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Abstract—We present different sampling methods for the
approximation of functions on the sphere. In this note we focus
on Fourier methods on the sphere based on spherical harmonics
and on the double Fourier sphere method. Further longitude-
latitude transformation is combined with Fourier extension to
allow the use of bi-periodic Fourier series on the sphere. Fourier
extension with hermite interpolation is introduced and double
Fourier sphere method is discussed shortly.

I. INTRODUCTION

We discuss different methods for the approximation of
functions on the sphere and and start with the representation
of functions on the sphere with respect to the spherical har-
monics. Finite expansions in spherical harmonics are known
as spherical polynomials. The fast evaluation of spherical
polynomials on special grids or on arbitrary nodes are know
as spherical Fourier transform or as nonequispaced spherical
Fourier transform, respectively. We summarize these methods
in Section II. The evaluation of the coefficients of a finite
spherical harmonic expansion leads to quadrature rules on
the sphere. We discuss special quadrature rules, i.e., we are
interested in special point distributions, the spherical t-designs,
which allow the efficient evaluation of the spherical Fourier
coefficients, see Section III. We refer to methods for the fast
and efficient evaluation of numerical t-designs, based on the
nonequispaced spherical Fourier transform. A method, known
as double Fourier sphere avoids the transform from spherical
harmonic expansion (2) to the bi-periodic Fourier series (3)
and starts with the representation (3) directly. In order to
overcome the pole problem, one can use a method known as
Fourier extension. In Section IV we introduce a simple Fourier
extension method and apply this approach to the sphere in
Section V. Finally we refer to spectral methods in Section VI.

II. FAST SPHERICAL FOURIER TRANSFORM

Functions on the unit sphere f(x, y, z) are restricted to
points on this sphere, this means the variables must satisfy
x2 + y2 + z2 = 1. This restriction can be taken into account
implicitly by the longitude-latitude coordinate transformation

x = cosϕ sin θ, y = sinϕ sin θ, z = cos θ, (1)
(θ, ϕ) ∈ [0, π]× [−π, π).

After this transformation all computations can be done using
f(θ, ϕ) without a restriction on the variables ϕ and θ. It is

well known that the eigenfunctions of the spherical Laplace-
Beltrami operator ∆S2 are the spherical harmonics Y kn of
degree n and order k, cf. [1]–[3],

Y kn (x) = Y kn (θ, ϕ) :=

√
2n+ 1

4π
P |k|n (cos θ)eikϕ

with the notation x = x(θ, ϕ) ∈ S2, where the associated
Legendre functions P kn : [−1, 1] → R and the Legendre
polynomials Pn : [−1, 1]→ R are given by

P kn (x) :=

(
(n− k)!

(n+ k)!

)1/2 (
1− x2

)k/2 dk

dxk
P kn (x),

Pn(x) :=
1

2nn!

dn

dxn
(
x2 − 1

)n
for n ∈ N0, k = 0, . . . , n. In spherical coordinates the surface
element reads as dµS2(x) = sin θdθdϕ and the spherical
harmonics obey the orthogonality relation∫ 2π

0

∫ π

0

Y kn (θ, φ)Y lm(θ, φ) sin θdθdϕ = δk,lδn,m.

Moreover, the spherical harmonics form an orthonormal basis
of the space of all square integrable functions L2(S2) := {f :
S2 → C :

∫
S2 |f(x)|2dµS2(x) < ∞}. Hence, every f ∈

L2(S2) has an unique expansion in spherical harmonics

f =

∞∑
n=0

n∑
k=−n

f̂knY
k
n .

We say that f is a spherical polynomial of degree at most N
if f̂kn = 0, n > N , and we denote by ΠN (S2) the space of all
spherical polynomials of degree at most N . We remark that
the dimension of ΠN (S2) is dN := (N + 1)2.

The evaluation of a spherical polynomial

p =

N∑
n=0

n∑
k=−n

p̂knY
k
n ∈ ΠN (S2) (2)

on a sampling set XM = {x1, . . . ,xM} ⊂ S2 can be expressed
by a matrix-vector multiplication

p = YN p̂,

where YN is the nonequispaced spherical Fourier matrix

YN := (Y nk (xi))i=1,...,M ; n=0,...,N,|k|≤n ∈ CM×dN ,



p is the vector of the sampling values

p = (p(x1), . . . , p(xM ))> ∈ CM

and p̂ is the vector of spherical Fourier coefficients

p̂ := (p̂kn)n=0,...,N,|k|≤n ∈ CdN .

Recently, fast approximate algorithms for the matrix times
vector multiplication with the nonequispaced spherical Fourier
matrix YN and its adjoint YN

>
have been proposed in

[4], [5]. The arithmetic complexity for the so called fast
spherical Fourier transform and its adjoint is O(N2 log2N +
M log2(1/ε)), where ε > 0 is a prescribed accuracy of the ap-
proximate algorithms. An implementation of these algorithms
in C, Matlab or Octave can be found on the Internet [6]. The
key idea is to first perform a change of basis such that the
polynomial p in (2) takes the form

p(ϑ, ϕ) =

N∑
n=−N

N∑
k=−N

cnkeikϑeinϕ (3)

of an ordinary two-dimensional Fourier sum with new complex
coefficients cnk . This basis exchange was first suggested in [7],
[8].

Then, the evaluation of the function p can be performed
using the fast Fourier transform for nonequispaced nodes
(NFFT; see for example [9], [10]). The efficient evaluation of
gradients and Hessians of spherical polynomials can be done
as well [11].

The coefficients p̂nk in (2) can be obtained from values of
the function p on a set of arbitrary nodes (ϑi, ϕi) provided that
a quadrature rule with weights wi and sufficient high degree
of exactness is available (see also [12], [13]). Then the sum

p̂nk =

M∑
i=1

wip (ϑi, ϕi)Y nk (ϑi, ϕi) (4)

can be efficiently realized by the adjoint nonequispaced spher-
ical Fourier transform.

The corresponding sampling problem is the computation of
Fourier coefficients p̂kn of a function from sampled values
at scattered nodes. A least squares approximation and an
interpolation of the given data is considered in [14] and based
on the fast spherical Fourier transforms.

III. SPHERICAL DESIGNS

Distributing points on the unit sphere S2 in the Euclidean
space R3 in some optimal sense is a challenging problem, cf.
[15]. The concept of spherical t-designs, which was introduced
in [16]. There a spherical t-design on S2 is defined as a finite
set XM = {x1, . . . ,xM} ⊂ S2 satisfying∫

S2

p(x)dµS2(x) =
4π

M

M∑
i=1

p(xi), for all p ∈ Πt(S2),

(5)
where µS2 is the surface measure on S2 and Πt(S2) is the
space of all spherical polynomials with degree at most t. Such
point sets provide equal weights quadrature formulae on the

sphere S2, which have many applications. In the Hilbert space
Πt(S2) with standard inner product the worst case quadrature
error for the point set XM is defined by

Et(XM ) := sup
p∈Πt(S2),‖p‖2≤1

∣∣∣∣∣
∫
S2

p(x)dµS2(x)− 4π

M

M∑
i=1

p(xi)

∣∣∣∣∣ .
For the general setting of quadrature errors in reproducing
kernel Hilbert spaces we refer to [17]. Of course, a spherical
t-design XM is a global minimum of the worst case quadrature
error with Et(XM ) = 0, cf. (5). In [18] the authors present
a variational characterization of spherical t-designs which
involves a squared quadrature error

At(x1,x2, . . . ,xM ) :=

1

M2

t∑
n=1

n∑
k=−n

∣∣∣∣∣
M∑
i=1

Y kn (xi)

∣∣∣∣∣
2

=

(
1

4π
Et(XM )

)2

.

In [11] the authors developed efficient algorithms for numeri-
cal spherical t-designs, i.e., we compute point sets XM , such
that At(x1,x2, . . . ,xM ) ≤ ε, where ε is a given accuracy,
say ε = 1e−10. There optimization algorithms on Riemannian
manifolds for attacking this highly nonlinear and nonconvex
minimization problem are considered. The proposed methods
make use of fast spherical Fourier transforms, which were
already successfully applied in [14], [19] for solving high
dimensional linear equation systems on the sphere. The com-
puted spherical t-designs are available from [20]. There we
also present results for Gauss-type quadrature results on S2,
which can be obtained by similar methods.

Fig. 1. Spherical 11-design with 70 nodes (left) and 48 nodes (right) on the
sphere which are exact for spherical polynomials up to degree 11. The color
represents the weights of the quadrature rule. Different point sets available
from [20], see also [21].

IV. FAST FOURIER EXTENSION

Approximating a function f(x) on the interval x ∈ [−1, 1]
by Fourier series

tN (x) =

N/2−1∑
k=−N/2

fkeπikx (6)

can be done using the fast Fourier transform (FFT) to compute
the coefficients

fk =
1

N

N−1∑
l=0

f(yl)e
−2πikl/N , (7)



with equispaced points yl = −1 + 2 l
N , l = 0, . . . , N − 1.

The convergence rate of tN (x) to f(x) is well known:

Theorem IV.1. ( [22, Theorem 7.2])
If a periodic function f is ν ≥ 1 times differentiable and
f (ν) is of bounded variation V on [0, 2π], then its degree N
trigonometric interpolant (Fourier series approximation) (6)
satisfies

||f − tN ||∞ ≤
2V

πνNν
. (8)

For functions f that are non-periodic a loss of smoothness
occurs in the implicit periodic extension intrinsic to Fourier
series and the Gibbs phenomenon occurs in the Fourier series
approximation. To recover this smoothness up to Cr-continuity
and thereby recovering the convergence rate, see Theorem
(IV.1), we extend the function f(x), x ∈ [−1, 1] to fext(x),
on a larger interval x ∈ [−1, 2T −1] for T > 0. This is known
as a Fourier extension, see [23] and the references therein.
The extended function is defined as

fext(x) =

{
f(x), x ∈ [−1, 1]

P (x), x ∈ [1, 2T − 1]
. (9)

In (9) P (x) is a polynomial of degree 2r + 1 computed via
two-point Taylor interpolation such that fext(x) ∈ Cr and
periodic on the larger interval. The formulas for Fourier series
and its coefficients change because now the extended function
fext(x) is used:

tN (x) =

N/2−1∑
k=−N/2

fkeπikx/T , (10)

fk =
1

N

N−1∑
l=0

fext(yl)e
−2πikl/N (11)

with yl = −1 + 2T l
N , l = 0, . . . , N − 1.

Lemma IV.2. The two-point Taylor interpolation can be
supplied with conditions on the endpoints of an interval
[m− q,m+ q] = [1, 2T − 1] in the form of function values or
derivatives: P (j)(m−q) = aj , P (j)(m+q) = bj , j = 0, . . . , r.
The resulting interpolating polynomial P (x) of degree 2r+ 1
will then satisfy the given conditions in x = m − q and
x = m+ q. With y = x−m

q = x−T
T−1 ,

P (x) =

r∑
j=0

B(r, j, y)qjaj +

r∑
j=0

B(r, j,−y)(−q)jbj

(12)

B(r, j, y) =

r−j∑
k=0

(
r + k
k

)
1

j!2r+12k
(1− y)r+1(1 + y)k+j .

Proof. See ( [24, Proposition 3.2]).

If the function f is known analytically, then in general
also the values f (r)(−1) and f (r)(1) are known and the
extended function fext can be computed straightforward using
the condition P (j)(−1) = f (j)(−1) and P (j)(1) = f (j)(1)

for j = 0, . . . , r in Lemma IV.2. This method is e.g. applied
in [24], [25]. In the following we suggest to compute the
derivatives f (r)(−1) and f (r)(1) using the following Cheby-
shev approximation. We denote the Chebyshev polynomials
Tj(x) := cos(j arccos(x)) and the approximating polynomial
is of the form

pNCheb
(x) =

NCheb∑
k=0

′ ′
ckTk(x), (13)

where the double prime indicates that the first and last element
of the sum (k = 0 and k = NCheb) should be divided by 2.
The coefficients ck used in sum (13) can be computed using
the discrete cosine transform (DCT)

ck =
2

NCheb

NCheb∑
j=0

′ ′
pNCheb

(
cos

(
jπ

NCheb

))
cos

(
jkπ

NCheb

)
,

k = 0, . . . , NCheb.
(14)

Lemma IV.3. Once the coefficients ck (14) for the Chebyshev
series (13) are computed, the coefficients dk of the derivative

p′NCheb
(x) =

NCheb−1∑
k=0

′ ′
dkTk(x) (15)

are found by the recurrence relation:

dk = dk+2 + 2(k + 1)ck+1, k = NCheb − 1, . . . , 0 (16)

with dN+1 = dN = 0.

Proof. See ( [26], Satz 6.2.9)

To get the rth order derivative, the coefficients dk of the
(r − 1)th derivative are used as ck in the recurrence relation
(16).

Algorithm 1 Fast Fourier Extension using 2-point Taylor
interpolation

Input: N , f(x), x ∈ [−1, 1], NCheb, r, T
1: Evaluate f(x) in NCheb Chebyshev points.
2: Compute Chebyshev coefficients ck (14) via DCT.
3: Compute Chebyshev coefficients in (15) for derivatives dk

via recurrence relation (16).
4: Evaluate Chebyshev series (13) and (15) in x = −1

and x = 1 to obtain interpolation values for the Taylor
polynomial (12).

5: Evaluate fext(x) in N equidistant points yl = −1+2T l
N ,

l = 0, . . . , N − 1.
6: Compute the coefficients of the Fourier series fk (11) via

the FFT.
Output: fk

Figure 2 shows on the left the extension of f(x) = x that
is C4-smooth and on the right the convergence rate of tN (x)
to f(x), which follows the theoretical convergence rate.
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Fig. 2. Example: Left: f(x) = x for x ∈ [−1, 1] in blue and P (x) for
x ∈ [1, 2T − 1] in red. Right: Maximum error ||f(x) − tN (x)||∞ on x ∈
[−1, 1]. In blue the observed maximum error (with oversampling of 10). In
black, dotted line the theoretical convergence rateO( 1

N5 ). Parameters: r = 4,
NCheb = 2, T = 2.

V. FOURIER EXTENSION ON THE SPHERE

There are two major drawbacks, to complicate for the direct
computation with (3).

1) Loss of periodicity in the θ-direction. In the ϕ-direction
the function is 2π-periodic and sufficiently smooth.

2) For naive grids in (θ, ϕ): oversampling near the singular-
ities located at the north and south pole.
This is due to the mapping of (0, ϕ) and (π, ϕ), ϕ ∈
[−π, π) to (0, 0, 1) and (0, 0,−1) respectively.

The first drawback, loss of periodicity in θ-direction can be
avoided with a Fourier extension along this direction.
A simple way of extending would be via the double Fourier
sphere method (DFS). The DFS extends f(θ, ϕ) as follows:

f̃(θ, ϕ) =


f(θ, ϕ), (θ, ϕ) ∈ [0, π]× [−π, 0]

f(θ, ϕ), (θ, ϕ) ∈ [0, π]× [0, π]

f(−θ, ϕ− π), (θ, ϕ) ∈ [−π, 0]× [0, π]

f(−θ, ϕ+ π), (θ, ϕ) ∈ [−π, 0]× [−π, 0]

.

(17)
This succeeds in recovering C1-smoothness using an interval
twice the width of the original interval. Using this extension
to compute Fourier coefficients directly will not converge fast.
In [27] the DFS extension and structure-preserving Gaussian
elimination are combined, which achieves faster convergence.
With the fast Fourier extension (FFE) it should be possible
to recover Cr-smoothness, for a chosen value for r. And
therefore also increase the convergence rate.
Using the idea of FFE a function f(θ, ϕ), (θ, ϕ) ∈ [0, π] ×
[−π, π], can be extended as fext(θ, ϕ), on an interval (θ, ϕ) ∈
[−b, π] × [−π, π], where b > 0 can be chosen. Note that
fext(θ, ϕ) is bi-periodic, it is again interesting to use the
Fourier series approximation, see also (3),

pN (θ, ϕ) =

M−1∑
k=0

N−1∑
n=0

fnk einθeikϕ (18)

as an approximation to fext(θ, ϕ) on [−b, π]×[−π, π] and thus
to f(θ, ϕ) on [0, π] × [−π, π]. For equispaced nodes in both
directions, θh = −b+(π+b)h/N , h = 0, . . . , N−1 and ϕl =
−π + 2πl/M , l = 0, . . . ,M − 1 the Fourier coefficients fnk

can be computed by applying the FFT to the matrix composed
of elements fext(θh, ϕl)

fnk =

M/2−1∑
l=−M/2

 N/2−1∑
h=−N/2

fext(θh, ϕl)e
inθh


︸ ︷︷ ︸

F l
ext

eikϕl

(19)
k = −M/2, . . . ,M/2− 1, n = −N/2, . . . , N/2− 1.

The FFT is done M times, for each value of ϕl on a vector
of size N (all values of θh), this results in M vectors F lext of
size (N × 1). Combining these columnwise in a matrix

Fext =
[
F 0
ext F 1

ext, . . . , FM−1ext

]
(20)

and then applying FFT to the rows of Fext results in
coefficients fnk .

Algorithm 2 shows the implementation of this. The input
NCheb is a vector of size M . Because for different values of
ϕ, Chebyshev approximation might require more modes to
approximate f(θ, ϕ) accurately.

Algorithm 2 Fast Fourier Extension using 2-point Taylor
interpolation applied on a sphere.

Input: N,M , f(θ, ϕ), (θ, ϕ) ∈ [0, π] × [−π, π], NCheb,
r

1: for l = [0 : M − 1] do
2: Evaluate f(θ, ϕl) in NCheb(l+ 1) Chebyshev points.
3: Compute Chebyshev coefficients via DCT.
4: Compute Chebyshev coefficients for derivatives of

Chebyshev series via recurrence relation. Then we obtain
an approximation for the derivatives of f .

5: Evaluate Chebyshev series in x = 0 and x = π
to obtain interpolation values for the two-point Taylor
interpolation.

6: Evaluate fext(θ, ϕl) in N equidistant points θh = −b+
(b+ π)h/N , h = 0, . . . , N − 1.

7: Apply the FFT to


fext(θ0, ϕl)
fext(θ1, ϕl)

...
fext(θN−1, ϕl)

 to obtain F lext.

8: end for
9: Combine all F lext in a matrix: Fext =[

F 0
ext F 1

ext . . . FM−1ext

]
.

10: Apply the FFT rowwise to Fext to obtain the 2D-Fourier
coefficients fnk .
Output: fnk (N ×M )-matrix

Consider the function f(θ, ϕ) = θ cosϕ sin θ cos θ. This
function can be written as f(θ, ϕ) = g(θ)h(ϕ) and therefore
it suffices to extend g(θ) independent of ϕ.
Figure 3 shows the convergence rate of pN (θ, ϕ) for both
methods of extending f(θ, ϕ) measured in the maximum



norm over the relevant interval (θ, ϕ) ∈ [0, π]× [−π, π]. Red
shows the DFS (without low-rank approximation), blue shows
FFE with r = 3 and green shows FFE with r = 5. All
observed convergence rates follow the theoretical convergence
rate based on the smoothness of the extended function as stated
in (IV.1).
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Fig. 3. Theoretical convergence rate 1
N(r+1) for r = 1, 3 and 5. Red:

observed convergence rate of DFS. Blue: observed convergence rate of FFE
using interpolation values up to the third derivative. Green: FFE using up to
fifth derivative. For Chebyshev approximation in FFE: Ncheb = 21.

Figure 4 shows the extended functions f̃(θ, 0) and gext(θ)
for g(θ) = θ sin θ cos θ. For the FFE r = 3 is used, the higher
smoothness is apparent from the figure.
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Fig. 4. The extended function f̃(θ, ϕ) for the DFS method (with ϕ = 0)
(left) and gext(θ) for FFE with r = 3 (right).

VI. FAST SPECTRAL METHOD ON THE SPHERE

In many applications, where nonlinear partial differential
equations have to be solved on the sphere, so-called Fourier
spectral techniques have proven to be very efficient and
accurate. These methods benefit from exponential convergence
rates for smooth solutions and from fast Fourier transforms.
Methods based on the spherical Fourier transform where
presented in [28, Section 3.3] and [29]. Methods based on
DFS were presented in [27], [30].
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