FAST ITERATIVE METHODS FOR SINC SYSTEMS

MICHAEL K. NG * AND DANIEL POTTS f

Abstract. We consider linear systems of equations arising from the Sinc method of boundary
value problems which are typically nonsymmetric and dense. For the solutions of these systems we
propose Krylov subspace methods with banded preconditioners. We prove that our preconditioners
are invertible and discuss the convergence behavior of the conjugate gradient method for the normal
equations (CGNE). In particular, we show that the solution of an n-by-n discrete Sinc system arising
from the model problem can be obtained in O(n log? n) operations by using the preconditioned CGNE
method. Numerical results are given to illustrate the effectiveness of our fast iterative solvers.
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1. Introduction. In the Sinc—Galerkin method, the basis functions are derived
from the Whittaker cardinal (sinc) function

sin(mz)
sinc(z) := L T € H§\0
, z = 0.

and its translates

s(k, h)(z) := sinc (“’_h—kh> (x€R, k€Z, h>0).

The globally supported basis functions can be transformed via a composition with a
suitable conformal map to any connected subset of the real line. This basis has been
proved useful in the numerical analysis of a number of problems [17, 23, 24].

We seek an approximate solution of the linear two—point boundary value problem

Lu=u"(z) +p)u (z) + q(@)u(@) = f(z), a<z<b,

(1.1)

u(a) = u(b) = 0.
We approximate u by
N
umins1 (@) = Y uks(k,h) o p(x), (1.2)
k=—M

where ¢(2) is a conformal map of a simply connected domain S with boundary points
a # b onto

Si={z:z=2z+ iy, lyl<d, d>0}. (1.3)
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Fi1g. 1.1. The conformal map ¢(z) = log (z_“)

Ante T
N i,

such that ¢(a) = —oo and ¢(b) = oo. In Figure 1.1 (see for instance Lund and Bowers
[17, p.118], and Stenger [24, pp.67-68]), we give an example of such conformal map.
The simply connected domain § is the eye-shaped region

{o: | (522)] <a}

and the conformal map is given by

o) =10 (5=2).

Other conformal maps can also be found in [17, 23]. The general Galerkin method
enables us to determine {uk}kN: by solving the linear system of equations

(Lupryngr — f,8(k,h) o) =0, —M <k<N, (1.4)

where the inner product is defined by

b
(f.9) ;:/ f(@)g(z)w(z)d.

Here w plays the role of a weight function. For the case of second order problems,
it is convenient to take w(z) = m, see [17, p.116]. The most distinctive feature of
the Sinc basis is the resulting exponential convergence rate of the error. Moreover,
the convergence rate maintains when the solution of the boundary value problem has
boundary singularities.

The approximate explicit expressions for the inner products in (1.4) have been
thoroughly treated in [17, 23]. The resulting discrete Sinc—Galerkin matrix coupling
with collocation (see [24, pp. 465]) is given by the dense matrix

A=Ty+ DT, +T1D; + DQ, (A S Rnxn), (15)

where T's is a symmetric Toeplitz matrix, T'; is a skew—symmetric Toeplitz matrix,
and D; and D- are diagonal matrices. Here n = M + N + 1. A straightforward
application of the Gaussian elimination method will result in an algorithm, which
takes O(n?) arithmetical operations.
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For n-by-n Toeplitz systems, fast and superfast direct solvers requiring O(n?) and
O(nlog® n) arithmetical operations respectively have been developed, see for instance
Levinson [15] and Ammar and Gragg [1]. However, there exist no fast direct solvers
for solving the system in (1.5). This is mainly because the displacement rank of the
coefficient matrix can take any value between 0 and n. Hence fast Toeplitz solvers
that are based on low displacement rank of matrices cannot be applied. The details
of displacement ranks can be found in [14].

However, we note that given any n—vector g, the matrix—vector product Aq can
be computed in O(nlogn) operations. In fact, T;q (I € {1,2}) can be obtained by
using fast trigonometric transforms, see e.g., [11, 21]. Since Dy is a diagonal matrix,
the product D;q (I € {1,2}) can be computed in O(n) operations. Thus Krylov
subspace methods, which are based on matrix—vector products, can be employed for
solving Sinc systems. Since A is nonsymmetric, we suggest to solve the equations

Au = f, (1.6)

by conjugate gradient type methods like GMRES [22, p.158], BICGSTAB [22, p.217]
or the conjugate gradient method for the normal equations (CGNE) [22, p.238].

One way to speed up the convergence rate of CGNE is to precondition the coef-
ficient matrix. Instead of solving the original system Au = f, we solve the precondi-
tioned system

(M A)yu=M"'f. (1.7)

We note that the convergence rate of the CGNE method depends on the singular
values of the preconditioned matrix [5, 28]. The matrix M, called a preconditioner
to the matrix A, should be chosen with two criteria in mind: Mr = d is easy to
solve for any vector d; the spectrum of (M ' A)(M ™' A)T is uniformly bounded and
well-separated from the origin compared to that of AAT.

In [19], we have considered the symmetric Sinc-Galerkin method [16] for dis-
cretization of the second—order self-adjoint boundary value problem. In this case, the
Sinc—Galerkin matrix A is the sum of a symmetric Toeplitz matrix and a diagonal
matrix. We have used banded matrices R with band—widths independent of the size
of the matrix as preconditioners. We have shown that they give rise to the fast con-
vergence of the preconditioned conjugate gradient (PCG) method. In particular, we
proved that the spectra of R™' A are uniformly bounded from above and below by
positive constants independent of the size of the matrix. The banded system Rr =d
can be solved in O(n) operations, where n is the size of the matrix. Therefore the
cost of each PCG iteration is of O(nlogn) operations. It follows that the solution of
Au = f can be obtained in O(nlogn) operations. However, these preconditioners
cannot be applied to nonsymmetric Sinc systems.

The main aim of this paper is to propose other banded preconditioners B for
A, given by (1.5). We show that the singular values of the preconditioned Sinc
matrix arising from the model problem are uniformly bounded except for at most a
finite number of outliers. Using this result, we show that the CGNE method applied
to (1.7) converges at most in O(logn) iteration steps. Hence the method requires
O(nlog® n) operations.

The outline of this paper is as follows: In §2, we study some properties of the
discrete Sinc system. In §3, we introduce our preconditioners. The convergence
analysis of the CGNE method is given in §4. Numerical results are presented in §5
to illustrate the effectiveness of our method. Furthermore we compare the CGNE
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method with Krylov subspace methods like GMRES or BiCGSTAB which do not
require the translation of (1.7) to the normal equations. Finally §6 contains some
concluding remarks.

2. Properties of Discrete Systems. Let S be a simply connected domain
in the complex plane with boundary points a # b. Let ¢ be a conformal mapping
of S onto the strip Sy defined by (1.3) such that ¢(a) = —oo and ¢(b) = oo. For
1 <k < o0, let H¥(S) denote the family of all functions f that are analytic in S and

Fulfll
1/k
{ (/ |f(z)|kdz) <oo, 1<k<oo,
as

supes | f(2)] < o0, k = .

Corresponding to the number «, let £,(S) denote the family of all analytic functions
on S for which there exists a constant C such that

|e®(2) |

To study the convergence of the Sinc-Galerkin method for differential problems, as-
sumptions on the functions ¢, p and ¢ are required.

Assumption (A1): (see [24, pp. 467, 469]) Assume for the differential equation
(1.1) that p/d, (0/#)/9', a/(@)2, (1/4), and (1/¢)"/@' are real valued, belong to
H(S) and that problem (1.1) has a unique solution u € L,(S).

Assumption (A2): (see [24, p. 478]) Assume for the differential equation (1.1)
that

1 1 ”_ 1 p()\ = 2q(z) )
Re <¢I({IJ) (¢I($)) ¢,(m) ( I(.Z')) + (¢I(.’II))2> SO, fO a<£U<b

The following theorem about the approximate solution was given in [24].
THEOREM 2.1. [24, Theorem 7.2.6] Let Assumption (A1) and (A2) be satisfied.
Let

_qn
A’Elg) := T'n[g2] + hT n[91] Dy, [ ¢ p] +

@2 ¢
op | L l)"_ 1 (2) q
WDy | 5 (¢, ly) W)Q] ; (2.1)
A .= T, [go] + hD,, [% _ g] Tu[g1] + h* D, [ ( (;)2] (2.2)
and
A, = % <A£f’) + A§f>) . (2.3)

Here T, [g0] (¢ € {1,2}) denotes the n-by-n Toeplitz matriz with the (j,k)th entry
given by the (j — k)th Fourier coefficient of the function,

g((g) = (io)f’ Vo € [—77',71'], (24)
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D, [¢] is an n-by-n diagonal matriz given by
Dn[w] = dlag [w(w—M)a o 5¢($0)a o 7¢(xN)]J
with xj, = ¢~ (kh) for k = 0,£1,£2,.... If the vector u = (u_ps,--- ,un)? denotes

the exact solution of the system of equations

A,u=h’D, [@] f, (2.5)

where £ = [f(@_a),-- , fan)]7, then

lu(z) — up(z)] < C’nl/ze_(“da")l/2, fora<z <b. (2.6)

THEOREM 2.2. [24, Lemma 7.2.5] Let Assumptions (A1) and (A2) be satisfied.
Let AW, A and A, be defined as in (2.1), (2.2) and (2.3) respectively. Then the
following hold true:
(i) There exists a constant ¢1 independent of n such that

C
AL Iz, 1A 12, [|Anllz < 7°(1+ —=).

vn
(ii) There exists a constant cz independent of n such that
7 B _ 4n? ¢
ICAR) 2o 1CAR) 2 1A 2 < — 1+ ).

In particular, the condition number /s(AnAg) of AnAE satisfies

k(A AT) < 4n2(1 + %)(1 + %).

Since k(A,A}) = O(n?), the convergence of the CGNE method might be very
slow with increasing n, see for instance Theorem 4.1 in Section 4. In the next section,
we introduce the banded preconditioner to precondition the Sinc coefficient matrix in
order to speed up the convergence rate of the CGNE method.

3. Banded Preconditioners. Recall that the coefficient matrix A, in (2.3) is
the sum of Toeplitz—times—diagonal matrices and diagonal matrices. There are many
“sood” preconditioners for the individual parts. For instance, the diagonal matrix
system can be solved easily. For Toeplitz systems, circulant preconditioners have
been proved to be successful choices, see the recent survey paper by Chan and Ng [3].
However, we remark that circulant preconditioners do not work for Toeplitz—plus—
banded systems. Even T. Chan’s circulant preconditioner [6] which is well-defined
for non—Toeplitz matrices, will — while defined for A,, — not work well when D,[-] are
not identity matrices, see numerical results in [4]. If we approximate T',[g,] in (2.3)
by a circulant preconditioner C,[g,], then

h h2
Crlge] + g(Dicn[gl] + Culg) D)) + 7 D},

where

1 _p [=¢ _»p m_p |[L(LY _1(p\, 20
D”"D"[(czﬂ)? ¢'] and Dr':= Do [w <¢) 7 (¢> +(¢')2]
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can be expected to be “good” approximation to A,. Unfortunately, the resulting
circulant—type matrix system cannot be solved easily in general. Hence, this approach
of constructing preconditioner for A, cannot work in most situations. In this paper,
we consider a preconditioner which is easily invertible.

In [19], we have proposed to use banded matrices as preconditioners for symmetric
Sinc—Galerkin systems. Following this approach, we introduce our preconditioners B,,
by

n

h h?
B, := P, + 5 (D,P, + P,D,) + D,/ (3.1)

where P! and P are the banded Toeplitz matrices:

1 1
P =T, (p,) = tridiag [1,-2,1] and PL:=T,(p;) = tridiag [-35,0,5]
with generating functions of P} and P.! given by
p1(0) :=isin@ and p(f):=-2+2cosb, VO€ [-m, 7], (3.2)

respectively.

We note that the preconditioner B, is just an n-by-n tridiagonal matrix. It
follows that the system B,r = d can be solved by using any efficient tridiagonal
solver in O(n) operations.

The symmetric and skew—symmetric parts of B,, are given by

h
2

h2
B .= pIT 4 o DY and B .= Z(DLP.+ PLD!),
respectively. Moreover, we have by the theorem of Bendixson [25, p. 418] that
)‘min(B%h)) < Re[A(Bp)] < )\maX(Bszh))
and
1 pes) 510
Auin($BS)) < T[A(B)] < Amax( BY),

where A\(B) denotes the eigenvalues of the matrix B.
LEMMA 3.1. Let Assumption (A2) be satisfied. Further let

=iy {5t () - o1 (50) * G )

e [ (LN (@), 2@
b= meﬁf%m{wm) (7@) ~7w (365) * (¢'(x))2} |

Then we have

dsh?
2

dsh?

Py I,<BW < pll ——In.
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In particular, the preconditioners B,, are nonsingular for all n.
Proof: The assertion follows from (A2) and the fact that the matrices B are
negative definite. [ |

Remark: In [24, p. 481], Stenger has shown that the approximate solution for
upm+nN+1(z) in (1.2) can also be obtained by solving the linear systems involving the
coefficient matrices A(ng) and Agf) given in (2.1) and (2.2), respectively. We note that
we can also develop similar banded preconditioners

(9 .— plI L pPI D! WD, l(l)”_i(ﬂ)’ _q
Bl = B D lw v) "o \y) T

and

B .= P!y nDLP! + B2 D, [ 1 ]
(¢)?
for the matrices Aslg) and Asf), respectively. Numerical tests show that these pre-
conditioners work similarly well as the preconditioner B,, for A,. However, we re-
mark that the convergence analysis for these preconditioned systems (B%g))_lAgf’)
and (B{9)=1A® is still an open problem. O

3.1. The Model Problem. In this subsection, we consider some model Sinc—
Galerkin matrices and analyze the spectra of these preconditioned matrices. By using
the Bendixson theorem again, we obtain that symmetric and skew—symmetric parts
of A, are given by

h2
AW = Tn[g2]+?D{lI and A =

N

(D{lTﬂ[gl] + Tn[!h]D{z> ;
respectively, and that
Amin(AY) < Re[A(An)] < Amax(A5)

and

1
Amin (%A%’ﬂ) S Im[A(An)] S Amax (TA%S)> .

} . (3.3)
Then we have
1 1 dih
_)\ma,x (di—th[gl]) S )\min (TA%S)> S )\max (;AS)) S /\max (%Tn[gl]> .

For the symmetric part of A,,, we find

Let
—¢"(x)  p(z)

W= { ‘ @@y ¢

doh? dsh?
22 I,< A%h) < Tn[QQ] + 3TIn;

Tn[QZ] +
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where dy and ds are defined as in Lemma 3.1. In particular, we have

d2h2 (h)
/\mm (Tn[g2] + 9 In) S Am1n (An )

2
< s (AL) € N (Tl + 557, )

The spectrum of the matrix A,, is contained in the box

doh? dsh?
|:/\min (Tn[QZ] + 2TIn) ;)\max (Tn[g2] + 3TIn):| X

e (BTa[01) A (B Tl] )|

in the complex plane. This suggests us to analyze the banded preconditioners for the
following model Sinc—Galerkin matrices

Tn[gg] + h'YlTn[gl] + K2 ’)’QIn with " € {ﬂ:dl} and Y2 € {d2/2, d3/2} . (34)

If the corresponding banded matrices are good preconditioners of these model Sinc—
Galerkin matrices, then we expect that B,, will be a good preconditioner for A,,.
Numerical results in §5 will show that our banded preconditioners give rise to fast
convergence of the iterative method.

3.2. Spectra of the Preconditioned Matrices for the Model Problem.
We note that the model problem matrices in (3.4) are Toeplitz matrices. Therefore,
we analyze the spectra of their corresponding preconditioned matrices by using their
generating functions. We first establish the following lemma.

LEMMA 3.2. Let ¢ € R, c2 be a negative number and h be a positive number.
Let g1(9), 92(0),p1(9) and p2(9) be defined as in (2.4) and (3.2). If

_ hergi(0) + g2(0) + BPeo

0) = Vo € [—m,7],
r(6) heip(0) + p2(0) + ke’ [=m,7]
then
3md w?
1< Re(r(9)) < 5 + 1_6h ¢, VEe€[-mmn], (3.5)
and
h|C1|7T h|C1|7T
- <7 < 0 -
L < In(r(0) < g, VO € [omal,
where
r(0) = Re(r(0)) +ilm(r(9)). (3.6)
Proof: We have
—62% 4+ h2c)(—2 + 2cos 8 + h? h2c20sin 0
Re(r(6)) = (=607 + h®c2)(—2 + 2cosb + c22)4; 16 sin
|heipi(0) + p2(0) + h2cq]
and
_ 2.\ _ YA 2
Im(r(8)) = he16(—2 4+ 2cos8 + h?ca) — hey sin8(—602 + h2cs) ‘

|heipr (0) + p2(0) + h?ca|?
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Let us start with the real part. First we see that Re(r) — 1 is nonnegative because

(=62 + h%cy)(—2 + 2cosf + h%cy) + (hep)?0sin
|heip1 (0) + p2(6) + h2c|? B
_ h%c}(0 —sin) sinf + (—2 + 2cos 0 + h?c)(—0% + 2 — 2 cos b))
B |heipy(0) + p2(6) + A2 ca|?

1

(3.7)

and both functions (§ — sin®)sin@ and (=2 + 2cosf + h%c2)(—6? + 2 — 2cosf) are
nonnegative on [—, 7.
Since

(=62 + h%cy)(—2 + 2 cosf + h%cy) + h2c20sin 6

Re(r(0)) =
e(r(®) (2 —2cos @ — h2cy)? + h2c}sin® @

(3.8)
we get with

2, 2 ™ 2 . ™
;0 <2-—2cosf <06°, (03055) and ;9§s1n9§0, <0§0§ 2)
that
(6% — h%c2) (0% — h2c2) + h2~3602
(262 — h2cy)? + A2} (%9)2
2
< max { ( 62 — h2c, ) | h2~26?

202 — h2cy h2y3 24:6°

Re(r(0)) <

T 2 w2 T T
— —r = — <0< —).
Smax{(max{z’l}) ’ 4} 4’ (0—0—2)
On the other hand, we have for § < <= that
4 1
—652—2c050§§0 and sinf<6— —63
™ 2 2

and further by (3.8)

02 — h2cy) (26 — h2ey) + h2'yf 92 — L4
2 ™
(26— 1)’
< (02 - h202) (%9 - h202) 2 202 - L04

Re(r(0)) <

(26 — h2cy)” L (te)°
< (1° = h%ea) (37 — hPcy) n 7T_2h2,ylz
(2 — h2co)? 16
w2 3 72 33 2 T
< Iopa4 —REP = T 4 T p2e2 —<0<m).
< 47r+16h ci 3 +16h cr, (2_0_7r)

Since Re(r) is even, (3.5) follows. Furthermore, we have

_ her (—26 + 26 cos 8 + Oh%cy + 6% sinf — h2cy sin 6)
4 —8cosf — 4hZcy + 4082 0 + 4h2cy cos O + hicd + h2c? — h2c? cos? 6
(3.9)

Im(r(6))
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By using Taylor series of cos# and sinf we get for ¢; > 0 that the numerator of
h30102

the right hand side of (3.9) is less than

h'c3 + h?(c? — 2¢2)0%. Hence the maximum and minimum values of Im(r(6)) are
attained at § = 7 and § = —xw. The result follows by noting that

6 but the denominator is bigger than

Im(r(—m)) = —Im(r(r)) = Zlﬁcifl:;@

|
The next lemma follows immediately from the close relationship between the

spectrum of a Toeplitz matrix and its generating function [9].
LEMMA 3.3. Let y1 and 7y, be defined as in (3.4). Then we have

3 2
1< A(Tn[Re()]) < 27 4+ T p242,
8 16
and
h|71|ﬁ h|’71|7r
< < A . )
1= hy, = MTn[Im(r)]) < 7= Wy V0 € [—m,7]

Next we prove the following lemma.
LEMMA 3.4. Let Assumptions (A1) and (A2) be satisfied. Then, for all n,

Tolg2] + i Talgl] + bl = (PL + hn Pl + B2y 1,)Tolr] + Ly, (3.10)

where L,, has only nonzero entries in the first and last columns.
Proof: The result can be derived by noting that PiI +h71P£ +h2y, I, is a tridiagonal
Toeplitz matrix. |

With Lemma 3.4, we have that the spectra of the preconditioned matrices are
also essentially bounded.

THEOREM 3.5. Let Assumptions (A1) and (A2) be satisfied. Then at most 8
eigenvalues of

(Pil + h'yleL + W2y I,) "N (Tylg2] + by Thlgi] + h2y21,) (3.11)
are outside the box

0
78

_ hlyi|m  hly|m
4— h2’)/2’ 4— h2’72

2
+ EhQﬁ] X [

in the complex plane.
Proof: Since the matrix Pff + h’ylel + h2~, 1, is nonsingular, we obtain from (3.10)
that

(PiI + h’71P£, + h2721—n)_1(Tn[g2] + h'YlTn[gl] + h2721n) = Tn['r] + in; (312)

where L, = (P! + hy, P! 4+ h?y,I,)"'L,, and the rank of L, is at most 2. Let X
be an eigenvalue of the preconditioned matrix in (3.11). Then we get by Bendixson’s

theorem that
-~ =T
L,+L,
2 b

- =T
In+1L,

Amin <Tn [Re(r)] + 5

) < Re(A) < Amax <Tn[Re(7‘)] +
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where Re(r) and Im(r) are defined as in (3.6). Since

- - T
L L
rank (%) =4,

by using Weyl’s theorem [12, Theorem 4.3.1], at most 4 eigenvalues of T',[Re(r)] +
(Ln+ i;) /2 are not contained in the interval [min Re(r(6)), max Re(r(#))]. Similarly,

we prove that at most 4 eigenvalues of T, [Im(r)] + (L, — i:) /2 are not contained
in the interval i [min Im(7(#)), maxIm(r())]. Now the assertion follows from Lemma
3.3. |

We remark that it is well-known that the knowledge of the eigenvalues alone is
not sufficient to estimate the convergence rate of GMRES, see for instance [8, 18].
As a matter of fact, it still remains an open problem to describe the convergence of
GMRES in terms of some simple characteristic properties of the coefficient matrix.
Even though we show in Theorem 3.5 that the eigenvalues of the preconditioned
matrices are contained in a bounded region except for a finite number of outliers,
we cannot provide a tight convergence bound of GMRES. However, we expect that
GMRES may converge very fast when we apply GMRES to solve these preconditioned
systems. Our numerical results in §5 will show that GMRES indeed converges very
fast.

Next we consider the singular values distribution of the preconditioned matrix.
This will be useful to estimate the number of iterations required for convergence of
the CGNE method.

With Lemma 3.3 and Lemma 3.4, we have our main theorem which states that
the spectra of the preconditioned normal equations matrices are essentially bounded.

THEOREM 3.6. Let Assumptions (A1) and (A2) be satisfied. Then there exist
B > 1 independent of n, such that at most 6 singular values of

(PIF 4+ by PL 4+ 1240 1,) " (T 9] + b Tlg1] + h?ye 1)

are outside the interval [1, 3].
Proof: By Lemma 3.4, we obtain

(P! + Py, + W72 X0) ™ (Talge] + hyn Tnlgr] + h*7210)] -
(P + ki Pl + W72 0) ™ (Thlge] + hniTnlgr] + B221,)]"
=T, [r]T,[r]* + Ly,
where L, is Hermitian and rank(L,) = 6. By using the Courant-Fischer theorem

about the inequalities between individual singular values of T',[r] and eigenvalues of
its Hermitian part [13, p.151], we have

Omin(Tr[r]) 2 Amin(Tr[Re(r)]) > 1.

Here o(-) denotes the singular values of a matrix. By using Lemma 3.3, we get

@] < ITalllls < 2l <24 (322 4 Do)+ (007 Y
Omax\L n < n 2 S o S 8 16 71 4—h2’)’2

3 w2 L\’ Iylm\ >
< T 2 miTy ._ g
_2\/( T Tt) + (1) =0

(3.13)
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Hence the result follows. [ |

4. Convergence Analysis of CGNE. Animportant practical aspect of solving
boundary value problem (1.1) is the efficient solution of the resulting linear system

C.x=B;'b=b, (4.1)

with C,, = B ' A,,.

CGNE for solving the linear system (4.1) amounts to applying CG to the system
C,.Cly = b under the change of variables & = Cly, see [8, p.105]. We note that
the convergence rate of the CGNE method depends on the singular values of the
preconditioned matrix. Since the singular values of the preconditioned Sinc matrix
arising from the model problem are uniformly bounded except for at most a finite
number of outliers (cf. Theorem 3.6), we will show that the convergence rate of the
preconditioned conjugate gradient method for the normal equations will converge in at
most O(logn) steps. We begin by noting the following error estimate of the conjugate
gradient method for the normal equations; see [28].

THEOREM 4.1. Let & be the solution to Cr,z = b and 9 be the j-th iterate of
CGNE applied to the system CHCSy = b under the change of variables x = Cz;y. If
the eigenvalues {0} of C,,CL are such that

0<515"'S(5p5b1§6p+1 S"'S6n7q5b2sénfq+lS"'Sény
then

||z — @] b—1\7"P¢ 5 — 6 n 5k—5>
<2 : — 5
lz — 2@, = "\b+1 5€lba bl 11 O 11 O ’

k=1 k=n—q+1
(4.2)

for j > p+q. Here b= (by/by)2 > 1.

We can derive (4.2) by passing linear polynomials through the outlying eigenvalues
Opfor1<k<pandn—q+1<k<n,and using a (j —p — q)th degree Chebyshev
polynomial to minimize the error in the interval [b, b2]. Since we always have

O — 0
< <
0< A <1,

for § € [by, ba], (4.2) can be simplified to

llz — 20 || b—1\'P g
[z — 2@y, = " \b+1 5€lbaiba] 11 Ok “3)

k=1

n—qg+1<k<n

For the preconditioned system, the iteration matrix C,, is given by
Cp = (P}[ + P} + 1*71,) H(Tolg] + hnTolg1] + h*7.1,).

Theorem 3.6 implies that we can choose by = 1 and by = § in (3.13). Then, p and ¢
are constants that are independent of n. In order to use (4.3), we need a lower bound
for 6, 1 < k < p. We note that
|(Tnlga] + hnTalg1] + h?7205) " (PRl + hn Py, + B2 L) |2
< | Tnlge] + b Talgi] + W2y I3 | PR + by P + W2y T2 -
#(Tn[g2] + b1 Tnlg1] + h*721 ),
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and there exists a constant c3 > 0 independent of n such that
1P+ hn Py, + Wy Lol < cg i= 4+ mm + .
Therefore, it remains to show that there exists ¢4 > 0 independent of n such that
|Tnlg2] + A1 Tnlgi] + B*y2In]), > ca. (4.4)
But this follows from the fact that
ITalg2] + b Tnlg1] + W*y2Inll2 > [ Talge] + W22 Inllz = b1 Ta[g1][lo-

We remark that the singular values of T',[g2] and T,[g1] are distributed as |g2| = 62
and |g1| = |6] respectively (see [20, 27]). Therefore, for sufficiently small h, we have
the inequality stated in (4.4). It follows by Theorem 2.2 that

519 Z mein 5@

. 2
= @ nlge] + FnTalor] + 292 L0) " (PI + b Pl + W25 T)

2
C4\2 4 C1 2 2.2 —4

> (=)°16n* (1 + —=)*(1 + =2)* =

_(63) i \/ﬁ)( n) o

for 1 < k < n, where ¢ is a positive constant. Thus, for 1 < k < p and ¢ € [1, §], we
have that

Hence, (4.2) becomes

[z — 2@ < Ppt b—1 J—P—q'
||.’l:—£1:(0)||2 b+1

Given arbitrary tolerance € > 0, an upper bound for the number of iterations required
to make
= 26|}

<
EEESI

is therefore given by

. loge + 4plogn —loge
JOEP'H]—p g P08 g = O(logn).

log (454

Since each CGNE iteration requires O(nlogn) operations, the total cost of CGNE is
at most O(nlog® n) arithmetical operations.

5. Numerical Results. In this section, we test our banded preconditioners on
a SGI 02 workstation. All experiments are performed in MATLAB with a machine
precision of 10716,

Our problems have homogeneous Dirichlet boundary conditions and known solu-
tions. We apply GMRES, BiCGSTAB and CGNE methods to

B, 'A,z =B, 'b.
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Here B,, represents the banded preconditioner (3.1). The iterative method started
with the zero vector and the vector b is given by (2.5).

Tables 5.1 — 5.4 list the number of matrix-vector products of A, or A} re-
quired until the residual norms produced by the different iterative method satisfied
l7 ]2 /[|7@]]2 < 10~7. The symbol * denotes that the method stopped without
converging to the desired tolerance in 1000 iteration steps. We remark that GMRES
uses one matrix-vector product per step, and BICGSTAB and CGNE use two matrix-
vector products per step. Note that the preconditioned systems need in addition the
solution of B,x = y or B;fm = y. But since B, is a tridiagonal matrix we com-
pute the solution quickly by a permuted back-substitution algorithm as implemented
in MATLAB. In the tables, the symbol I,, means that the system is solved without
using a preconditioner.

In the tables, we also determine the error between the numerical approximation
and the true solution at the sinc points defined as follows:

N

E:= Z lup — u(zg)|?.

k=—M

Here we obtain this error by determining {uy}i__,;, where we solve the system (2.5)
by a direct method.
In the numerical tests, we consider the following examples:
EXAMPLE 5.1. (see [17, p. 119]) The discretization of
u"(2) + g5 ' (@) — pulz) = —gVz (z€(0,1),
u(0) =u(1) =0,

which has solution u(x) = z3/2(1 — z), is given by (2.3) with

I -¢" p _ 5—1lz
D”‘D”[(¢')2 ¢'] D”[ 6 ]

and

ot = o3 (3 5 () ] o[22

We choose the conformal map ¢(z) = log( Zz) and as in [17, p. 119] M =

1—

2N = % —1land h = \/;rﬁ This problem has a regular singular point at z = 0.

O

EXAMPLE 5.2. (see [17, p. 126]) The discretization for the problem on (0, c0)
given by

U (@) — () — ru(a) = ZESD (5 e (0,00),

(w2+1)3
u(0) = lim u(z) =0,

T—r0o0

which has solution u(z) = takes the form (2.3) with

-z
z2+17

222 +1 —2z2
DI=p,|=—= d pl=p,|——_|.
" [w2+1] e T (a2 +1)2



Fast Iterative Methods for Sinc Systems 15

TABLE 5.1
Results for Example 5.1.

CGNE GMRES BiCGSTAB
n E I, |B,| I, |B,| I. | B,
10 | 4.50e-03 24 12 11 8 21 10
20 | 8.48e-04 56 26 21 9 39 9
40 | 5.92e-05 154 28 40 8 67 9
80 | 1.05e-06 492 26 72 6 117 6
160 | 2.77e-09 || 1696 | 24 107 4 181 4
320 | 5.08e-13 * 24 153 3 261 3
TABLE 5.2
Results for Example 5.2.
CGNE GMRES BiCGSTAB
n E I, B, I, B, I, B,

8 | 3.14e-02 18 18 9 9 17 12
16 | 4.01e-03 40 28 17 12 35 14
32 | 3.55e-04 106 32 33 13 75 14
64 | 1.37e-05 312 32 64 12 138 12
128 | 1.18e-07 || 1020 | 30 125 10 250 10
256 | 1.15e-10 * 28 213 7 437 7
512 | 5.07e-14 * 26 373 ) 921 )

We choose the conformal map ¢(z) = log(z) and as in [17, p. 126 M = 2!, N = M —1
and h = ﬁ O

For Example 5.1 and Example 5.2, Assumptions (A1) and (A2) are fulfilled. In
Figure 5.1 we plot the singular values of A,, and of the preconditioned matrix B, 'A,.
We see, that except some outliers the singular values of B, ! A,, lie in an fixed interval
independent of n. For CGNE, our numerical results confirm our expected theoretical
results, that the number of CGNE iterations is of order O(logn).

We note that BICGSTAB and GMRES use different Krylov subspaces [8, p.90]
and therefore we cannot compare their iteration results directly. However, we observe
in the tables that GMRES and BiCGSTAB converge very fast. These numerical
results illustrate the effectiveness of our proposed preconditioners.

In the following examples we apply the banded preconditioner to precondition the
Sinc coefficient matrix when Assumption (A2) is not fulfilled.

EXAMPLE 5.3. (see [2, 7]) We consider the convection problem

u'(z) — su'(z) = f(z) (2 €(0,1)),

u(0) = u(1) = 0. (5.1)

The solution of (5.1) is difficult to compute for large values k. We compute the
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FIG. 5.1. Singular values of A, (left) and of B, A, (right) for n € {10,20,40, 80,160, 320}
given in Ezample 5.1.

320 + o+ 1 320t + - —— + A
160 + o+ 1 160 + S +
8o + T 1 8o R G e e
40 + BT 1 aof BB
20+ + D R e saa sty 1 200 T
10F e 1 10+ R F F
107 11;" 1(‘1“ 1‘0’ 1212 10° 0 I P 3 P
TABLE 5.3

Results for Example 5.3 with k = 100.

CGNE GMRES BiCGSTAB
n E In Bn In Bn In Bn

16 | 1.12e-01 48 34 17 13 61 19
32 | 2.07e-02 132 44 31 14 107 18
64 | 1.02e-03 420 44 52 13 206 18
128 | 9.77e-06 || 1408 | 38 95 12 347 16
256 | 1.06e-08 * 38 144 6 491 6
512 | 4.54e-13 * 30 206 4 890 4

solution for f(z) = —k. The discretization is given by (2.3) with

D! =D,[1-2r+kz(l1—2z)] and DI =D, [z(x-1)(2+k(2z—1))].

n

We choose ¢(z) = log (ﬁ) , h=—Z and N = 2\, M = N — 1. Note that Ernst [7]

V2 M
used a discretization based on the Galerkin finite element method and solved the
resulting linear system by GMRES without a preconditioner. O

EXAMPLE 5.4. (see [2]) Consider the differential equation (for k > 0) defined
by

u' — gu'(x) = —KJ(KJ + 1).77”_1 ("L' € (05 1))7
u(0) = u(1) = 0.

This problem has the difficulty represented by a regular singular point at x = 0 and
a boundary layer at z = 1 when & > 0. The linear system (1.7) takes the form (2.3)
with

D! =D,[1-2z+k(1—2)] and DY =D,[z(z-1)2+k)].

We choose the conformal map ¢(z) = log (lfz) andh = —I—and N = 2L M = N—1.
O
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TABLE 5.4
Results for Exzample 5.4 for k = 100.

CGNE GMRES BiCGSTAB

8 1.50e-01 18 20 9 9 29 17

16 | 1.06e-01 52 36 17 14 95 21

32 | 2.09e-02 160 56 33 17 517 29

64 | 1.04e-03 384 70 65 21 * 35
*

128 | 9.83e-06 92 129 52 * 42
256 | 1.02e-08 * 108 240 95 * 45
512 | 4.67e-13 * 102 430 6 * 12

6. Concluding Remarks. We remark that the accuracy of the computed solu-
tion depends only on the Galerkin method used in the discretization of the boundary
value problem. However, the convergence rate of the discrete system and the costs
per iteration of the iterative method depend on how we discretize the boundary value
problem. It is advantageous to use the Sinc method to discretize the boundary value
problem because the Sinc-Galerkin method for boundary value problems is conver-
gent exponentially (see (2.6) and Tables 5.1-5.4). However, we require to solve n-by-n
Sinc systems where their coefficient matrices are dense. A straightforward application
of the Gaussian elimination method will result in an algorithm, which takes O(n?)
arithmetical operations. The main contribution of this paper is to propose banded
preconditioners to precondition Sinc matrices and speed up the convergence rate of
conjugate gradient type methods. The cost of our proposed method for Sinc systems
is significantly less than the O(n?) cost required by Gaussian elimination method for
solving Sinc systems.

Finally, we remark that we can employ the finite difference or the finite element
method to discrete the boundary value problem, and therefore banded system solvers
can be used to solve the corresponding linear system in O(n) operations. However,
in order to obtain a reasonably accurate solution, a small step-size has to be used in
the finite difference or the finite element method and hence the dimension of the re-
sulting matrix system will be very large compared with the size of the Sinc system [19].
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