . . , L − 1. This inverse transform
constructs a trigonometric polynomial f , see (1), such that for given data
points (x`, f`) ∈ Td × C, ` = 0, . . . , L− 1, the approximate identity

f (x`) ≈ f`
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is fulfilled. Thus, we aim to solve the linear system of equations Af̂ ≈ f ,
i.e., we compute the vector of Fourier coefficients f̂ = (f̂k)k∈I ∈ C|I| from
the given vector of function samples f = (f`)`=0,...,L−1 ∈ CL. In contrast to
the ordinary Fourier matrix, its generalized analogue A is in general neither
unitary nor square. The meaningful variants of this reconstruction problem
include

1. the weighted least squares approximation

‖f −Af̂‖2W =

L−1∑
`=0

w`|f` − f(x`)|2
f̂→ min, (7)

for the over-determined case |I| < L = |X |, where the weights w` com-
pensate for clusters in the sampling set,

2. the optimal interpolation problem

‖f̂‖2
Ŵ−1 =

∑
k∈I

|f̂k|2

ŵk

f̂→ min subject to Af̂ = f , (8)

for the under-determined case |I| > L = |X |, where the weights ŵk damp
high-frequency components, and

3. the sparse recovery problem

‖f̂‖0 = |{k ∈ I : f̂k 6= 0}| f̂→ min subject to Af̂ = f , (9)

for the under-determined case |I| > L = |X |.

The main tool in iterative methods to solve these three problems is the use of
fast matrix-vector multiplications with the Fourier matrix A and its adjoint
A∗ as well as bounding involved condition numbers uniformly.

In the following subsections, we focus on the reconstruction of a multi-
variate trigonometric polynomial (1) from sampling values using different
sampling schemes. Therefor, we consider different types of sampling sets X
as introduced in Section 2. We discuss necessary and sufficient conditions on
the frequency index set I and sampling set X such that the unique and stable
reconstruction is guaranteed.

3.1 FFT and NFFT

Analog to Section 2.1, we consider multivariate trigonometric polynomials
with frequencies supported on the full grid I = Ĝdn. The reconstruction of

the Fourier coefficients f̂k, k ∈ Ĝdn, from sampling values at an equispaced
grid x ∈ X = (2−nĜdn mod 1), see (3), can be realized by the inverse fast
Fourier transform, since the Fourier matrix F := A(2−nĜdn, Ĝ

d
n) has orthog-
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onal columns, and takes O(Nd logN) floating point operations. This is no
longer true for the nonequispaced Fourier matrix given by

A := A(X , Ĝdn) =
(

e2πik·x`
)
`=0,...,L−1,k∈Ĝdn

.

Here, we use an iterative algorithm since the fast matrix times vector multi-
plication with the matrix A and A∗ takes only O(2ndn+ | log ε|dL) floating
point operations, see [40]. The conditioning of the reconstruction problems
relies on the uniformity of X , measured by the mesh norm and the separation
distance

δ := 2 max
x∈Td

min
j=0,...,L−1

dist(xj ,x), q := min
j,l=0,...,L−1;j 6=l

dist (xj ,xl) ,

where dist (x,x0) := minj∈Zd ‖(x + j)− x0‖∞, respectively.
For the overdetermined case Nd < L, it has been proven in [24] that the

reconstruction problem (7) has a unique solution if N < ( π
log 2 d δ)

−1. The
solution is computed iteratively by means of the conjugate gradient method
in [18, 2, 23], where the multilevel Toeplitz structure of A∗WA is used for
fast matrix vector multiplications. Slightly more stable with respect to round-
ing errors is the CGNR method, cf. [6, pp. 288], which iterates the original
residual rl = y−Af̂l instead of the residual A∗Wrl of the normal equations.
Further analysis of the numerical stability of the least squares approximation
(7) relies on so-called Marcinkiewicz-Zygmund inequalities which establish
norm equivalences between a trigonometric polynomial and its samples, see
e.g. [61, 45, 19, 39] and references therein for specific variants.

For the underdetermined case Nd > L, the optimal interpolation problem
(8) has been shown to be stable in [42] if the sampling set is well separated
with respect to the polynomial degree and the weights ŵk are constructed
by means of a so-called smoothness-decay principle. In particular, we proved
that the nonequispaced Fourier matrix A has full rank L for every polyno-
mial degree N > 2 d q−1 and proposed to solve problem (8) by a version of
the conjugate gradient method in combination with the NFFT to efficiently
perform each iteration step.

3.2 Hyperbolic cross FFT

For the HCFFT, see Section 2.2, there also exists a fast inverse algorithm.
This inverse HCFFT is not an orthogonal transform and is realized by revert-
ing all steps of the HCFFT, see [3, 27], which makes this spatial discretisation
most attractive in terms of efficiency. Therefore, the inverse HCFFT requires
also only O(2nnd) floating point operations. However, we proved in [35] that
this transform is mildly ill conditioned, since the condition numbers of the
Fourier matrices A(Sdn, H

d
n) are bounded by
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cd2
n
2 n

2d−3
2 ≤ cond2A(Sdn, H

d
n) ≤ Cd2

n
2 n2d−2, n→∞,

cnd
2n ≤ cond2A(Sdn, H

d
n) ≤ Cnd2n, d→∞.

In particular, we loose more than 5 decimal digits of accuracy already for
d = 10 and n = 5 in the worst case.

3.3 Lattice and generated set FFT

As pointed out in Section 2.3, the evaluation of multivariate trigonometric
polynomials with frequencies supported on an arbitrary index set I, i.e., the
mapping from the index set I in frequency domain to the rank-1 lattice in
spatial domain reduces to a single one-dimensional FFT and thus can be
computed very efficiently and stable. For the inverse transform, mapping the
samples of a trigonometric polynomial to its Fourier coefficients on a specific
frequency index set, we discuss the recently presented necessary and sufficient
conditions on rank-1 lattices allowing a stable reconstruction of trigonometric
polynomials with frequencies supported on hyperbolic crosses and the gener-
alisation to arbitrary index sets in the frequency domain. Based on research
results in the field of numerical integration [12], we suggest approaches for
determining suitable rank-1 lattices using a component–by–component strat-
egy, see [33, 34]. In conjunction with numerically found lattices, we showed
that this new method outperforms the classical hyperbolic cross FFT for
realistic problem sizes, cf. [36].

The use of generated sets, a generalisation of rank-1 lattices, as spatial
discretisations offers an additional suitable possibility for sampling sparse
trigonometric polynomials. The fast computation of trigonometric polynomi-
als on generated sets can be realized using the NFFT. A simple sufficient
condition on a generated set Λ(r, L) allows the fast, unique and stable re-
construction of the frequencies of a d-dimensional trigonometric polynomial
from its samples along Λ(r, L). In contrast to searching for suitable rank-1
lattices, we can use continuous optimization methods in order to determine
generated sets that are suitable for reconstruction, see [32].

Reconstruction using rank-1 lattices. In the following, a rank-lattice
that allows for the unique reconstruction of all trigonometric polynomials
with frequencies supported on the frequency index set I is called reconstruct-
ing rank-lattice for I. In order to state constructive existence results for
reconstructing rank-1 lattices, we define the difference set

D(I) := {k− l : k, l ∈ I}

of the frequency index set I. As a consequence of [34, Cor. 1] we formulate
the following
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Theorem 2. Let I ⊂ {k ∈ Zd : k− a ∈ [0, |I| − 1]d} for a fixed a ∈ Zd being
a frequency index set of finite cardinality. Then there exists a reconstructing
rank-1 lattice of prime cardinality L,

|I| ≤ L ≤ |D(I)| ≤ |I|2, (10)

such that all multivariate trigonometric polynomials f with frequencies sup-
ported on I can be reconstructed from the sampling values (f(x))x∈Λ(r,L).

Moreover, the corresponding generating vector r ∈ L−1Zd can be deter-
mined using a component–by–component strategy and the reconstruction of
the Fourier coefficients can be realized by a single one-dimensional FFT of
length L, and thus takes O(L logL+ d|I|) floating point operations.

Proof. The result follows from [34, Cor. 1], Bertrand’s postulate, and equa-
tions (4) and (5). ut

We stress on the fact, that [34, Cor. 1] is a more general result on arbitrary
frequency index sets I. Some simple additional assumptions on L allow to
replace the condition I ⊂ {k ∈ Zd : k−a ∈ [0, |I|−1]d} by I ⊂ Zd, |I| <∞.

In fact, the cardinality of the difference set D(I) is the theoretical upper
bound in (10) for the number of samples needed to reconstruct trigonometric
polynomials with frequencies supported on the index set I using a rank-1
lattice. This cardinality depends mainly on the structure of I.

Example 1. Let I = Idp,N := {k ∈ Zd : ‖k‖p ≤ N}, N ∈ N, be the `p-ball,

0 < p ≤ ∞, of size N , see Fig. 3. The cardinality of Idp,N is bounded by

cp,dN
d ≤ |Idp,N | ≤ CdN

d and cp,dN
d ≤ D(Idp,N ) ≤ Cd2

dNd, cp,d, Cd ∈ R,
0 < cp,d ≤ Cd. Consequently, we can find a reconstructing rank-1 lattice of

size L ≤ C̃p,d|Idp,N |, C̃p,d > 0, using a component–by–component strategy.
On the other hand, we obtain for the limit p → 0 the frequency index

set I := {k ∈ Zd : ‖k‖1 = ‖k‖∞ ≤ N}, N ∈ N, which is supported on the
coordinate axis. We have |I| = 2dN+1 and (2N+1)2 ≤ |D(I)| ≤ (2dN+1)2.
Hence, we estimate c̃d|I|2 ≤ |D(I)|, c̃d ∈ R, 0 < c̃d, and the theoretical upper
bound on L is quadratic in |I| for fixed dimension d. In fact, reconstructing
rank-1 lattices for these specific frequency index sets need at least a number
of L ∈ Ω(N2) nodes, cf. [36, Thm. 3.5]. ut

Example 2. More useful frequency index sets in higher dimensions d > 2 are
so-called (energy-norm based) hyperbolic crosses, cf. [3, 7, 8, 66]. In particu-
lar, we consider frequency index sets I of the form

Id,TN :=

{
k ∈ Zd : max(1, ‖k‖1)

T
T−1

d∏
s=1

max(1, |ks|)
1

1−T ≤ N

}
,

with parameter T ∈ [0, 1) and N ∈ N, see Fig. 4 for illustration. The fre-

quency index set Id,0N , i.e., T = 0, is in fact a symmetric hyperbolic cross
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Fig. 3 Two-dimensional frequency index sets I2p,16 for p ∈ { 1
2
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and frequency index sets Id,TN , T ∈ (0, 1), are called energy-norm based hy-

perbolic crosses. The cardinality of Id,TN can be estimated, cf. [37, Lem. 2.6],
by

cd,0N logd−1N ≤ |Id,TN | ≤ Cd,0N logd−1N, for T = 0,

cd,TN ≤ |Id,TN | ≤ Cd,TN, for T ∈ (0, 1),

where cd,T , Cd,T ∈ R, 0 < cd,T ≤ Cd,T . Since the axis cross is a subset of the

considered frequency index sets, i.e., {k ∈ Zd : ‖k‖1 = ‖k‖∞ ≤ N} ⊂ Id,TN ,

T ∈ [0, 1), we obtain (2N + 1)2 ≤ |D(Id,TN )|. On the other hand, we obtain

upper bounds of the cardinality of the difference set D(Id,TN )

|D(Id,TN )| ≤ C̃d,0N
2 logd−2N, for T = 0, cf. [33, Thm. 4.8],

|D(Id,TN )| ≤ |Id,TN |
2 ≤ C2

d,TN
2, for T ∈ (0, 1).

Consequently, Theorem 2 offers a constructive strategy in order to find re-
constructing rank-1 lattices for Id,TN of cardinality L ≤ |D(Id,TN )|. We would
like to stress that, at least for T ∈ (0, 1), we are able to construct rank-1
lattices of optimal order in N , cf. [33, Lem. 2.1, 2.3, and Cor. 2.4].

For instance, Fig. 1b(left) shows a reconstructing rank-1 lattice for the
symmetric hyperbolic cross I2,08 and Fig. 1b(right) shows an example for a
generated set, which allows the exact reconstruction of multivariate trigono-
metric polynomials with frequencies supported on I2,08 . The condition number
of the Fourier matrix A(X , I) is always one when X is a reconstructing rank-1
lattice for I, since the columns of the Fourier matrix A(X , I) are orthogonal.
When the frequency index set I = I2,08 and X is the specific generated set
in Fig. 1b(right), then the condition number of the Fourier matrix A(X , I)
is approximately 2.19. ut

Reconstruction using generated sets. Up to now, we discussed recon-
structing rank-1 lattices. We generalized this concept to so-called generated
sets, cf. Section 2.3 and determined sufficient and necessary conditions on
generated sets Λ(r, L) guaranteeing a full rank and stable Fourier matrix
A(Λ(r, L), I) in [32]. In general, the set Y = {k · r mod 1 : k ∈ I} ⊂ T is of
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Fig. 4 Two-dimensional frequency index sets I2,T
32 for T ∈ {0, 1

4
, 1
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}.

our main interest, where r ∈ Rd is the generating vector of the generated set
Λ(r, L). We determined the necessary condition |Y| = |I| in order to obtain
a Fourier matrix A(Λ(r, L), I) of full column rank.

Theorem 3. Let I ⊂ Zd be an arbitrary d-dimensional index set of finite
cardinality |I|. Then, the exact reconstruction of a trigonometric polynomial
with frequencies supported on I is possible from only |I| samples using a
suitable generated set.

Proof. Let r ∈ Rd be a vector such that

k · r mod 1 6= k′ · r mod 1 for all k,k′ ∈ I, k 6= k′. (11)

For instance, Theorem 2 guarantees the existence of a reconstructing rank-
1 lattice Λ(r, L) for the index set I, where r ∈ L−1Zd fulfills property
(11). The corresponding Fourier matrix A := (e2πik·x`)`=0,...,L−1; k∈I =

(e(2πik·r)
`

)`=0,...,L−1; k∈I is a transposed Vandermonde matrix of (full col-
umn) rank |I|. If we use only the first |I| rows of the matrix A and

denote this matrix by Ã, the matrix Ã := (e(2πik·r)
`

)`=0,...,|I|−1; k∈I =

(e(2πiyj)
`

)`=0,...,|I|−1; j=0,...,|I|−1 is a transposed Vandermonde matrix of size
|I| × |I|, where yj := kj · r mod 1 and I = {k0, . . . ,k|I|−1} in the specified
order. Furthermore, the determinant of the transposed Vandermonde matrix
Ã, cf. [31, Sec. 6.1], is det Ã =

∏
1≤k<j≤|I|−1(e2πiyj − e2πiyk) 6= 0 , since

we have e2πik·r 6= e2πik
′·r for all k,k′ ∈ I, k 6= k′, due to property (11).

This means the transposed Vandermonde matrix Ã has full rank |I| and is
invertible. ut

Theorem 3 states that L = |I| many samples are sufficient to exactly
reconstruct a trigonometric polynomial with frequencies supported on the
index set I. In general, we obtain a large condition number for the Fourier

matrix Ã := (e(2πik·r)
`

)`=0,...,|I|−1; k∈I . Using L > |I| samples, we also ob-
tain matrices A(Λ(r, L), I) of full column rank, since the first |I| rows of the
matrix A(Λ(r, L), I) are linear independent. In practice, growing oversam-
pling, i.e., increasing L > |I|, decreases at least an estimator of the condition
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number of A(Λ(r, L), I), as published in [32]. In this context, for each gen-
erating vector r ∈ Rd bringing |Y| = |I| and constant C > 1 we determined
a generated set of size LC such that the Fourier matrix A(Λ(r, LC), I) has
a condition number of at most C, cf. [32, Cor. 1]. We discuss a nonlinear
optimization strategy in [32] in order to determine generated sets Λ(r, L)
of relatively small cardinality bringing a Fourier matrix A(Λ(r, L), I) with
small condition number.

The reconstruction of multivariate trigonometric polynomials with fre-
quencies supported on an fixed index set I from samples along a generated
set can be realized solving the normal equation, which can be done in a
fast way using the one-dimensional NFFT and a conjugate gradient (CG)
method. One step of the CG method needs one NFFT of length L and one
adjoint NFFT of length L. Consequently, one CG step has a complexity of
O(L logL+(d+| log ε|)|I|), cf. Section 2.3. The convergence of the CG method
depends on the condition number of the Fourier matrix A(Λ(r, L), I). Hence,
generated sets Λ(r, L) with small condition numbers of the Fourier matrices
A(Λ(r, L), I) guarantee a fast approximative computation of the reconstruc-
tion of trigonometric polynomials with frequencies supported on the index
set I.

3.4 Random sampling and sparse recovery

Stable deterministic sampling schemes with a minimal number of nodes are
constructed above. For arbitrary index sets of frequencies I ⊂ Zd, we showed
that orthogonality of the Fourier matrix necessarily implies |X | ≥ |D(I)|
which scales (almost) quadratically in |I| for several interesting cases. In
contrast, injectivity of the Fourier matrix can be guaranteed for a linear
scaling and numerical results also support that a small oversampling factor
suffices for stable reconstruction generically. Subsequently, we discuss known
results for randomly chosen sampling nodes. Let d ∈ N, arbitrary frequencies
I ⊂ Zd be given, and sampling nodes X are drawn independently from the
uniform distribution over the spatial domain Td, then [25] implies

cond2A(X , I) ≤
√

1 + γ

1− γ
, γ ∈ (0, 1), if |X | ≥ C

γ2
|I| log

|I|
η
,

with probability 1− η, where C > 0 is some universal constant independent
of the spatial dimension d. A partial derandomization can be obtained by
randomly subsampling a fixed rank-1 lattice as constructed in Theorem 2.

Moreover, random sampling has been applied successfully in compressed
sensing [15, 9, 20] to solve the sparse recovery problem (9), where both the

support I ⊂ I0 ⊂ Zd as well as the Fourier coefficients f̂k ∈ C, k ∈ I, of the
expansion (1) are sought. Provided a so-called restricted isometry condition
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is met, the sparse recovery problem can be solved efficiently, cf. [10, 55, 56,
57, 47, 43], and with probability at least 1− η this is true if

|X | ≥ C|I| log4 |I0| log
1

η
.

Well studied algorithmic approaches to actually solve the sparse recovery
problem are then `1-minimisation [11], orthogonal matching pursuit [44], and
their successors. Optimal variants of these algorithms have the same arith-
metic complexity as one matrix vector multiplication with A(X , I0), which
is however worse than the recent developments [29, 28].

Prony type methods. In contrast to compressed sensing approaches,
Prony type methods aim to recover the finite and real support I within the
bounded interval [−N2 ,

N
2 ] as well as the Fourier coefficients in the nonhar-

monic Fourier series
f(x) =

∑
k∈I

f̂ke2πikx,

from equally spaced samples f( `N ), ` = 0, . . . , L − 1, cf. [53, 51, 50]. If the
number of samples fulfils a Nyquist type relation

|X | ≥ CNq−1I

with respect to the nonharmonic bandwidth N and to the separation distance
qI := min{|k − k′| : k, k′ ∈ I, k 6= k′}, then a newly developed variant of the
Prony method solves this reconstruction problem in a stable way, see e.g. [54].
The arithmetic complexity O(|I|3) has been improved for integer frequencies
in [30] using ideas from [29, 28].
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48. E. Novak and H. Woźniakowski. Tractability of Multivariate Problems Volume II:
Standard Information for Functionals. Eur. Math. Society, EMS Tracts in Mathemat-

ics Vol 12, 2010.

49. M. O’Neil, F. Woolfe, and V. Rokhlin. An algorithm for the rapid evaluation of special
function transforms. Appl. Comput. Harmon. Anal., 28:203 – 226, 2010.

50. T. Peter and G. Plonka. A generalized prony method for reconstruction of sparse sums
of eigenfunctions of linear operators. Inverse Problems, 29:025001, 2013.

51. T. Peter, D. Potts, and M. Tasche. Nonlinear approximation by sums of exponentials

and translates. SIAM J. Sci. Comput., 33:314 – 334, 2011.

52. D. Potts, G. Steidl, and M. Tasche. Fast Fourier transforms for nonequispaced data: A
tutorial. In J. J. Benedetto and P. J. S. G. Ferreira, editors, Modern Sampling Theory:

Mathematics and Applications, pages 247 – 270, Boston, MA, USA, 2001. Birkhäuser.
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