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Abstract—We present a method for the fast reconstruction
of high-dimensional sparse algebraic polynomials in Chebyshev
form and for the fast approximation of multivariate non-periodic
functions from samples, when the frequency locations belonging
to the non-zero or largest Chebyshev coefficients are unknown.
We only assume that we have given a generally very large index
set of possible frequencies, e.g. a d-dimensional full grid. We de-
termine the frequency locations in a dimension-incremental way
from samples along reconstructing rank-1 Chebyshev lattices.
We demonstrate the high performance of the proposed method
in numerical examples in up to 15 dimensions.

I. INTRODUCTION

We consider algebraic polynomials aI : [−1, 1]d → R in
Chebyshev form,

aI(x) :=
∑
k∈I

âk Tk(x) =
∑
k∈I

âk

d∏
t=1

Tkt(xt), âk ∈ R, (1)

where d ∈ N is the dimension, I ⊂ Nd0 is a non-negative
index set, |I| < ∞, and Tk : [−1, 1]d → [−1, 1], Tk(x) :=∏d
t=1 Tkt(xt), k ∈ Nd0, are multivariate Chebyshev polynomi-

als built from univariate Chebyshev polynomials of the first
kind Tl : [−1, 1] → [−1, 1], Tl(x) := cos(l arccosx), for
frequencies l ∈ N0. For each l ∈ N0, Tl is an algebraic
polynomial of degree l restricted to the domain [−1, 1]. We
remark that multivariate algebraic polynomials with hyperbolic
cross index sets I = Hd

n := {k ∈ Nd0 :
∏d
t=1 max(1, kt) ≤ n}

have already been used for approximations in sparse high-
dimensional spectral Galerkin methods, cf. [1, Section 8.5].
Moreover, multivariate algebraic polynomials aI are used in
Petrov-Galerkin discretizations of high-dimensional paramet-
ric PDEs, see e.g. [2], [3] for compressed sensing based
approaches.

For a given arbitrary index set I ⊂ Nd0, |I| <∞, a method
for the fast evaluation of an arbitrary polynomial aI from (1)
at the nodes xj := cos( j

M πz), j = 0, . . . ,M , of an arbitrary
rank-1 Chebyshev lattice
CL(z,M) :=

{
xj := cos

(
j
M πz

)
: j=0, . . . ,M

}
⊂ [−1, 1]d

with generating vector z ∈ Nd0 and size parameter M ∈ N0

was discussed in [4], which only uses easy-to-compute index
transforms and a single one-dimensional discrete cosine trans-
form (1d DCT). For a more general definition of d-dimensional
rank-k Chebyshev lattices, we refer to [5]. Moreover, recon-
struction properties, i.e., conditions on the generating vector z

and the size parameter M , such that the fast and exact
reconstruction of all Chebyshev coefficients âk, k ∈ I , is
possible from samples aI(xj), j = 0, . . . ,M , were discussed
in [4] and the term reconstructing rank-1 Chebyshev lat-
tice CL(z,M, I) was introduced. Methods for obtaining a re-
constructing rank-1 Chebyshev lattice CL(z,M, I) based on a
component-by-component (CBC) construction approach were
presented in [4]. For general CBC constructions of integration
lattices, we refer to the survey [6] and the references therein.
The Chebyshev coefficients âk, k ∈ I , can be obtained by ap-
plying a single 1d DCT to the samples aI(xj), j = 0, . . . ,M ,
followed by easy-to-compute index transforms. These compu-
tations require O(M logM+d |M(I)|) arithmetic operations,
where M(I) := {h ∈ Zd : (|h1|, . . . , |hd|) ∈ I} is the ex-
tended symmetric index set and |M(I)| denotes the cardinality
of this index set.

Until now, we assumed that we know the frequency index
sets I , which contain the locations of the non-zero Chebyshev
coefficients âk 6= 0 of a multivariate algebraic polynomial aI .
However, these frequency locations are unknown in many
cases. In general, it is a very challenging task to obtain
such frequency index sets I , especially in higher dimensions.
We denote a method which determines a set of unknown
frequency locations I and corresponding non-zero or ap-
proximately largest Chebyshev coefficients in a fast way by
sparse FFT. For the periodic case, many approaches exist.
For a nice introduction to compressive sensing, we refer to
the monograph [7]. Moreover, one-dimensional sparse FFT
methods based on efficient filters were introduced in [8],
[9], and multivariate methods followed, see e.g. [10] and
the references therein. Further methods for the sparse FFT
exist, e.g. based on the Chinese Remainder Theorem [11],
shifted sampling [12], randomized Kronecker substitution [13]
and dimension-incremental projections [14], [15]. Moreover,
approaches based Prony’s method were proposed in [16]–[18].

In this work, we present a multivariate sparse FFT method
for the non-periodic case, which determines the unknown
frequency locations I in a dimension-incremental way, one
component at a time. Our method is based on dimension-
incremental projections parallel to the coordinate axes, cf. [15]
and the references therein for a similar idea in the periodic
case. As sampling sets, we employ the nodes of reconstructing



rank-1 Chebyshev lattices CL(z,M, I), and we make use of
fast reconstruction algorithms. We only require that a very
large superset Γ ⊂ Nd0 of possible frequency locations, the
search domain, is known and that we are able to obtain
sampling values from the function under consideration. The
proposed method is successfully applied in numerical tests for
the reconstruction of high-dimensional algebraic polynomials
in Chebyshev form aI in up to 15 dimensions as well as
for the approximation of a 9-dimensional non-periodic test
function. Our method may be applied for determining sparse
approximate solutions of partial differential equations with
random coefficients.

II. METHOD

In this section, we describe the dimension-incremental re-
construction approach. First, we introduce additional notation
from [4]. For M ∈ N and l ∈ Z, we define the even-mod
relation

l emodM :=

{
l mod (2M), l mod (2M) ≤M,

2M − (l mod (2M)) else,

as well as l emod 0 := 0 in the special case M = 0.
Additionally, we define the index sets Mν(I) := {h ∈
M(I) : hν ≥ 0}, ν ∈ {1, . . . , d}, which contain all frequen-
cies k ∈ I and versions of these frequencies (repeatedly)
mirrored at all coordinate axes except the ν-th. Moreover,
we denote the projection of a frequency k ∈ Zd to the
components i := (i1, . . . , im) ∈ {1, . . . , d}m by Pi(k) :=
(ki1 , . . . , kim) ∈ Zm, and of a frequency index set I ⊂ Zd by
Pi(I) := {(ki1 , . . . , kim) : k ∈ I}.

A. Fast reconstruction for known frequency index sets I

Our method for the dimension-incremental reconstruction is
based on the reconstruction method [4] for known frequency
index sets I , which we briefly describe in the following.
We consider the reconstruction of the Chebyshev coeffi-
cients âk, k ∈ I , of a multivariate algebraic polynomial
in Chebyshev form aI with frequencies supported on an
arbitrary known index set I ⊂ Nd0, |I| < ∞, from samples
aI(xj), j = 0, . . . ,M , along a suitable rank-1 Chebyshev
lattice CL(z,M). In doing so, we compute the coefficients

˜̂al :=

M∑
j=0

(εMj )2 aI(yj) cos

(
jl

M
π

)
(2)

for l = 0, . . . ,M by a 1d DCT of length M + 1, where
εMj := 1/

√
2 for j ∈ {0,M} and εMj := 1 for j ∈

{1, . . . ,M − 1} as well as yj := xj . Then, we obtain the
Chebyshev coefficients âk, k ∈ I , of the polynomial aI by

âk =
2d

M

˜̂al (εMl )2

|{m ∈Mν({1}d) : (m� k) · z emodM = l}|
(3)

with l := k · z emodM for all frequencies k ∈ I and any
ν ∈ {1, . . . , d}, if the reconstruction property

k · z emodM 6= h · z emodM

for all k ∈ I and h ∈Mν(I), k 6= (|h1|, . . . , |hd|), (4)

is fulfilled. A rank-1 Chebyshev lattice CL(z,M) which
fulfills condition (4) will be called reconstructing rank-1
Chebyshev lattice for I and is denoted by CL(z,M, I).
The computations in (2) and in (3) can be realized in
O(M logM + d 2d|I|) arithmetic operations. We can rewrite
the computations in (3) as

âk =
2|k|0+1

M

˜̂al (εMl )2

|{h ∈M({k}) : h · z emodM = l}|
, (5)

where |k|0 :=
∑d
t=1 δkt,0 denotes the number of non-zero

components of a vector k ∈ Nd0, and we obtain an arith-
metic complexity of O(M logM + d |M(I)|), which may be
distinctly smaller if only a small amount of components of
the frequencies k ∈ I are non-zero. For a given arbitrary
frequency index set I ⊂ Nd0, |I| < ∞, a reconstructing
rank-1 Chebyshev lattice can be obtained by using algorithm
[4, Fig. 5] or by using [4, Theorem IV.2] in combination with
[19, Algorithm 1 and 2].

B. Dimension-incremental reconstruction

Using the fast reconstruction method from the previous sub-
section, we describe a method for the dimension-incremental
determination of unknown frequency locations belonging to
the approximately largest Chebyshev coefficients of a mul-
tivariate algebraic polynomial in Chebyshev form aI or of
a multivariate non-periodic function f : [−1, 1]d → R. The
method is indicated in Fig. 1 and works similarly to [15,
Algorithm 1] from the periodic case.

The proposed algorithm requires several input parameters.
The search domain Γ contains all possible frequencies. More-
over, we have to be able to sample the function f under consid-
eration. Threshold parameters θ and θb are used to distinguish
“zero” and “non-zero” Chebyshev coefficients. Additionally,
we use the sparsity parameter s to truncate the number of
detected frequencies, which may be especially required when
the function under consideration has infinitely many non-
zero Chebyshev coefficients and we want to determine the
approximately largest ones. Finally, the number of detection
iterations r controls how many times the sampling is repeated
during the determination of the frequency locations in order to
obtain higher reliability for the detection, since the frequency
detection may fail sometimes due to cancellations within
projected and aliased Chebyshev coefficients, see also the
discussion in [15, Section 2.2.2] for the periodic case.

Next, we describe the algorithm step-by-step. During the
computations, we detect one component of the frequency
locations at a time starting with the first component.

In step 1, we start with sampling the function under con-
sideration along the first coordinate direction at the nodes
yl := (cos(lπ/L1), x′2, . . . , x

′
d), l = 0, . . . , L1, where L1 :=

max(P1(Γ)) and the higher components x′2, . . . , x
′
d of the

sampling nodes yl are chosen uniformly at random from
[−1, 1]. Then, we apply a 1d DCT and obtain one-dimensional
(projected) Chebyshev coefficients ˜̂a1,k1 , k1 ∈ P1(Γ). We
determine the ones which are above a certain threshold and
store the corresponding frequencies k1 in the index set I(1).



Input: search domain Γ ⊂ Nd0, function f (black box), relative
thresholds θ, θb ∈ (0, 1), sparsity parameter s ∈ N, number of
detection iterations r ∈ N.
(step 1)
L1 := max(P1(Γ)), I(1) := ∅, z1 := 1.
for i := 1, . . . , r do

Choose x′τ ∈ [−1, 1] at random, τ = 2, . . . , d.
˜̂a1,k1 :=

2(ε
L1
k1

)2

L1

∑L1

l=0(εL1

l )2 f(yl) cos
(
lk1
L1
π
)

, k1 ∈
P1(Γ), yl := (cos( l

L1
π), x′2, . . . , x

′
d), with 1d DCT.

θabs := θb ·max{|˜̂a1,k1 | : k1 ∈ P1(Γ)}.
I(1) := I(1)∪{k1 ∈ P1(Γ) : (up to) s-largest |˜̂a1,k1 |≥θabs}.

end for i
(step 2)
for t := 2, . . . , d do
(step 2a)
Set Lt := max(Pt(Γ)), I(t) := ∅.
for i := 1, . . . , r do

Choose x′τ ∈ [−1, 1] at random, τ ∈ {1, . . . , d} \ {t}.
˜̂at,kt :=

2(ε
Lt
kt

)2

Lt

Lt∑
l=0

(εLtl )2 f(yl) cos
(
lkt
Lt
π
)

, kt ∈ Pt(Γ),

yl := (x′1, . . . , x
′
t−1, cos( l

Lt
π), x′t+1, . . . , x

′
d).

θabs := θb ·max{|˜̂at,kt | : kt ∈ Pt(Γ)}.
I(t) := I(t) ∪ {kt ∈ Pt(Γ) : (up to) s-largest |˜̂at,kt |≥θabs}.

end for i
(step 2b)

Set r̃ := r for t < d, r̃ := 1 for t = d.
Build reconstructing rank-1 Chebyshev lattice CL(z,Mt, Ĩ)
for Ĩ := (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ).
for i := 1, . . . , r̃ do
(step 2c)

Choose random x′τ ∈ [−1, 1], τ = t+ 1, . . . , d.
Set yj := (xj , x

′
t+1, . . . , x

′
d),

xj := cos( j
Mt
πz), j = 0, . . . ,Mt.

Sample f at nodes yj , j = 0, . . . ,Mt.
(step 2d)

˜̂al :=
∑Mt

j=0(εMt
j )2 f(yj) cos

(
jl
Mt
π
)

, l = 0, . . . ,Mt.

˜̂a
(1,...,t)
k :=

2d(ε
Mt
l )2

Mt

˜̂al
|{m∈Mν({1}t) : (m�k)·z emodMt=l}| ,

for k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ)
with l := k · z emodMt.

(step 2e)
θabs := θ·maxk∈(I(1,...,t−1)×I(t))∩P(1,...,t)(Γ) |˜̂a(1,...,t),k|.
I(1,...,t) := I(1,...,t) ∪ {k ∈ (I(1,...,t−1) × I(t)) ∩
P(1,...,t)(Γ) : (up to) s-largest |˜̂a(1,...,t)

k | ≥ θabs}.
end for i

end for t
Output: index set of detected frequencies I(1,...,d) ⊂ Γ ⊂ Nd0,
corresponding Chebyshev coefficients ˜̂a

(1,...,d)
k ∈ R.

Fig. 1. Dimension-incremental reconstruction of Chebyshev coefficients of a
function from samples for unknown frequency index set.

Next, we proceed with step 2 for t := 2, 3, . . . , d.
In step 2a, we sample the function under consideration

along the t-th coordinate direction at the nodes yl :=
(x′1, . . . , x

′
t−1, cos(lπ/Lt), x

′
t+1, . . . , x

′
d), l = 0, . . . , Lt,

where Lt := max(Pt(Γ)) and the components x′τ , τ ∈
{1, . . . , d}\{t}, are chosen uniformly at random from [−1, 1].
Again, we apply a 1d DCT and obtain one-dimensional
(projected) Chebyshev coefficients ˜̂at,kt , kt ∈ Pt(Γ). We
determine the ones which are above a certain threshold and
store the corresponding frequencies kt in the index set I(t).
In step 2b, we build a reconstructing rank-1 Chebyshev lattice
CL(z,Mt, Ĩ) for Ĩ := (I(1,...,t−1) × I(t))∩P(1,...,t)(Γ) using
one of the approaches from Subsection II-A. In step 2c, we
use sampling nodes yj := (xj , x

′
t+1, . . . , x

′
d), j = 0, . . . ,Mt,

where the components x′t+1, . . . , x
′
d are chosen uniformly

at random from [−1, 1], and we sample the function under
consideration. In step 2d, we compute (2) using a 1d DCT
followed by (3) or (5), which yields (projected) Chebyshev
coefficients ˜̂a

(1,...,t)
k , k ∈ Ĩ ⊂ P(1,...,t)(Γ) ⊂ Nt0. In step 2e,

we determine the ones which are above a certain threshold and
store the corresponding frequencies k in the index set I(1,...,t).

Finally, the algorithm indicated in Fig. 1 returns the fre-
quency index set I(1,...,d) ⊂ Γ ⊂ Nd0 and Chebyshev coeffi-
cients ˜̂a

(1,...,d)
k , k ∈ I(1,...,d).

Setting the search domain Γ to the full d-dimensional
grid Ĝdn := {k ∈ Nd0 : ‖k‖∞ ≤ n}, n ∈ N, and us-
ing [4, Theorem IV.2] in combination with the approach in
[19, Algorithm 1 and 2] for building reconstructing rank-1
Chebyshev lattices CL(z,Mt, Ĩ), we require O(s2n) samples
and O(s3 + s2n log(s n)) arithmetic operations in total for
s &
√
n, see also [15, Section 2.2.3] from the periodic case.

The involved constants in the sampling and arithmetic com-
plexities may be exponential in the dimension d. When we
reconstruct a multivariate algebraic polynomial in Chebyshev
form f := aI and set the sparsity parameter s of the algorithm
in Fig. 1 to the sparsity |supp â| of the polynomial aI ,
supp â := {k ∈ I : âk 6= 0}, we require O(|supp â|2 n) sam-
ples and O(|supp â|3 + |supp â|2 n log(|supp â|n)) arithmetic
operations in total for |supp â| &

√
n, where the constants in

the big O notation may be exponential in the dimension d.

III. NUMERICAL RESULTS

The numerical tests were performed in MATLAB using dou-
ble precision arithmetic. We apply the algorithm in Fig. 1 on
random sparse multivariate algebraic polynomials in Cheby-
shev form aI and on a 9-dimensional test function, where the
latter has infinitely many non-zero Chebyshev coefficients.

A. Sparse multivariate polynomials

We set the refinement n := 32 and construct random
multivariate algebraic polynomials in Chebyshev form aI with
frequencies supported within the d-dimensional full grid Ĝd32.
This means, we choose the sparsity as |supp â| many fre-
quencies uniformly at random from Ĝd32 ⊂ Nd0 and corre-
sponding Chebyshev coefficients âk ∈ [−1, 1], |âk| ≥ 10−6,
k ∈ I = supp â. For the reconstruction of the multivariate
algebraic polynomials in Chebyshev form aI , we choose
the search domain Γ := Ĝd32 and we build reconstructing



rank-1 Chebyshev lattices CL(z,Mt, Ĩ) by using algorithm
[4, Fig. 5]. We do not truncate the frequency index sets of
detected frequencies I(1,...,t), t ∈ {1, . . . , d}, i.e., we set the
sparsity parameter s := |Γ|. We may alternatively set the
sparsity parameter s := |supp â| = |I| and obtain the same
results. Moreover, we set the number of detection iterations
r := 1 and the threshold parameters θ = θb := 10−12. All tests
are repeated 10 times with newly chosen frequencies k and
Chebyshev coefficients âk. In each test, all frequencies were
successfully detected, I(1,...,d) = supp â. The used parameters
and results are presented in Table I. The column “max. cand.”
shows the maximal number maxt=2,...,d |I(1,...,t−1) × I(t)| of
frequency candidates of all 10 repetitions and “max. M”
the overall maximal size parameter used. Furthermore, the
total number of samples for each repetition was computed
and the maximum of these numbers for the 10 repetitions
can be found in the column “max. #samples”. The relative
`2-error ‖(˜̂ak)k∈Ĩ − (âk)k∈Ĩ‖2/‖(âk)k∈Ĩ‖2 of the computed
Chebyshev coefficients (˜̂ak)k∈I(1,...,d) was determined for
each repetition, where Ĩ := supp â∪ I(1,...,d) and ˜̂ak := 0 for
k ∈ Ĩ \ I(1,...,d), and the column “max. rel. `2-error” contains
the maximal value of the 10 repetitions.

In all tests, the relative `2-error is smaller than 4.2 · 10−14

and is caused by the utilized IEEE 754 double precision
arithmetic. The numbers of used samples “max. #samples”
grow for increasing dimensions d. For |supp â| = 100, the
maximal number of frequency candidates “max. cand.” is 3 300
and the maximal size parameter “max. M” is between about
220 000 and 460 000 in Table I for dimensions d ≥ 4. This is
caused by the relatively large numbers of possible frequencies
|Γ| = |Ĝd32| = 33d and the small sparsity |supp p̂| = 100,
which cause that all 100 non-zero Chebyshev coefficients âk 6=
0 are already detected in dimension-incremental steps t ≤ 4
and higher components zτ , 5 ≤ τ < t, (except the highest
component zt) of the generating vector z := (z1, . . . , zt) of
the reconstructing rank-1 Chebyshev lattices Λ(z,M, Ĩ) to be
zero in most cases. Consequently, the numbers of used samples
“max. #samples” increase by about 220 000 to 460 000 per
additional dimension. We remark that we may have found
all non-zero Chebyshev coefficients âk 6= 0 in a dimension-
incremental step t ≤ 4, but we still need to continue with
remaining dimension-incremental steps t ≥ 5 in order to
determine the higher components kt, t ∈ {5, . . . , d}, of the
frequencies k.

Additionally, we consider higher sparsity |supp â| = 1 000
in dimensions d ∈ {3, 4, . . . , 8}. In each test, all frequencies
were successfully detected, I(1,...,d) = supp â, and we observe
a analogous behavior as in the case |supp â| = 100. For
dimension d = 6, we have seven test runs where all 1 000
non-zero Chebyshev coefficients âk 6= 0 are already found in
dimension increment step t = 5 yielding size parameters M
of about 21 million and numbers of used samples of about
50 million. However, we still have three test runs, where all
1 000 non-zero Chebyshev coefficients âk 6= 0 are found not
until the last dimension increment step t = 6 yielding the

TABLE I
RESULTS FOR RECONSTRUCTION OF RANDOM SPARSE MULTIVARIATE

ALGEBRAIC POLYNOMIALS IN CHEBYSHEV FORM aI , I ⊂ Ĝd
32 , USING

ALGORITHM IN FIG. 1 WITH SEARCH DOMAIN Γ := Ĝd
32 .

max. max. max. rel.
d |supp â| cand. max. M #samples `2-error

3 100 3 168 81 642 83 826 4.92e-16
4 100 3 300 221 260 295 118 7.17e-16
5 100 3 300 234 655 537 964 5.45e-16
6 100 3 300 241 391 785 671 1.17e-15
7 100 3 300 456 119 1 614 677 9.37e-16
8 100 3 300 392 251 1 828 842 6.43e-16
9 100 3 300 386 490 2 195 804 7.30e-16

10 100 3 300 414 611 2 710 158 1.78e-15
15 100 3 300 380 502 4 439 451 4.20e-14

3 1 000 15 873 73 856 75 080 5.53e-16
4 1 000 32 604 6 490 663 6 630 162 6.74e-16
5 1 000 33 000 27 021 660 34 116 319 7.44e-16
6 1 000 33 000 44 791 174 74 215 472 1.48e-15
7 1 000 33 000 42 401 071 113 804 504 8.03e-16
8 1 000 33 000 43 799 177 161 481 230 1.49e-15

maximal size parameter “max. M” of about 45 million and the
numbers of used samples “max. #samples” of about 74 million
in Table I. In dimensions d ≥ 7, all 1 000 non-zero Chebyshev
coefficients âk 6= 0 are already found in dimension increment
steps t ≤ 6 for all ten test runs. Analogously to the behavior
for sparsity |supp â| = 100, we expect the numbers of used
samples “max. #samples” to increase by about 20 to 45 million
per additional dimension for dimensions d ≥ 6.

B. 9-dimensional test function

Next, we apply our method for the non-periodic
dimension-incremental reconstruction to a multivariate
function f ∈ L2,w([−1, 1]d), which is not sparse
in frequency domain, where L2,w([−1, 1]d) is the
weighted Hilbert space of all square integrable functions
f : [−1, 1]d → R with respect to the Chebyshev weight
w(x) :=

∏d
t=1 1/

√
1− x2

t with norm ‖f |L2,w([−1, 1]d)‖ :=

(
∫

[−1,1]d
|f(x)|2 w(x) dx)1/2. The Chebyshev coefficients f̂k

of a function f ∈ L2,w([−1, 1]d) are formally given by
f̂k := 2|k|0/πd

∫
[−1,1]d

f(x) Tk(x) w(x) dx, k ∈ Nd0, see
e.g. [20].

Here, we consider the 9-dimensional test function
f : [−1, 1]9 → R,

f(x) :=
∏

t∈{1,3,4,7}

B2(xt) +
∏

t∈{2,5,6,8,9}

B4(xt), (6)

where B2 is a shifted, scaled and dilated B-spline of or-
der 2 and B4 : R → R is a shifted, scaled and dilated B-
spline of order 4, see Fig. 2 for illustration. We remark
that the Chebyshev coefficients of B2 and B4 decay like
∼ k−3 and ∼ k−5, respectively. We approximate the test
function f from (6) by multivariate algebraic polynomials
in Chebyshev form aI . For this, we determine a frequency
index set I = I(1,...,9) ⊂ Γ ⊂ Nd0 and compute approximated
Chebyshev coefficients ˜̂ak, k ∈ I , from sampling values of f
using the algorithm in Fig. 1, where the reconstructing rank-1
Chebyshev lattices CL(z,Mt, Ĩ) are built using algorithm [4,
Fig. 5]. We expect the frequency index set I to “consist of” two
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Fig. 2. B-splines B2 and B4 considered in interval [−1, 1].

TABLE II
RESULTS FOR APPROXIMATION OF TEST FUNCTION f : [−1, 1]9 → R

FROM (6) USING ALGORITHM IN FIG. 1.

max. max. total max. rel.
Γ θ |I| cand. #samples L2,w-error

Ĝ9
32

1.0e-02 149 1 116 135 216 1.7e-02
1.0e-03 485 4 710 898 310 6.7e-03
1.0e-04 1 431 18 200 5 662 360 4.7e-04
1.0e-05 3 465 63 800 27 009 528 9.4e-05

H9
32

1.0e-02 147 851 99 181 1.7e-02
1.0e-03 486 2 979 586 317 5.6e-03
1.0e-04 1 438 6 038 2 802 539 4.1e-04
1.0e-05 2 784 9 656 8 340 927 1.3e-04

manifolds, a four-dimensional hyperbolic cross like structure
in the dimensions 1, 3, 4, 7, and a five-dimensional hyperbolic
cross like structure in the dimensions 2, 5, 6, 8, 9. All tests
were run 10 times and the relative L2,w([−1, 1]9) approxi-
mation errors ‖f − S̃If |L2,w([−1, 1]9)‖/‖f |L2,w([−1, 1]9)‖
are computed, where the approximated Chebyshev partial
sum S̃If :=

∑
k∈I

˜̂ak Tk(◦). We choose the search domain
Γ := Ĝ9

32 ⊂ Nd0 as the 9-dimensional full grid of refinement
n = 32, which consists of |Γ| = |Ĝ9

32| ≈ 4.641·1013 frequency
candidates. The best possible relative L2,w([−1, 1]9) approxi-
mation error is about 6.3·10−5 if we use all the corresponding
(exactly computed) |Ĝ9

32| many Chebyshev coefficients as well
as about 8.1 · 10−5 if we use only 3 465 many Chebyshev
coefficients. For our method, we set the number of detection
iterations r := 5 and the threshold parameter θb := θ/100.
Moreover, the sparsity parameter s ∈ N is set to |Γ|, i.e., we do
not additionally truncate the frequency index sets I(1,...,t). The
results for threshold parameter θ ∈ {10−2, 10−3, 10−4, 10−5}
are shown in Table II. For instance for θ = 10−4, we
obtain a maximal relative L2,w([−1, 1]9) approximation error
of 4.7 ·10−4 using 1 431 Chebyshev coefficients ˜̂ak and about
5.7 million samples were taken. We may reduce the numbers
of samples by restricting the search domain Γ, e.g. to a
hyperbolic cross H9

32, and still obtain comparable maximal
relative L2,w([−1, 1]9) approximation errors. For instance for
θ = 10−4, we only required about half the number of samples.

IV. CONCLUSION

In this paper, we considered the fast reconstruction of
high-dimensional sparse algebraic polynomials in Chebyshev
form and the fast approximation of multivariate non-periodic
functions from samples. To this end, we used the nodes
of reconstructing rank-1 Chebyshev lattices. We presented a
dimension-incremental reconstruction method, which deter-
mines unknown frequency locations belonging to the non-
zero or approximately largest Chebyshev coefficients. We

successfully applied the presented method in numerical tests
for the reconstruction of high-dimensional sparse polynomials
in up to 15 dimensions and for the approximation of a 9-
dimensional test function.

ACKNOWLEDGMENT

We thank the referees for their valuable suggestions. More-
over, we gratefully acknowledge the funding by the European
Union and the Free State of Saxony (EFRE/ESF NBest-SF).

REFERENCES

[1] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods, ser. Springer
Ser. Comput. Math. Berlin: Springer-Verlag Berlin Heidelberg, 2011,
vol. 41.

[2] H. Rauhut and C. Schwab, “Compressive sensing Petrov–Galerkin ap-
proximation of high-dimensional parametric operator equations,” Math.
Comp., vol. 86, pp. 661–700, 2017.

[3] J.-L. Bouchot, H. Rauhut, and C. Schwab, “Multi-level Compressed
Sensing Petrov-Galerkin discretization of high-dimensional parametric
PDEs,” ArXiv e-prints, Jan. 2017, arXiv:1701.01671 [math.NA].

[4] D. Potts and T. Volkmer, “Fast and exact reconstruction of arbitrary
multivariate algebraic polynomials in Chebyshev form,” in 11th interna-
tional conference on Sampling Theory and Applications (SampTA 2015),
2015, pp. 392–396.

[5] R. Cools and K. Poppe, “Chebyshev lattices, a unifying framework for
cubature with Chebyshev weight function,” BIT Numerical Mathematics,
vol. 51, pp. 275–288, 2011.

[6] J. Dick, F. Y. Kuo, and I. H. Sloan, “High-dimensional integration: The
quasi-Monte Carlo way,” Acta Numer., vol. 22, pp. 133–288, 2013.

[7] S. Foucart and H. Rauhut, A Mathematical Introduction to Com-
pressive Sensing, ser. Applied and Numerical Harmonic Analysis.
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