
Sparse high-dimensional FFT based on rank-1
lattice sampling

Daniel Potts∗ Toni Volkmer†

In this paper, we suggest approximate algorithms for the reconstruction of
sparse high-dimensional trigonometric polynomials, where the support in fre-
quency domain is unknown. Based on ideas of constructing rank-1 lattices
component-by-component, we adaptively construct the index set of frequencies be-
longing to the non-zero Fourier coefficients in a dimension incremental way. When
we restrict the search space in frequency domain to a full grid [−N,N]d ∩ Zd of
refinement N ∈ N and assume that the cardinality of the support of the trigono-
metric polynomial in frequency domain is bounded by the sparsity s ∈ N, our
method requires O(d s2N) samples and O(d s3 + d s2N log(sN)) arithmetic op-
erations in the case

√
N . s . Nd. Moreover, we discuss possibilities to reduce

the number of samples and arithmetic operations by applying methods from com-
pressed sensing and a version of Prony’s method. For the latter, the number of
samples is reduced to O(d s + dN) and the number of arithmetic operations is
O(d s3). Various numerical examples demonstrate the efficiency of the suggested
method.

Keywords and phrases : trigonometric polynomials, lattice rule, rank-1 lattice,
sparse fast Fourier transform, approximation of multivariate functions, FFT.

2000 AMS Mathematics Subject Classification : 65T, 65T40, 42A10.

∗Technische Universität Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany
potts@mathematik.tu-chemnitz.de, Phone:+49-371-531-32150, Fax:+49-371-531-832150

†Technische Universität Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany
toni.volkmer@mathematik.tu-chemnitz.de, Phone:+49-371-531-39999, Fax:+49-371-531-839999

1

1 Introduction

We consider the approximation of high-dimensional multivariate periodic functions f ∈
L1(Td) by trigonometric polynomials p ∈ ΠI := span{e2πik·◦ : k ∈ I} with frequencies sup-
ported on an unknown index set I ⊂ Zd of finite cardinality,

p(x) =
∑
k∈I

p̂k e2πik·x, p̂k ∈ C, (1.1)

where Td ' [0, 1)d is the d-dimensional torus. If such a function f fulfills certain smoothness
conditions, characterized by the decay of its Fourier coefficients f̂k :=

∫
Td f(x)e−2πik·xdx,

k ∈ Zd, one theoretical possibility for a good approximation by a trigonometric polynomial
p ∈ ΠI is using the Fourier partial sum SIf :=

∑
k∈I f̂k e2πik·◦ ∈ ΠI of f . In this case, error

estimates are well-known.
A more practical approach than using the Fourier partial sum SIf of the exact Fourier

coefficients f̂k, k ∈ I, of a function f is to construct a trigonometric polynomial p ∈ ΠI

by approximately computing the Fourier coefficients f̂k of f from sampling values using a
suitable sampling scheme. In higher dimensions (e.g. d > 4), (generalized) sparse grids
[46, 31, 12, 14, 13] are often used, where the corresponding frequency index sets I are (gen-
eralized) hyperbolic crosses. However, the discrete/fast Fourier transform [1, 15, 13] for the
approximate computation of the Fourier coefficients f̂k, k ∈ I, of f from sparse grid samples
may be numerically unstable, cf. [26]. Recently in [29, 28], another sampling scheme was
considered, so-called reconstructing rank-1 lattices, which allow for the fast, constructive and
perfectly stable approximate reconstruction of the Fourier coefficients f̂k, k ∈ I, of f , where
I ⊂ Zd, |I| <∞, is an arbitrary frequency index set. Lattice rules have extensively been in-
vestigated for the integration of functions of many variables for a long time, cf. e.g., [44, 6, 7]
and the extensive reference list therein. Especially, rank-1 lattice rules have also been stud-
ied for the approximation of multivariate functions of suitable smoothness and similar error
estimates are obtained like when sampling at sparse grid nodes, cf. [45, 35, 33, 36]. Using the
ideas of a component-by-component construction of lattice rules for the numerical integration
of trigonometric polynomials from [6], a generalized component-by-component construction
method for reconstructing rank-1 lattices was presented in [22, 25].

For both sampling schemes, the sparse grids and the rank-1 lattices, a suitable frequency
index set I has to be given in order to obtain a good approximation of the function f or a
reasonable function class for f has to be known. In that case, very precise error estimates
can be shown, see [13, 29]. In this paper, we assume that we do not have (exact) knowledge
of a suitable frequency index set I and that we only know a relatively large superset Γ ⊃ I.
Possible applications for our approach may be pseudo-spectral methods for solving partial
differential equations as it was considered in the case of sparse grids discretization in [10, 11,
43].

Even if we do not consider a general function f but a trigonometric polynomial p ∈ ΠI ,
reconstructing the non-zero Fourier coefficients 0 6= p̂k ∈ C of p from sampling values becomes
very hard in higher dimensions d if the frequency index set I is very large. In the following,
we consider the recovery of all the frequencies k ∈ I belonging to non-zero Fourier coefficients
0 6= p̂k ∈ C as well as the Fourier coefficients p̂k ∈ C themselves from sampling values of a
high-dimensional trigonometric polynomial p in (1.1). We assume that the (unknown) support
supp p̂ := {k ∈ I : p̂k 6= 0} ⊂ Zd of p (in frequency domain) lies within a superset I = Γ of
finite cardinality, supp p̂ ⊆ Γ, and is “sparse” in some sense. In this setting, determining

2

the unknown support supp p̂ and the Fourier coefficients p̂k, k ∈ supp p̂, of the trigonometric
polynomial p is equivalent to solving the sparse recovery problem

‖ ˜̂p‖0 = |{k ∈ Γ : ˜̂pk 6= 0}|
˜̂p→ min subject to A ˜̂p = p, (1.2)

for the under-determined case |Γ| > |X |, where X := {x0, . . . ,xL−1} is the set of sampling
nodes, |X | = L, p := (p(x`))x`∈X is the vector of sampling values, A :=

(
e2πik·x`

)
x`∈X , k∈Γ

is

the Fourier matrix and ˜̂p := (˜̂pk)k∈Γ is the vector of (computed) Fourier coefficients.
In the case where the search space Γ (in frequency domain) is the full grid ĜdN := {k ∈

Zd : ‖k‖∞ ≤ N}, the straighforward approach would be using a d-dimensional discrete Fourier
transform (DFT) of length (2N + 1, . . . , 2N + 1)> ∈ Nd to obtain Fourier coefficients ˜̂pk, k ∈
ĜdN , which can be computed efficiently by the fast Fourier transform (FFT) in O(Nd logN)
arithmetic operations. The frequency index set I = supp p̂ is then obtained by I := {k ∈
ĜdN : ˜̂pk 6= 0} and the (non-zero) Fourier coefficients of p are given by p̂k := ˜̂pk, k ∈ I.

Clearly, this approach suffers severely from the curse of dimensions since |ĜdN | = (2N + 1)d

many sampling values are used and |ĜdN | = (2N + 1)d many Fourier coefficients ˜̂pk, k ∈ ĜdN ,
are computed as an intermediate result.

One alternate approach to determine the unknown support supp p̂ and the Fourier coef-
ficients p̂k, k ∈ supp p̂, from a smaller amount of samples is applying random sampling in
compressed sensing [8, 2, 9]. Provided a so-called restricted isometry condition is fulfilled, the
sparse recovery problem can be solved efficiently using `1 minimization, cf. [3, 40, 41, 42, 37,
32]. The restricted isometry condition is fulfilled with probability at least 1−η if the number
of samples L ≥ C |supp p̂| log4(|Γ|) log(1/η), where C is an absolute constant independent of
the dimension d. The arithmetic complexity is then O(L |Γ|), e.g., see [27, Sec. 3.4] and the
references therein, and hence impractical for large search spaces Γ, e.g., Γ = ĜdN .

Another possibility is using the so-called sparse fast Fourier transform, cf. [17, 16, 19, 18].
In [16], an algorithm is presented for the one-dimensional case and Γ = Ĝ1

N , which allows to
determine the (unknown) support supp p̂ and the Fourier coefficients p̂k fromO(|supp p̂| logN)
samples with an arithmetic complexity of O(|supp p̂| logN), as well as a second algo-
rithm, which allows the s-sparse `2 best approximation of the Fourier coefficients of p from
O(s log(N) log(N/s)) samples with an arithmetic complexity of O(s log(N) log(N/s)). In
[19], another variant was discussed, where the number of samples is O(s logN) (log logN)O(1)

and the arithmetic complexity is O(s log2N) (log logN)O(1). Recently in [18], a result was
presented for the multivariate case with Γ = ĜdN , where the number of required samples is

O(s logN) for constant d and the arithmetic complexity is O(Nd logO(1)N). In general the
exact constants, especially the dependence on d, are unknown due to missing implementations.
For instance the sample complexity O(s logN) of the last mentioned algorithm contains a
factor of dO(d), see [18, Sec. 4].

Moreover, a deterministic sparse Fourier transform algorithm, using the Chinese Remainder
Theorem, was presented in [20] for the univariate case and in [21] for the multivariate case,
which takes O(d4s2 log4(dN)) samples and arithmetic operations. This means there is neither
a exponential/super-exponential dependency on the dimension d ∈ N nor a dependency on
a failure probability in the asymptotics of the number of samples and arithmetic operations
for this method. Besides this deterministic algorithm, there also exists a randomized version
which only requires O(d4s log4(dN)) samples and arithmetic operations.

Recently, another one-dimensional sparse Fourier transform algorithm, which is based on
a multiscale approach, was presented in [5] as an extension of the method [34]. Their algo-

3

rithm is able to handle (additive) noise and requires O(|supp p̂| log |supp p̂| log(N/|supp p̂|))
on average.

For a given trigonometric polynomial p, the main idea of this paper is a dimension in-
cremental construction of the frequency index set supp p̂ of the non-zero Fourier coefficients
0 6= p̂k of p. This idea is motivated by the component-by-component construction of recon-
structing rank-1 lattices. We stress the fact that our method reconstructs first the (projected)
Fourier coefficients p̂k and selects then the index set I, whereas all the methods mentioned
above determine first the index set I and then the Fourier coefficients p̂k. Since we use recon-
structing rank-1 lattices for the sampling and one-dimensional FFTs for the computation of
the Fourier coefficients p̂k, the numerical computations are stable. Assuming Γ ⊆ ĜdN , we re-
quire O(d s2N) many samples and O(d s3 + d s2N log(sN)) arithmetic operations in the case√
N . s . Nd as well as O(dN2) many samples and O(dN2 logN) arithmetic operations in

the case s .
√
N , where the asymptotics have no additional dependence on the dimension d.

Furthermore, we apply `1 minimization with sub-sampling on rank-1 lattices and sampling
on generated sets [23] using the SPGL1 algorithm [48, 47], which results in a reduction of
the number of samples to only O(d s log4(sN) + dN) for s ≥ |supp p̂|. When using the `1
minimization with sampling on generated sets, we obtain a method with an overall arithmetic
complexity of O

(
dR sN log(sN) + dR s log5(sN)

)
, where R ∈ N is the number of iterations

for SPGL1. Additionally, we use a version of Prony’s method [39] with sub-sampling on
rank-1 lattices, and we obtain an algorithm which only requires O(d s + dN) many samples
for s ≥ supp p̂ as well as O(d s3) and O(d sN + dN logN) arithmetic operations in the case√
N . s . Nd and s .

√
N , respectively. In numerical examples, we verify the approach

for the reconstruction of sparse high-dimensional trigonometric polynomials with frequencies
supported within a subset of the full grid Γ = ĜdN from samples and also use it for the s-
sparse `2 approximation of the Fourier coefficients of a high-dimensional 1-periodic function
f : Td → C.

The remaining sections of this paper are structured as follows. In Section 2, we discuss
the reconstruction of high-dimensional trigonometric polynomials with frequencies supported
within a subset of the search space Γ from samples. For this, we briefly explain the fast, exact
and perfectly stable reconstruction of trigonometric polynomials with frequencies supported
on a known index I with I ⊂ Γ using sampling values at rank-1 lattice nodes in Section 2.1.
Using these results, we introduce a method for detecting the frequencies of a trigonometric
polynomial belonging to non-zero Fourier coefficients by a dimension incremental method in
Section 2.2.1. In Section 2.2.2, we discuss conditions when the frequency detection succeeds
and scenarios where it may fail. The number of samples and arithmetic complexity of our
approach is given in Section 2.2.3 for the case where the search space Γ is a full grid ĜdN . As a
possibility to reduce the number of samples and the arithmetic complexity, we briefly discuss
using `1 minimization with sub-sampling on rank-1 lattices and generated sets for the dimen-
sion incremental reconstruction of trigonometric polynomials from samples in Section 2.3.
Moreover, we apply Prony’s method with sub-sampling on rank-1 lattices in Section 2.4 in
order to reduce the number of samples. We verify the presented methods using numerical
tests in Section 3 and particularly in Section 3.3, we approximately reconstruct the largest
Fourier coefficients of a 10-dimensional periodic function of dominating mixed smoothness,
which has infinitely many non-zero Fourier coefficients. Moreover, we test the robustness
to noise in Section 3.4, where we apply the method from Section 2.2.1 to samples of sparse
trigonometric polynomials perturbed by white Gaussian noise. Finally, we summarize the
results of this paper in Section 4.

4

2 Reconstruction of trigonometric polynomials

2.1 Reconstructing rank-1 lattices for known frequency index sets I

As discussed in [25], for a given frequency index set I ⊂ Zd of finite cardinality, we are able to
exactly reconstruct the Fourier coefficients p̂k, k ∈ I, of an arbitrarily chosen trigonometric
polynomial p(x) :=

∑
k∈I p̂k e2πik·x with frequencies supported on I from sampling values

p(xj). As sampling nodes xj , j = 0, . . . ,M−1, we use the nodes of a rank-1 lattice Λ(z,M) :=
{ jM z mod 1 : j = 0, . . . ,M − 1} with generating vector z ∈ Zd of size M ∈ N, i.e., we set the

sampling nodes xj := j
M z mod 1, j = 0, . . . ,M − 1. Formally, the Fourier coefficients p̂k ∈ C

of the trigonometric polynomial p are given by the Fourier transform of p,

p̂k :=

∫
Td
p(x) e−2πik·xdx, k ∈ I,

and we approximate these integrals by the (rank-1) lattice rule

1

M

M−1∑
j=0

p(xj)e
−2πik·xj =

1

M

M−1∑
j=0

p

(
j

M
z

)
e−2πijk·z/M =: ˜̂pk.

Now, we ask for the exactness of this cubature formula, i.e., when is p̂k = ˜̂pk ∀k ∈ I. Since
we have

˜̂pk =
1

M

M−1∑
j=0

∑
k′∈I

p̂k′ e
2πijk′·z/Me−2πijk·z/M =

∑
k′∈I

p̂k′
1

M

M−1∑
j=0

e2πij(k′−k)·z/M ,

we need the condition

1

M

M−1∑
j=0

e2πij(k′−k)·z/M =

{
1 for k = k′

0 for k 6= k′,k,k′ ∈ I,

to be fulfilled. This is the case if and only if k ·z 6≡ k′ ·z (mod M) ∀k,k′ ∈ I,k 6= k′, see [25,
Section 2]. Introducing the difference set D(I) for the index set I, D(I) := {k−k′ : k,k′ ∈ I},
we can rewrite the above conditions as

m · z 6≡ 0 (mod M) ∀m ∈ D(I) \ {0}. (2.1)

A rank-1 lattice Λ(z,M) which fulfills the reconstruction property (2.1) for a given frequency
index set I will be called reconstructing rank-1 lattice Λ(z,M, I) for I.

We remark that an arbitrarily chosen trigonometric polynomial p with frequencies sup-
ported on the index set I can be quickly evaluated at all nodes of an arbitrary rank-1 lat-
tice Λ(z,M) in O(M logM + d|I|) arithmetic operations using a single one-dimensional fast
Fourier transform, cf. [35]. Moreover, the Fourier coefficients p̂k, k ∈ I, of p can be exactly
reconstructed from sampling values of p at the nodes xj := j

M z mod 1, j = 0, . . . ,M − 1, of
a reconstructing rank-1 lattice Λ(z,M, I) for I in O(M logM + d|I|) arithmetic operations
as discussed in [25]. For this, we compute

p̂` :=
1

M

M−1∑
j=0

p

(
j

M
z mod 1

)
e−2πij`/M , ` = 0, . . . ,M − 1,

using a single one-dimensional inverse fast Fourier transform of length M and we set p̂k :=
p̂k·z mod M for k ∈ I, i.e., we additionally compute the scalar products k · z for k ∈ I. These
two computation steps will be called inverse rank-1 lattice FFT in the following.

5

Theorem 2.1. For a given frequency index set I ⊂ Zd, 1 ≤ |I| < ∞, and any prime rank-1
lattice size

M ≥ max

{
|D(I)|+ 3

2
,max{2‖k‖∞ + 1: k ∈ I}

}
, (2.2)

there always exists a generating vector z ∈ Zd such that Λ(z,M) = Λ(z,M, I) is a recon-
structing rank-1 lattice for I. Moreover, there always exist a prime rank-1 lattice size M ,

|I| ≤M ≤ max

{
2

3
(|D(I)|+ 7),max{3‖k‖∞ : k ∈ I}

}
(2.3)

≤ max

{
2

3
(|I|2 − |I|+ 8),max{3‖k‖∞ : k ∈ I}

}
,

and a generating vector z ∈ Zd such that Λ(z,M) = Λ(z,M, I) is a reconstructing rank-1
lattice for I.
For such a suitable rank-1 lattice size M , the generating vector z ∈ Zd can be constructed
using a component-by-component approach, see [25], and the construction requires no more
than 3 d |I|M arithmetic operations.

Proof. The inequality (2.3) is a consequence of [25, Corollary 1] and [24, inequality (3.8)].
The lower bound for the rank-1 lattice size M is a consequence from [25, Theorem 1 and
Lemma 2].
When searching for the component zt, t ∈ {1, . . . , d}, of the generating vector z :=
(z1, . . . , zd)

> in the component-by-component step t, the tests for the reconstruction property
(2.1) for a given component zt take no more than |I| multiplications, |I| additions as well
as |I| modulo operations, and this yields 3 |I| many arithmetic operations. Due to this and
since each component zt, t ∈ {1, . . . , d}, of the generating vector z can only have M different
values modulo M , we obtain that the construction requires no more than 3 d |I|M arithmetic
operations in total.

The following Theorem is stated and proven in [25].

Theorem 2.2. Let a dimension d ∈ N, d ≥ 2, and a frequency index set I ⊂ Zd of finite
cardinality |I| ≥ 2 be given. We assume that Λ(z,M) = Λ(z,M, I(1,...,d−1)) with generating
vector z := (z1, . . . , zd−1)> is a reconstructing rank-1 lattice for the frequency index set
I(1,...,d−1) := {(ks)d−1

s=1 : k ∈ I}. Then, the rank-1 lattice Λ((z1, . . . , zd−1,M)>,MS) with

S := min {m ∈ N : |{kd mod m : k ∈ I}| = |{kd : k ∈ I}|}

is a reconstructing rank-1 lattice for I.

Corollary 2.3. Let a frequency set I ′ ⊂ ĜdN , |I ′| = s ≥ 2, be given. Furthermore, let

I ′′ ⊂ Ĝ1
N be another non-empty frequency index set. Then, there exists a reconstructing

rank-1 lattice for I ′ × I ′′ of size M ≤ max{2s2, 3N} 2(N + 1).

Proof. Due to (2.3) in Theorem 2.1, there exists a reconstructing rank-1 lattice Λ(z,M ′, I ′)
for I ′ with generating vector z := (z1, . . . , zd−1)> and size

M ′ ≤ max

{
2

3
(s2 − s+ 8), 3N

}
≤ max{2s2, 3N}.

6

We apply Theorem 2.2 with I := I ′ × I ′′. Consequently, I(1,...,d−1) := {(ks)d−1
s=1 : k ∈ I} = I ′

and {kd : k ∈ I} = I ′′ in Theorem 2.2. Since we have S ≤ max(I ′)−min(I ′) + 1 ≤ 2(N + 1),
the rank-1 lattice Λ((z1, . . . , zd−1,M

′)>,M ′S) is a reconstructing rank-1 lattice for I = I ′×I ′′
of size M ′S ≤ max{2s2, 3N} 2(N + 1).

2.2 Dimension incremental reconstruction in the multidimensional case d ≥ 2

In this subsection, we consider multi-dimensional trigonometric polynomials p : Td → C with
frequencies supported on a subset I of the index set Γ ⊂ Zd, |Γ| < ∞, and we are going to
determine the support supp p̂ of a trigonometric polynomial p in frequency domain as well
as the non-zero Fourier coefficients p̂k, k ∈ supp p̂, of p from sampling values. For this, we
repeatedly use reconstructing rank-1 lattices introduced in Section 2.1 as sampling nodes in
order to find the support supp p̂ of the trigonometric polynomial p in frequency domain from
sampling values in a dimension incremental way. We remark that if Γ is a small subset of the
full grid ĜdN , |Γ| � |ĜdN |, and this fact is known, then this knowledge can be used to reduce
the number of samples and the arithmetic complexity of our method which is described in
the following sub-section.

2.2.1 The method

Recently, a dimension incremental method for anharmonic trigonometric polynomials based
on Prony’s method was presented in [38]. Here, we proceed similarly. We denote the projection
of a frequency k := (k1, . . . , kd)

> ∈ Zd to the components i := (i1, . . . , im) ∈ {1, . . . , d}m by
Pi(k) := (ki1 , . . . , kim)> ∈ Zm. Correspondingly, we define the projection of a frequency index
set I ⊂ Zd to the components i by Pi(I) := {(ki1 , . . . , kim) : k ∈ I}. Using this notation, the
general approach is the following:

1. Determine an index set I(1) ⊆ P1(Γ) which should be identical to the projection
P1(supp p̂) or contain this projection, I(1) ⊇ P1(supp p̂). If Γ = ĜdN , then P1(Γ) = Ĝ1

N

and I(1) ⊆ Ĝ1
N .

2. For dimension increment step t = 2, . . . , d

a) Determine an index set I(t) ⊆ Pt(Γ) which should be identical to the projection
Pt(supp p̂) or contain this projection, I(t) ⊇ Pt(supp p̂). If Γ = ĜdN , then Pt(Γ) =

Ĝ1
N and I(t) ⊆ Ĝ1

N .

b) Determine a suitable sampling set X (1,...,t) ⊂ Td, |X (1,...,t)| � |Γ|, which allows
to determine those frequencies from the index set (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ)
belonging to non-zero Fourier coefficients p̂k.

c) Sample the trigonometric polynomial p along the nodes of the sampling set X (1,...,t).

d) Compute the Fourier coefficients ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ).

e) Determine the non-zero Fourier coefficients from ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t)) ∩
P(1,...,t)(Γ), and obtain the index set I(1,...,t) of detected frequencies. Alternatively,

determine those Fourier coefficients from ˜̂p(1,...,t),k which are larger than a certain

threshold. The I(1,...,t) index set should be equal to the projection P(1,...,t)(supp p̂).

3. Use the index set I(1,...,d) and the computed Fourier coefficients ˜̂p(1,...,d),k, k ∈ (I(1,...,d),
as an approximation for the support supp p̂ and the Fourier coefficients p̂k, k ∈ supp p̂.

7

There exist different methods for the realization of the steps 2b and 2d. In the following,
we present two possible methods in detail as Algorithm 1 and 2.

Algorithm 1

Algorithm 1 is a realization for this method, which uses one-dimensional inverse fast Fourier
transforms (1d iFFTs). Besides the search space Γ ⊃ supp p̂ and the trigonometric polynomial
p (as black box), this algorithm has three additional input parameters, which are the relative
threshold θ ∈ (0, 1), the sparsity s ∈ N and the number of detection iterations r ∈ N. The
relative threshold parameter θ ∈ (0, 1) is used to determine the “non-zero” Fourier coefficients
from ˜̂p1,k1 for k1 ∈ P1(Γ) in step 1, ˜̂pt,kt for kt ∈ Pt(Γ) in step 2a, t ∈ {2, . . . , d}, as well as
˜̂p(1,...,t),k for k ∈ (I(1,...,t−1)×I(t))∩P(1,...,t)(Γ) in step 2e. Since numerical algorithms are used

to compute the Fourier coefficients ˜̂p(1,...,t),k, the actual computed values of “zero” Fourier
coefficients may be larger than zero but are smaller than a certain (relative) threshold. The
sparsity input parameter s ∈ N may be used to truncate the number of detected frequencies
and corresponding Fourier coefficients. Last, the input parameter r ∈ N for the number of
detection iterations controls how many times the sampling and frequency detection in the
step 2 is performed for each dimension increment step t ∈ {2, . . . , d}. Repetitions in these
computations r times may be necessary to ensure a successful exact reconstruction of the
trigonometric polynomial p, as we describe in this section and in Section 2.2.2.

First in step 1, we determine the index set of detected frequencies for the first component
I(1) ⊂ P1(supp p̂). For this, we set the last d − 1 components in x := (x1, . . . , xd)

> to fixed
randomly chosen values x′2, . . . , x

′
d ∈ T. We sample the trigonometric polynomial p at the

nodes of the set X (1) := {(`
L1
, x′2, . . . , x

′
d)
> : ` = 0, . . . , L1 − 1}, where L1 := max(P1(Γ)) −

min(P1(Γ)) + 1, and we compute one-dimensional projected Fourier coefficients for the first
component

˜̂p1,k1 :=
1

L1

L1−1∑
`=0

p

((
`

L1
, x′2, . . . , x

′
d

)>)
e
−2πi

`k1
L1 , k1 ∈ P1(Γ),

using a 1d iFFT of length L1. Due to the definition of the trigonometric polynomial p, we
obtain

˜̂p1,k1 =
1

L1

L1−1∑
`=0

∑
h:=(h1,...,hd)>∈supp p̂

p̂h e2πi(h2x′2+...+hdx
′
d) e

2πi
(h1−k1)`

L1

=
∑

h∈supp p̂

p̂h e2πi(h2x′2+...+hdx
′
d) 1

L1

L1−1∑
`=0

e
2πi

(h1−k1)`
L1

=
∑

(h2,...,hd)∈P(2,...,d)(Γ)

(k1,h2,...,hd)>∈supp p̂

p̂(k1,h2,...,hd)> e2πi(h2x′2+...+hdx
′
d)

for k1 ∈ P1(Γ). We define the index set of detected frequencies for the first component
I(1) := {k1 ∈ P1(Γ) : ˜̂p1,k1 6= 0}. In practice, we do not test if the Fourier coefficients
˜̂p1,k1 6= 0, but use a threshold θ ∈ (0, 1) relative to the largest absolute value of the computed
Fourier coefficients ˜̂p1,k1 in numerical computations and we restrict the number of detected

8

Algorithm 1 Reconstruction of a trigonometric polynomial p from sampling values.

Input: Γ ⊂ Zd search space in frequency domain, superset for supp p̂
p(◦) trigonometric polynomial p as black box (function handle)
θ ∈ (0, 1) relative threshold
s ∈ N sparsity
r ∈ N number of detection iterations

(step 1)
Set L1 := max(P1(Γ))−min(P1(Γ)) + 1, I(1) := ∅.
for i := 1, . . . , r do

Choose x′2, . . . , x
′
d ∈ T uniformly at random.

Compute ˜̂p1,k1 := 1
L1

∑L1−1
`=0 p

(
(`
L1
, x′2, . . . , x

′
d)
>
)

e
−2πi

`k1
L1 , k1 ∈ P1(Γ), with 1d iFFT.

I(1) := I(1) ∪ {k1 ∈ P1(Γ) : (up to) s-largest values | ˜̂p1,k1 | ≥ θ ·maxk̃1∈P1(Γ) | ˜̂p1,k̃1
|}

end for i
Determine S1 := min

{
m ∈ N : |{k1 mod m : k1 ∈ I(1)}| = |I(1)|

}
. Set M1 := S1, z1 := 1.

(step 2) for t := 2, . . . , d do
(step 2a)

Set Lt := max(Pt(Γ))−min(Pt(Γ)) + 1, I(t) := ∅.
for i := 1, . . . , r do

Choose x′1, . . . , x
′
t−1, x

′
t+1, . . . , x

′
d ∈ T uniformly at random.

˜̂pt,kt :=
Lt−1∑̀

=0

p(x′1, . . . , x
′
t−1,

`
Lt
, x′t+1, . . . , x

′
d)
>e−2πi`kt/Lt , kt ∈ Pt(Γ), using 1d iFFT.

Set I(t) := I(t) ∪ {kt ∈ Pt(Γ) : (up to) s-largest values | ˜̂pt,kt | ≥ θ ·maxk̃t∈Pt(Γ) | ˜̂pt,k̃t |}.
end for i

(step 2b) Set r̃ :=

{
r for t < d,

1 for t = d.

Determine St := min
{
m ∈ N : |{kt mod m : kt ∈ I(t)}| = |I(t)|

}
. Set I(1,...,t) := ∅.

Search for reconstructing rank-1 lattice Λ(z,Mt, (I
(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ)), z ∈ Zt:

Set initial Mt := Mt−1 · St, cf. Theorem 2.2.
Search for zt ∈ {0, . . . ,Mt − 1} such that reconstruction property (2.1) is fulfilled.
Reduce rank-1 lattice size Mt using [24, Algorithm 3.5].

for i := 1, . . . , r̃ do
Choose x′t+1, . . . , x

′
d ∈ T uniformly at random.

Set X (1,...,t) := {xj := (j
Mt
z1, . . . ,

j
Mt
zt, x

′
t+1, . . . , x

′
d)
> mod 1 : j = 0, . . . ,Mt − 1}.

(step 2c) Sample p along the nodes of the sampling set X (1,...,t).
(step 2d)

Compute ˜̂p(1,...,t),k := 1
Mt

∑Mt−1
j=0 p(xj) e−2πik·xj for k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ)

with inverse rank-1 lattice FFT based on a single 1d iFFT, see Section 2.1.
(step 2e)

absolute threshold := θ ·maxk̃∈(I(1,...,t−1)×I(t))∩P(1,...,t)(Γ) | ˜̂p(1,...,t),k̃|.
Set I(1,...,t) := I(1,...,t) ∪ {k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) :

(up to) s-largest values | ˜̂p(1,...,t),k| ≥ absolute threshold}.
end for i

9

Algorithm 1 continued.

(additional step 2f)
If t < d, search for reconstructing rank-1 lattice Λ(z,Mt, I

(1,...,t)):
Search for new zt ∈ {0, . . . ,Mt − 1} such that reconstruction property (2.1) is fulfilled.
Reduce rank-1 lattice size Mt.

end for t

(step 3) Set I := I(1,...,d) and ˜̂p :=
(

˜̂p(1,...,d),k

)
k∈I

.

Output: I ⊂ Zd index set of detected frequencies
˜̂p ∈ C|I| corresponding Fourier coefficients

frequencies to the sparsity s, i.e.,

I(1) := I(1) ∪ {k1 ∈ P1(Γ) : (up to) s-largest values | ˜̂p1,k1 | ≥ θ · max
k̃1∈P1(Γ)

| ˜̂p1,k̃1
|}. (2.4)

Since this frequency detection may fail, see Section 2.2.2 for details, we repeatedly perform
the sampling, the computation of the projected Fourier coefficients ˜̂p1,k1 , k1 ∈ P1(Γ), and the
determination of the index set I(1) in totally r ∈ N detection iterations with different randomly
chosen values x′2, . . . , x

′
d ∈ T. Then, we use the union of the obtained index sets I(1). We

determine S1 := min
{
m ∈ N : |{k1 mod m : k1 ∈ I(1)}| = |I(1)|

}
and obtain a reconstructing

rank-1 lattice Λ(z1,M1, I
(1)) for the index set of detected frequencies for the first component

I(1) by setting z1 := 1 and M1 := S1.
Then, we continue with the dimension increment step 2 for t = 2, . . . , d. In step 2a, we

randomly choose values x′1, . . . , x
′
t−1, x

′
t+1, . . . , x

′
d ∈ T, we determine Lt := max(Pt(Γ)) −

min(Pt(Γ)) + 1 and we compute the one-dimensional projected Fourier coefficients for the
t-th component

˜̂pt,kt :=
1

Lt

Lt−1∑
`=0

p

((
x′1, x

′
t−1,

`

Lt
, x′t+1, . . . , x

′
d

)>)
e
−2πi

`kt
Lt (2.5)

=
∑

(h1,...,ht−1,ht+1,...,hd)>∈P(1,...,t−1,t+1,...,d)(Γ)

(h1,...,ht−1,kt,ht+1,...,hd)>∈supp p̂

p̂(h1,...,ht−1,kt,ht+1,...,hd)>

· e2πi(h1x′1+...+ht−1x′t−1+ht+1x′t+1+...+hdx
′
d) (2.6)

for kt ∈ Pt(Γ), using a 1d iFFT of length Lt. Similarly as in step 1, we ob-
tain r ∈ N many index sets of detected frequencies for the t-th component {kt ∈
Pt(Γ) : (up to) s-largest values | ˜̂pt,kt | ≥ θ · maxk̃t∈Pt(Γ) | ˜̂pt,k̃t |} in r ∈ N detection iterations

with different randomly chosen values x′1, . . . , x
′
t−1, . . . , x

′
t+1, . . . , x

′
d ∈ T and we set the union

of these sets as the index set I(t).
Afterwards in step 2b, we determine St := min

{
m ∈ N : |{kt mod m : kt ∈ I(t)}| = |I(t)|

}
and

we search for a reconstructing rank-1 lattice for the index set (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ).
For this, the initial rank-1 lattice size Mt is set to Mt−1 · St, cf. Theorem 2.2. The
components z1, . . . , zt−1 of the generating vector z from the previous dimension increment
steps 1, . . . , t − 1 are re-used and only one component zt ∈ {0, . . . ,Mt − 1} is searched
for, such that reconstruction property (2.1) is fulfilled. Next, the rank-1 lattice size

10

Mt is reduced using [24, Algorithm 3.5]. We set the sampling set X (1,...,t) := {xj :=
(j
Mt
z1, . . . ,

j
Mt
zt, x

′
t+1, . . . , x

′
d)
> mod 1 : j = 0, . . . ,Mt − 1} containing the sampling nodes xj

with fixed randomly chosen values x′t+1, . . . , x
′
d ∈ T. Then, we sample the trigonometric poly-

nomial p at these nodes xj in step 2c. Next, we compute t-dimensional projected Fourier
coefficients for the first t components

˜̂p(1,...,t),k :=
1

Mt

Mt−1∑
j=0

p(xj) e
−2πi jk·z

Mt (2.7)

for k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) in step 2d using an inverse rank-1 lattice FFTs, see
Section 2.1. This means, we use only a single 1d iFFT. Note that we have

˜̂p(1,...,t),k =
∑

h∈supp p̂

(
p̂h e2πi(ht+1,...,hd)>·(x′t+1,...,x

′
d)>
) 1

Mt

Mt−1∑
j=0

e
2πi

j(h−k)·z
Mt


=

∑
h∈supp p̂

(h−k)·z≡0 (mod Mt)

p̂h e2πi(ht+1,...,hd)>·(x′t+1,...,x
′
d)> . (2.8)

If the conditions I(1,...,t−1) = P(1,...,t−1)(supp p̂) and I(t) = Pt(supp p̂) are fulfilled, then

˜̂p(1,...,t),k =


∑

(ht+1,...,hd)>∈P(t+1,...,d)(supp p̂)

(k1,...,kt,ht+1,...,hd)>∈supp p̂

p̂(k1,...,kt,ht+1,...,hd)> e2πi(ht+1x′t+1+...+hdx
′
d), t < d,

p̂k, t = d,

for k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(supp p̂) and ˜̂p(1,...,t),k = 0 for k ∈ (I(1,...,t−1) × I(t)) ∩(
P(1,...,t)(Γ) \ P(1,...,t)(supp p̂)

)
.

In step 2e, we determine the index set of detected frequencies for the first t
components Ĩ(1,...,t) := {k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) : | ˜̂p(1,...,t),k| ≥ θ ·
maxk̃∈(I(1,...,t−1)×I(t))∩P(1,...,t)(Γ) | ˜̂p(1,...,t),k̃|}. If the cardinality |Ĩ(1,...,t)| is larger than the spar-

sity parameter s, s ≥ |supp p̂|, we restrict the index set in Ĩ(1,...,t) to frequencies k belonging
to the s-largest values | ˜̂p(1,...,t),k|. We repeatedly perform the sampling, the computation of

the projected Fourier coefficients and the determination of the index sets Ĩ(1,...,t) in total for
r ∈ N detection iterations if t < d and r = 1 detection iteration if t = d. Afterwards, we use
the union of the obtained index sets Ĩ(1,...,t) as I(1,...,t).
In the additional step 2f if t < d, we build reconstructing rank-1 lattice Λ(z,Mt, I

(1,...,t)) for
the index set I(1,...,t). As initial rank-1 lattice size, we use the value Mt from step 2b. We
only search for one component zt of the generating vector z as in step 2b and then reduce
the rank-1 lattice size Mt.

Finally in step 3, we obtain the index set I = I(1,...,d). If all frequency detections were
successful, i.e.,

I(t) = Pt(supp p̂) for t = 1, . . . , d and

I(1,...,t) = P(1,...,t)(supp p̂) for t = 1, . . . , d− 1,

11

then we have

I = I(1,...,d) = supp p̂,

˜̂p(1,...,d),k = p̂k 6= 0 for all k ∈ I(1,...,d) and

p =
∑

k∈I(1,...,d)

˜̂p(1,...,d),k e2πik·◦.

Note that we do not necessarily have I(1,...,d) ⊂ supp p̂, i.e., the algorithm may wrongly yield
frequencies where the corresponding Fourier coefficients are zero, see case iv in Section 2.2.2
and the discussion concerning this case.

In Figure 2.1, the sampling sets, the frequency index sets and the reconstructing rank-1
lattices for a three-dimensional example with a trigonometric polynomial p with |supp p̂| = 10
frequencies, supp p̂ ⊂ Γ := Ĝ3

8, are depicted for r = 1 detection iteration. The support supp p̂
is shown in Figure 2.1a.

• Step 1: First in step 1, the parameter L1 = 17 is determined, the sampling set X (1) :=
{(0

17 , x
′
2, x
′
3)>, . . . , (16

17 , x
′
2, x
′
3)>} with randomly chosen points x′2, x

′
3 ∈ T is constructed,

see Figure 2.1b, and the trigonometric polynomial p is sampled at the nodes of the
set X (1). Then, a 1d iFFT is applied and the index set of detected frequencies for
the first component I(1), as depicted in Figure 2.1c, is determined from the resulting
Fourier coefficients. In this example, this means obtaining S1 = 9, z1 := 1 as well as
M1 := S1 = 9, which yields the reconstructing rank-1 lattice Λ(z = 1,M = 9, I(1)).

• Step 2, t = 2: Correspondingly in step 2a for t = 2, the parameter L2 = 17 is determined,
the sampling set X (2) := {(x′1, 0

17 , x
′
3)>, . . . , (x′1,

16
17 , x

′
3)>} is constructed with randomly

chosen points x′1, x
′
3 ∈ T, see Figure 2.1d, and the index set of detected frequencies

for the second component I(2), as depicted in Figure 2.1e, is determined. Next in
step 2b, the parameter S2 = 11 is obtained and the index set of frequency candidates
I(1) × I(2) is built, see Figure 2.1f, which has the cardinality |I(1) × I(2)| = 49 for our
example. We search for a reconstructing rank-1 lattice for the index set I(1) × I(2).
For this, the initial rank-1 lattice size is set to the M2 := M1 · S2, in our example
M2 := 9 · 11 = 99. For the generating vector z, the component z1 = 1 is used and
the component z2 ∈ {0, . . . , 98} is searched for. In our example, we obtain z2 = 9.
Next, the algorithm tries to reduce the rank-1 lattice size M2, which is not possible for
this example, and we obtain M2 := 99. Then, a random point x′3 ∈ T is chosen and
the sampling set X (1,2) := Λ(z = (1, 9)>,M = 99, I(1) × I(2)) × {x′3} is constructed as
shown in Figure 2.1g, which consists of |X (1,2)| = 99 nodes, and then in step 2c, the
trigonometric polynomial p is sampled at these nodes. The Fourier coefficients ˜̂p(1,2),k,

k ∈ I(1) × I(2), are computed from the sampling values in step 2d using a single 1d
iFFT and the index set of detected frequencies for the first two components I(1,2) is
determined, see Figure 2.1h, which yields |I(1,2)| = 10 frequencies. Afterwards in the
additional step 2f, a reconstructing rank-1 lattice for the index set I(1,2) is searched, i.e.,
a component z2 as well as a new rank-1 lattice size M2, and this yields the reconstructing
rank-1 lattice Λ(z = (1, 4)>,M = 23, I(1,2)) in our example, i.e., z2 = 4 and M2 = 23.

• Step 2, t = 3: Next, step 2a is started for t = 3, where the parameter L3 = 17 is
obtained, and the sampling set X (3) := {(x′1, x′2, 0

17)>, . . . , (x′1, x
′
2,

16
17)>} is constructed

12

−8
0

8 −8
0

8
−8

0

8

k1 k2

k
3

(a) supp p̂, |supp p̂| = 10.

0

1 0

1
0

1

x1

(b) X (1), |X (1)| = 17
(step 1).

−8

0

8

k1

(c) I(1) ⊆ P1(Γ)
(step 1).

0

1 0

1
0

1

x2

(d) X (2), |X (2)| = 17
(t = 2, step 2a).

−8
0

8 k2

(e) I(2) ⊆ P2(Γ)
(t = 2, step 2a).

−8

0

8

−8
0

8

k1

k2

(f) I(1) × I(2),
|I(1) × I(2)| = 49
(t = 2, step 2b).

0

1 0

1
0

1

x1 x2

(g) X (1,2), |X (1,2)| = 99
z = (1, 9)>, M = 99
(t = 2, step 2b).

−8
0

8

−8
0

8

k1

k2

(h) I(1,2), |I(1,2)| = 10
(t = 2, step 2e).

0

1

0

1

x1

x2

(i) Λ(z,M, I(1,2)),
z = (1, 4)>, M = 23
(t = 2, step 2f).

0

1 0

1
0

1

x
3

(j) X (3), |X (3)| = 17
(t = 3, step 2a).

−8

0

8 k3

(k) I(3) ⊆ P3(Γ)
(t = 3, step 2a).

−8
0

8 −8
0

8
−8

0

8

k1 k2

k
3

(l) I(1,2) × I(3),
|I(1,2) × I(3)| = 70
(t = 3, step 2b).

0

1 0

1
0

1

x1 x2

x
3

(m) X (1,2,3) = Λ(z,M, I(1,2) × I(3)),
z = (1, 4, 23)>, M = 276
(t = 3, step 2b).

−8
0

8 −8
0

8
−8

0

8

k1 k2

k
3

(n) I(1,2,3) = supp p̂
(t = 3, step 2e, step 3).

Figure 2.1: Example of reconstructing a three-dimensional trigonometric polynomial p using
Algorithm 1 with Γ = Ĝ3

8, |Ĝ3
8| = 4 913.

13

with randomly chosen points x′1, x
′
2 ∈ T, see Figure 2.1j. In step 2b, the index set of

detected frequencies for the third component I(3) is determined, see Figure 2.1k, as well
as the parameter S3 = 12. As described for t = 2, the index set of frequency candidates
for the first three components I(1,2) × I(3), |I(1,2) × I(3)| = 70 is constructed. Similar
to dimension increment step t = 2, we build a reconstructing rank-1 lattice for the
index set I(1,2)× I(3) and we obtain the sampling set X (1,2,3) := Λ(z = (1, 4, 23)>,M =
276, I(1,2) × I(3)), |X (1,2,3)| = 276, as depicted in Figures 2.1l and 2.1m, respectively.
The trigonometric polynomial p is sampled along this sampling set in step 2c and the
Fourier coefficients ˜̂p(1,2,3),k are determined in step 2d. Now, the frequency index set

I(1,2,3) is determined in step 2e, see Figure 2.1n, using a single 1d iFFT.

• Step 3: Finally, this index set I(1,2,3) and the corresponding Fourier coefficients ˜̂p(1,2,3),k,

k ∈ I(1,2,3), are used as an approximation for the support supp p̂ and for the correspond-
ing Fourier coefficients p̂k of the trigonometric polynomial p, respectively.

Algorithm 2

Algorithm 2 Reconstruction of a trigonometric polynomial p from sampling values.

Modifications of Algorithm 1 :
...

(step 2b) Set r̃ :=

{
r for t < d,

1 for t = d.

Determine St := min
{
m ∈ N : |{kt mod m : kt ∈ I(t)}| = |I(t)|

}
. Set I(1,...,t) := ∅.

Build reconstructing rank-1 lattice Λ(z,Mt, (I
(1,...,t−1) ∩ P(1,...,t−1)(Γ))× (I(t) ∩ P(t)(Γ))):

Set Mt := Mt−1 · St and zt := Mt−1, i.e., z = (z1, . . . , zt−1,Mt−1)>, cf. Theorem 2.2.
for i := 1, . . . , r̃ do

...

Algorithm 2 is another realization for the dimension incremental method, which uses one-
dimensional inverse fast Fourier transforms (1d iFFTs). The approach is based on Algo-
rithm 1, but in step 2b, we do not search for a reconstructing rank-1 lattice for the frequency
index set I(1,...,t−1)× I(t) but we explicitly build one using the construction from Theorem 2.2
in Section 2.1. The other steps of Algorithm 1 remain unchanged in Algorithm 2.

The arithmetic complexity for Algorithm 2 is distinctly lower than for Algorithm 1, see
Section 2.2.3, and the upper bound for the number of samples is asymptotically the same for
both algorithms. However, in practice, the number of samples when using Algorithm 2 may
be larger because we do not search for a preferably small rank-1 lattice size. Especially, if
the search space Γ is distinctly smaller than the full grid ĜdN and Γ is not a tensor product
grid, then Algorithm 1 is better suited with respect to the number of samples. We observe
this behavior in the numerical results in Section 3. For our small example from Figure 2.1,
Algorithm 2 yields the identical index sets and rank-1 lattices as Algorithm 1.

Deterministic version of Algorithm 1 and 2

We remark that we do not need to use random sampling if the Fourier coefficients p̂k, k ∈
supp p̂, of the trigonometric polynomial p fulfill the property that the signs of the real part

14

Re(p̂k) of all Fourier coefficients p̂k, k ∈ supp p̂, have to be the same as well as the signs of
the imaginary part Im(p̂k). This means for all k ∈ supp p̂, we have either

• Re(p̂k) ≥ 0, Im(p̂k) ≥ 0 or

• Re(p̂k) ≥ 0, Im(p̂k) ≤ 0 or

• Re(p̂k) ≤ 0, Im(p̂k) ≥ 0 or

• Re(p̂k) ≤ 0, Im(p̂k) ≤ 0.

Then, we may set the number of detection iterations r := 1, the sparsity parameter s :=
supp p̂ as well as the (random) components x′1, . . . , x

′
d of the sampling nodes always to zero

in Algorithm 1 and 2, by which both algorithms become deterministic. However for arbitrary
Fourier coefficients p̂k ∈ C, we rely on random sampling in both algorithms.

2.2.2 Successful and failed detection

As mentioned in Section 2.2.1, the successful detection of all non-zero Fourier coefficients
and the corresponding frequencies, i.e., obtaining I(1,...,d) = supp p̂, is not guaranteed. In the
following, we discuss conditions for the successful detection and we address the question if it
is possible to notice that not all frequencies were detected successfully during the incremental
detection process in Section 2.2.1. We remark that the computations in (2.5) for Algorithm 1
and 2 are responsible for the correct frequency detection, which belong to the computation
steps 1 and 2a, as well as the computations in (2.7), which belong to the computation step
2d.

For the computation of one-dimensional projected Fourier coefficients for the t-th com-
ponent ˜̂pt,kt , t ∈ {1, . . . , d} and kt ∈ Pt(Γ), in formula (2.5), the randomly chosen values
x′1, . . . , x

′
t−1, x

′
t+1, . . . , x

′
d ∈ T directly influence the successful detection I(t) = Pt(supp p̂),

see the aliasing formula (2.6). Note that the computation of the coefficient ˜̂pt,kt for fixed
t ∈ {1, . . . , d} and kt ∈ Pt(Γ) may be regarded as the evaluation of the trigonometric polyno-
mial

p̃t,kt : Td−1 → C, p̃t,kt :=
∑

h̃:=(h1,...,ht−1,ht+1,...,hd)>∈P(1,...,t−1,t+1,...,d)(Γ)

h:=(h1,...,ht−1,kt,ht+1,...,hd)>∈supp p̂

p̂h e2πih̃·◦, (2.9)

at the node x̃′ := (x′1, . . . , x
′
t−1, x

′
t+1, . . . , x

′
d)
> ∈ Td−1, i.e., ˜̂pt,kt = p̃t,kt(x̃

′). Accordingly, for
the computation of the t-dimensional projected Fourier coefficients for the first t components
˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), the randomly chosen values x′t+1, . . . , x

′
d ∈ T

directly influence the successful frequency detection, see the aliasing formula (2.8). When we
compute the coefficients ˜̂p(1,...,t),k, we apply one inverse rank-1 lattice FFT as described in
Section 2.1. This means we compute, see step 2d of Algorithm 1,

ĝ` :=
1

Mt

Mt−1∑
m=0

p

((
m

Mt
(z1, . . . , zt) mod 1, x′t+1, . . . , x

′
d

)>)
e−2πim`/Mt (2.10)

for ` = 0, . . . ,Mt − 1 using a single 1d iFFT and

˜̂p(1,...,t),k := ĝk·(z1,...,zt)> mod Mt
for k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ).

15

We remark that the computation of the coefficient ˜̂p(1,...,t),k for fixed t ∈ {2, . . . , d − 1} and

k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) may be regarded as the evaluation of the trigonometric
polynomial

p̃
Λ(z,Mt)
(1,...,t),k : Td−t → C, p̃

Λ(z,Mt)
(1,...,t),k :=

∑
h∈supp p̂

((h1,...,ht)>−k)·z≡0 (mod Mt)

p̂h e2πi(ht+1,...,hd)>·◦, (2.11)

at the node x̃′ := (x′t+1, . . . , x
′
d)
> ∈ Td−t, i.e., ˜̂p(1,...,t),k = p̃

Λ(z,Mt)
(1,...,t),k(x̃′).

In Theorem 2.5, we give an upper bound on the probability that the frequency detections
in step 1, step 2a as well as step 2e do not recognize a frequency kt ∈ Pt(supp p̂) and k ∈
P(1,...,t)(supp p̂), respectively. Prior to this, we require

Lemma 2.4. Let δ ≥ 0 be a threshold value and let a trigonometric polynomial g : Tn → C,
n ∈ N, g(x) :=

∑
k∈Ĩ ĝk e2πik·x, Ĩ ⊂ Zn, |Ĩ| < ∞, be given by its Fourier coefficients

ĝk ∈ C, k ∈ Ĩ, such that the property ‖g|L1(Tn)‖ > δ ≥ 0 or maxk∈Ĩ |ĝk| > δ ≥ 0 is

fulfilled. Moreover, let X1, . . . , Xn ∈ Td be independent, identical, uniformly distributed
random variables and the random vector X := (X1, . . . , Xn)>. Then, the probability

P(|g(X)| ≤ δ) ≤ e
− 2(‖g|L1(Tn)‖−δ)2

‖g|L∞(Tn)‖2 < 1.

If max
k∈Ĩ
|ĝk| > δ, then P(|g(X)| ≤ δ) ≤ e

− 2(‖g|L1(Tn)‖−δ)2

‖g|L∞(Tn)‖2 ≤ e
−

2(max
k∈Ĩ |ĝk|−δ)

2

(
∑
k∈Ĩ |ĝk|)

2
< 1.

Proof. We define the random variable Y1 := −|g(X)|. Formally, for the expectation value of
Y1, we have E(Y1) =

∫
Tn −|g((x1, . . . , xn)>)| fX1,...,Xn(x1, . . . , xn) dx1 . . . dxn, where fX1,...,Xn

is the joint probability density function of the random variables X1, . . . , Xn. Since the random
variables X1, . . . , Xn are independent and uniformly distributed, we obtain fX1,...,Xn ≡ 1.
This yields E(Y1) = −

∫
Tn |g(x)| dx = −‖g|L1(Tn)‖. Next, we apply Hoeffdings inequality

and obtain

P
(
Y1 − E(Y1) ≥ ‖g|L1(Tn)‖ − δ

)
≤ e
− 2(‖g|L1(Tn)‖−δ)2

‖g|L∞(Tn)‖2 ,

for ‖g|L1(Tn)‖ > δ since P (g(Y1) ∈ [−‖g|L∞(Tn)‖, 0]) = 1.
Due to |ĝk| = |

∫
Tn g(x) e−2πik·xdx| ≤

∫
Tn |g(x)|dx = ‖g|L1(Tn)‖ for all k ∈ Ĩ, we have

maxk∈Ĩ |ĝk| ≤ ‖g|L
1(Tn)‖. Since ‖g|L∞(Tn)‖ = ess supx∈Tn |g(x)| ≤

∑
k∈Ĩ |ĝk| and

P
(
Y1 − E(Y1) ≥ ‖g|L1(Tn)‖ − δ

)
= P

(
−|g(X)|+ ‖g|L1(Tn)‖ ≥ ‖g|L1(Tn)‖ − δ

)
= P (|g(X)| ≤ δ) ,

we obtain the assertion.

Theorem 2.5. Let a threshold value δ ≥ 0, a trigonometric polynomial p of the form
(1.1) with the property minh∈supp p̂ |p̂h| > δ ≥ 0 and a search space Γ ⊃ supp p̂ of finite
cardinality be given. For fixed t ∈ {1, . . . , d} and Lt := max(Pt(Γ)) − min(Pt(Γ)) + 1,
we compute the one-dimensional projected Fourier coefficients for the t-th component
˜̂pt,kt = p̃t,kt(x

′
1, . . . , x

′
t−1, x

′
t+1, . . . , x

′
d), kt ∈ Pt(Γ), by formula (2.5), where the values

16

x′1, . . . , x
′
t−1, x

′
t+1, . . . , x

′
d ∈ T are independently chosen uniformly at random. Then, the

probability

P(| ˜̂pt,kt | ≤ δ) ≤ e
−2

(minh∈supp p̂ |p̂h|−δ)
2

(
∑
h∈supp p̂ |p̂h|)2 < 1 for kt ∈ Pt(supp p̂).

Moreover, for fixed t ∈ {2, . . . , d − 1}, we compute the t-dimensional projected Fourier coef-

ficients for the first t components ˜̂p(1,...,t),k = p̃
Λ(z,Mt)
(1,...,t),k(x′t+1, . . . , x

′
d), k ∈ (I(1,...,t−1) × I(t)) ∩

P(1,...,t)(Γ), by formula (2.7), where the values x′t+1, . . . , x
′
d ∈ T are independently chosen

uniformly at random. If the rank-1 lattice Λ(z,Mt) is a reconstructing rank-1 lattice for
P(1,...,t)(supp p̂), then the probability

P(| ˜̂p(1,...,t),k| ≤ δ) ≤ e
−2

(minh∈supp p̂ |p̂h|−δ)
2

(
∑
h∈supp p̂ |p̂h|)2 < 1 for k ∈ P(1,...,t)(supp p̂) ∩ (I(1,...,t−1) × I(t)).

Proof. For fixed t ∈ {1, . . . , d} and for each kt ∈ Pt(supp p̂), we regard the computation of the
one-dimensional projected Fourier coefficient for the t-th component ˜̂pt,kt as the evaluation of
the trigonometric polynomial p̃t,kt from (2.9) at the node (x′1, . . . , x

′
t−1, x

′
t+1, . . . , x

′
d)
> ∈ Td−1.

We apply Lemma 2.4 setting the index set Ĩ := P(1,...,t−1,t+1,...,d) ({h ∈ supp p̂ : ht = kt}) and
the Fourier coefficients ĝP(1,...,t−1,t+1,...,d)(h) := p̂h for h ∈ {h ∈ supp p̂ : ht = kt}. Since

0 ≤ δ < minh∈supp p̂ |p̂h| ≤ maxl∈Ĩ |ĝl| and
∑
l∈Ĩ |ĝl| ≤

∑
h∈supp p̂ |p̂h|, we obtain the assertion

for the coefficients ˜̂pt,kt , kt ∈ Pt(supp p̂).
Similarly, for fixed t ∈ {2, . . . , d − 1} and for each k ∈ P(1,...,t)(supp p̂) ∩ (I(1,...,t−1) × I(t)),
we regard the computation of the t-dimensional projected Fourier coefficients for the first

t components ˜̂p(1,...,t),k as the evaluation of the trigonometric polynomial p̃
Λ(z,Mt)
(1,...,t),k from

(2.11) at the node (x′t+1, . . . , x
′
d)
> ∈ Td−t. We apply Lemma 2.4 setting the index set

Ĩ := P(t+1,...,d)

(
{h ∈ supp p̂ :

(
(h1, . . . , ht)

> − k
)
· z ≡ 0 (mod Mt)}

)
and the Fourier coef-

ficients ĝP(t+1,...,d)(h) := p̂h for h ∈ {h ∈ supp p̂ :
(
(h1, . . . , ht)

> − k
)
· z ≡ 0 (mod Mt)}. This

yields the assertion for the coefficients ˜̂p(1,...,t),k, k ∈ P(1,...,t)(supp p̂) ∩ (I(1,...,t−1) × I(t)).

In Algorithm 1 and 2, for a specified relative threshold parameter θ ∈ R, 0 < θ < 1, we
use the threshold value δ := θ · maxkt∈Pt(supp p̂) | ˜̂pt,kt | in step 1 and 2a for t ∈ {1, . . . , d} as

well as δ := θ · maxk∈P(1,...,t)(supp p̂) | ˜̂p(1,...,t),k| in step 2e for t ∈ {2, . . . , d − 1}. In the case

0 < θ < (minh∈supp p̂ |p̂h|) /
∑
h∈supp p̂ |p̂h|, Theorem 2.5 yields

P(| ˜̂pt,kt | ≤ δ) ≤ C(p) < 1 and P(| ˜̂p(1,...,t),k| ≤ δ) ≤ C(p) < 1,

where the constant C(p) := e
−2

(minh∈supp p̂ |p̂h|−θ·
∑
h∈supp p̂ |p̂h|)

2

(
∑
h∈supp p̂ |p̂h|)2 , 0 < C(p) < 1. Since we use

r ∈ N many detection iterations with new values x′1, . . . , x
′
t−1, x

′
t+1, . . . , x

′
d ∈ T independently

chosen uniformly at random, the frequency detection for kt ∈ Pt(supp p̂) succeeds if

| ˜̂pt,kt | =
∣∣∣p̃t,kt((x′1, . . . , x′t−1, x

′
t+1, . . . , x

′
d)
>)
∣∣∣ ≥ θ · max

k̃t∈Pt(supp p̂)
| ˜̂pt,k̃t |

in at least one detection iteration i ∈ {1, . . . , r}, and we obtain P(kt ∈ I(t)) ≥ 1 − (C(p))r

for each kt ∈ Pt(supp p̂), see step 2a of Algorithm 1 for the index set I(t), assuming that

17

the sparsity input parameter s ≥ |supp p̂| and the search space Γ ⊃ supp p̂. Note that this
probability can be arbitrarily close to 1 if the number r of detection iterations is sufficiently
large. Similarly, the frequency detection for k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(supp p̂) succeeds
if

| ˜̂p(1,...,t),k| =
∣∣∣p̃Λ(z,Mt)

(1,...,t),k((x′t+1, . . . , x
′
d)
>)
∣∣∣ ≥ θ · max

k̃∈(I(1,...,t−1)×I(t))∩P(1,...,t)(supp p̂)
| ˜̂p(1,...,t),k̃|

in at least one detection iteration i ∈ {1, . . . , r}, and this yields P(k ∈ I(1,...,t)) ≥ 1− (C(p))r

for each k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(supp p̂), assuming that the sparsity input parameter

s ≥ |supp p̂|, the search space Γ ⊃ supp p̂, I(τ) = Pτ (supp p̂) for τ ∈ {1, . . . , t} and I(1,...,τ) =
P(1,...,τ)(supp p̂) for τ ∈ {2, . . . , t− 1}.

Finally, all non-zero Fourier coefficients and the corresponding frequencies are successfully
detected if the frequency detections in the dimension increment steps t ∈ {1, . . . , d} succeed.

During the computations in step 2 of Algorithm 1 and 2, the following cases may occur.

i. For a frequency k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), we have ˜̂p(1,...,t),k 6= 0 and k ∈
P(1,...,t)(supp p̂), i.e., the detection of the frequency k was successful.

ii. For a frequency k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), we have ˜̂p(1,...,t),k = 0 but k ∈
P(1,...,t)(supp p̂), i.e., the frequency k was considered but not recognized, and the detection
of the frequency k failed.

iii. For a frequency k ∈ P(1,...,t)(supp p̂), we have k /∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), i.e., the
frequency k was not considered. This means the detection of the frequency k failed.

a) For a frequency ` ∈ {0, . . . ,Mt−1}, we have ĝ` 6= 0 in (2.10) but @k ∈ I(1,...,t−1)×I(t)

such that k · (z1, . . . , zt)
> ≡ ` (mod Mt).

iv. For a frequency k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), we have ˜̂p(1,...,t),k 6= 0 but k /∈
P(1,...,t)(supp p̂), i.e., the frequency k was falsely detected.

As discussed in Section 2.2.1, we do not test the Fourier coefficients for zero/non-zero but if
their absolute values are below/above a certain threshold. Correspondly, ˜̂p(1,...,t),k 6= 0 means

| ˜̂p(1,...,t),k| ≥ threshold value and ˜̂p(1,...,t),k = 0 means | ˜̂p(1,...,t),k| < threshold value.

Case i is the optimal case where the frequency k was in the candidate list (I(1,...,t−1) ×
I(t)) ∩ P(1,...,t)(Γ) and detected correctly.

In contrast, case ii means that the frequency also was in the candidate list but was wrongly
not included in the index set I(1,...,t) of detected frequencies. Similar to the discussion for
the computation (2.5), the fixed values x′t+1, . . . , x

′
d ∈ T influence the successful frequency

detection, see the aliasing formula (2.8). Again, we suggest to repeatedly evaluate (2.7) with
different randomly chosen values x′t+1, . . . , x

′
d ∈ T and compare the obtained index sets I(1,...,t)

of detected frequencies. If all of them coincide, it is very likely that the case ii did not occur.
Otherwise, we suggest to use the union of the obtained index sets I(1,...,t) for the computations
that follow in Section 2.2.1.

In case iii, at least one frequency k ∈ P(1,...,t)(supp p̂) is already missing in the candidate

list (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ). Possibly, we will not be able to even notice this. If we
encounter case iiia, which is a special variant of case iii, we know that there exists at least one
frequency k :=

(
k′

k′′
)
∈ P(1,...,t)(supp p̂) for which k /∈ (I(1,...,t−1)× I(t))∩P(1,...,t)(Γ), but we do

18

not exactly know which and how many frequencies are affected by this. However, we know
that these frequencies are from the set {h ∈ P(1,...,t)(Γ) : h · (z1, . . . , zt)

> ≡ ` (mod Mt)} for
Algorithm 1.

Furthermore, case iv may occur and is a consequence of having I(t) 6⊃ Pt(supp p̂) in the
current (t-th) dimension increment step or case iii in one of the preceding dimension increment
steps 1, . . . , t − 1. This means, in the current or one of the previous dimension increment
steps, at least one frequency was not detected. Moreover, we have I(1,...,t) 6⊂ P(1,...,t)(supp p̂).
However, we may not be able to notice that this case has occurred.

2.2.3 Number of samples and arithmetic complexity

In this section, we give upper bounds for the number of samples and for the arithmetic
complexity of the methods described in Section 2.2.1 as Algorithm 1 and 2 in the case where
the search space Γ is the full grid ĜdN . For computing the index set of detected frequencies
for the t-th component I(t) in the steps 1 and 2a of Algorithm 2, (2N + 1) function samples
are taken and the used 1d iFFT requires at most C1N logN arithmetic operations in each
detection iteration i ∈ {1, . . . , r} for each t ∈ {1, . . . , d}, where the constant C1 ≥ 1 does not
depend on N . This yields r d |Ĝ1

N | = r d (2N + 1) function samples and at most C̃ r dN logN
arithmetic operations for determining the index sets I(1), . . . , I(d), where C̃ ≥ 1 is an absolute
constant.

In step 2 of Algorithm 1 and 2 for dimension increment step t, the index sets I(1,...,t−1) and
I(t) consist of at most rs many frequencies. This yields that the index set I(1,...,t−1) × I(t)

consists of |I(1,...,t−1) × I(t)| ≤ r s |Ĝ1
N | frequency candidates. The sampling set X (1,...,t) con-

structed in step 2b of Algorithm 1 and 2 has the size |X (1,...,t)| = Mt, where the rank-1 lattice
size Mt ≤ max{2r2s2, 3N} (2N + 1) due to Corollary 2.3. The inverse rank-1 lattice FFT
in step 2d requires no more than C1Mt logMt + 2t|I(1,...,t−1) × I(t)| arithmetic operations for
each detection iteration i ∈ {1, . . . , r} and each dimension increment step t ∈ {2, . . . , d}.
For each detection iteration i ∈ {1, . . . , r} and each dimension increment step t ∈ {2, . . . , d}
when searching for the next component zt of the generating vector z in step 2b in Al-
gorithm 1, the number of arithmetic operations is bounded by 3 |I(1,...,t−1) × I(t)|Mt ≤
3 r s (2N + 1) max{2r2s2, 3N}(2N + 1), see the proof of Theorem 2.1. Moreover, reducing
the rank-1 lattice size Mt using [24, Algorithm 3.5] requires no more arithmetic operations.
At the end of step 2e, the index set I(1,...,t) consists of no more than |I(1,...,t)| ≤ r s fre-
quencies. Consequently, when searching for the new rank-1 lattice in the additional step
2f of Algorithm 1 and 2 for each t ∈ {2, . . . , d − 1}, the new rank-1 lattice size Mt

is bounded by max{2r2s2, 3N} due to Theorem 2.1. The number of arithmetic opera-
tions for the search of the next component zt of the generating vector z is bounded by
3 |I(1,...,t)|Mt ≤ 3 r s max{2r2s2, 3N}, see the proof of Theorem 2.1. Reducing the rank-1
lattice size Mt requires no more than 3 r s max{2r2s2, 3N} arithmetic operations.

In total, this yields no more than

r (d− 1) max{2r2s2, 3N} 2(N + 1) + r d (2N + 1)

many samples for Algorithm 1 and 2 as well as

C d ·
(
max{r3s3N2, r sN3}+ max{r3s2N, rN2} log(max{r2s2N,N2})

)
arithmetic operations for Algorithm 1 and

C d ·
(
max{r3s3, r sN}+ max{r3s2N, r N2} log(max{r2s2N,N2})

)

19

arithmetic operations for Algorithm 2, where C > 1 is an absolute constant. We remark
that a large contribution to the arithmetic complexity comes from the rank-1 lattice search,
in particular for Algorithm 1 in step 2b. Moreover, we have no exponential dependence in
the dimension d, neither for the number of samples nor the arithmetic complexity. Assuming√
N . s . Nd, we require O(d s2N) many samples for both algorithms as well as O(d s3N2)

and O(d s3 + d s2N log(sN)) arithmetic operations for Algorithm 1 and 2, respectively. In
the case s .

√
N , we need O(dN2) many samples for both algorithms as well as O(d sN3)

and O(dN2 logN) arithmetic operations for Algorithm 1 and 2, respectively.

2.3 Reducing the number of samples for the dimension incremental
reconstruction of trigonometric polynomials using compressed sensing

The dimension incremental reconstruction method for trigonometric polynomials from sam-
ples presented in Section 2.2.1 and realized as Algorithm 1 and 2 may require O(d s2N)
and O(dN2) many samples in the case

√
N . s . Nd and s .

√
N , respectively, see

Section 2.2.3, if the search space Γ is the full grid ĜdN . In this section, we discuss a
possible approach to reduce this number of samples. In Section 1, we have already men-
tioned the possibility to recover trigonometric polynomials, i.e., solving the problem (1.2),
using random sampling in compressed sensing, see [32] and the references therein. Then,
L ≥ C |supp p̂| log4(|Γ|) log(1/η) random samples suffice in order to reconstruct a trigono-
metric polynomial with frequencies supported on the search space Γ ⊂ Zd with probability
1− η, where C > 0 is an absolute constant. However, the arithmetic complexity contains in
general the factor |Γ| when we apply such a compressed sensing algorithm directly, since the
computations usually involve multiplications with the Fourier matrix A :=

(
e2πik·x`

)
x`∈X , k∈Γ

and its adjoint A∗, where X is the set of samples x` of cardinality |X | = L. Using our dimen-
sion incremental reconstruction approach from Section 2.2 in combination with compressed
sensing methods, we can reduce this arithmetic complexity and still limit the number of
random samples.

First, we consider the case where the sampling nodes x` ∈ X ⊂ Td, |X | = L, are cho-
sen uniformly at random. For this, we remove the building of the reconstructing rank-
1 lattices from the steps 2b and 2f in Algorithm 2. As mentioned before, the index set
I(1,...,t−1) × I(t) of frequency candidates in dimension increment step t ∈ {2, . . . , d} consists
of at most r s |Ĝ1

N | = r s (2N + 1) frequency candidates if Γ = ĜdN . Consequently, using

L = dC |supp p̂| log4(r s |Ĝ1
N |) log(1/η)e many random samples from Td is sufficient in each

detection iteration i ∈ {1, . . . , r} and in each dimension increment step t ∈ {2, . . . , d} if we
apply compressed sensing instead of the inverse rank-1 lattice FFT in step 2d. For this,
we can use `1 minimization (Basis Pursuit) [4]. Concretely, we use the SPGL1 algorithm
[48, 47], which is an iterative method for solving the `1 minimization problem that utilizes
matrix-vector multiplications of the Fourier matrix A :=

(
e2πik·x`

)
x`∈X , k∈I

and its adjoint

A∗. The arithmetic complexity of the SPGL1 algorithm is dominated by the matrix-vector
multiplications involving the Fourier matrix A and its adjoint A∗ requiring each O(L |I|)
arithmetic operations as well as a one-norm projection requiring O(|I| log |I|) arithmetic op-
erations in each of R ∈ N many iterations for SPGL1, cf. [48, Sec. 4.2]. For s = O(|supp p̂|),
the `1 minimization using SPGL1 requires no more than r L = O(s log4(sN)) many samples
and O(RL |I(1,...,t−1) × I(t)|) = O(Rs2N log4(sN)) arithmetic operations in each dimension
increment step t ∈ {2, . . . , d}.

Totally, this means O(d s log4(sN) + dN) many samples and O
(
dR s2N log4(sN)

)
arith-

20

metic operations for the dimension incremental reconstruction using `1 minimization if Γ =
ĜdN .

2.3.1 Sub-sampling on the rank-1 lattices

We can use also the SPGL1 `1 minimization in combination with reconstructing rank-1 lattices
if we use partial derandomisation for the choice of the sampling nodes x` by using a random
subset of the rank-1 lattice X (1,...,t) in step 2b of Algorithm 2 as the set of sampling nodes
for the dimension increment step t ∈ {2, . . . , d}. Here, we apply one-dimensional fast Fourier
transforms to compute the matrix-vector product of the Fourier matrix A and a vector from
C|I| as well as 1d iFFTs to compute the matrix-vector product of the adjoint Fourier matrixA∗

and a vector from CL, see Section 2.1. The `1 minimization then requires O(RMt logMt +
|I(1,...,t−1) × I(t)|) arithmetic operations in each dimension increment step t ∈ {2, . . . , d},
where R ∈ N is the number of iterations for SPGL1, Mt ≤ max{2r2s2, 3N} 2(N + 1) due to
Corollary 2.3 and |I(1,...,t−1) × I(t)| ≤ r s (2N + 1).

In total, this means O(d s log4(sN) + dN) many samples as well as O(d s3 +
dR s2N log(sN)) and O(dRN2 logN) arithmetic operations in the case

√
N . s . Nd

and s .
√
N , respectively, if Γ = ĜdN . We successfully apply the sub-sampling on the rank-1

lattice in Section 3 in Example 3.3 and 3.8.

2.3.2 Sub-sampling using random generated sets

Instead of sub-sampling on the rank-1 lattices, we may also use so-called generated sets [23]
as sampling set X . This allows us to omit the rank-1 lattice search in the additional step 2f
of Algorithm 2 and to potentially reduce the arithmetic complexity. A generated set, which
is characterized by the number L of sampling nodes and a generating vector r ∈ Rt, t ∈ N,
is defined by G(r, L) := {x` = `r mod 1, ` = 0, . . . , L − 1} ⊂ Tt. We remark that a rank-1
lattice Λ(z,M) as defined in Section 2.1 is a special case of a generated set, since we have
Λ(z,M) ≡ G(z/M,M).

Here, we use shifted generated sets G(r, L,∆) := {x` + ∆ : x` ∈ G(r, L)} ⊂ Tt, where
∆ ∈ Tt is an arbitrary offset. For ` = 0, . . . , L − 1, the evaluation of a t-variate trigono-
metric polynomial p with frequencies supported on an arbitrary index set I ⊂ Zt simplifies
dramatically since

p(x` + ∆) =
∑
k∈I

p̂k e2πik·(x`+∆) =
∑
k∈I

(
p̂k e2πik·∆

)
e2πi`k·r

=
∑

y∈{k·r mod 1:k∈I}

 ∑
k·r≡y (mod 1)

p̂k e2πik·∆

 e2πi`y,

cf. [23, 27]. Using the adjoint variant of the so-called nonequispaced fast Fourier
transform (NFFT) [30], these function evaluations p(x` + ∆) for ` = 0, . . . , L −
1, which are equivalent to the matrix-vector multiplication of the Fourier matrix
A := (e2πik·x`)`=0,...,L−1; k∈I and the vector (p̂k e2πik·∆)k∈I , take O(L logL + t |I|) arith-
metic operations. Similarly, the matrix-vector multiplication of the adjoint Fourier
matrix A∗ and a vector from CL can be computed in O(L logL + t |I|) arith-
metic operations using a one-dimensional NFFT. This means that R iterations of
the SPGL1 algorithm require O

(
RL logL+R |I(1,...,t−1) × I(t)| log |I(1,...,t−1) × I(t)|

)
=

21

O
(
Rs log4(sN) log(s log4(sN)) +RsN log(sN)

)
= O

(
Rs log5(sN) +RsN log(sN)

)
arithmetic operations in each dimension increment step t ∈ {2, . . . , d}, since L =
O(s log4(sN)) and |I(1,...,t−1) × I(t)| = O(sN).

Totally, this means O(d s log4(sN) + dN) many samples and

O
(
dR s log5(sN) + dR sN log(sN)

)
arithmetic operations for the dimension incremental reconstruction using `1 minimization if
Γ = ĜdN .

In our heuristic approach for improving the condition number of the Fourier matrix A,
we choose more than one random shifted generated set G(r, L,∆) with random generating
vector r ∈ Rt and random offset ∆ ∈ Tt as sampling scheme X . When we use K ∈ N
many random shifted generated sets G(r1, L1,∆1), . . . ,G(rK , LK ,∆K), L =

∑K
p=1 Lp, then

the Fourier matrix is A := (A1, . . . ,AK)>, Ap := (e2πi`k·rp)`=0,...,Lp−1; k∈I , and

(
p(x′ + ∆)

)
x′∈G(r1,L1,∆1)∪...∪G(rK ,LK ,∆K)

= A
(
p̂k e2πik·∆

)
k∈I

.

We remark that we can compute the matrix-vector-product of the Fourier matrix A and a
vector ĥ ∈ C|I| as well as the matrix-vector-product of the adjoint Fourier matrix A∗ and a
vector h := (h1, . . . ,hK)>, hp ∈ CLp for p = 1, . . . ,K, using K (adjoint) NFFTs due to

Aĥ =

A1ĥ
...

AKĥ

 , A∗h =
(
A∗1 . . . A∗K

)h1
...
hK

 =
K∑
p=1

A∗php.

We successfully apply the sub-sampling on generated sets in Section 3 in Example 3.4 and
3.9.

2.4 Reducing the number of samples using Prony’s method

The Prony method, see e.g. [39] and the references therein, allows the reconstruction of
nonincreasing exponential sums h : R→ C of order s ∈ N,

h(x) :=

s∑
m=1

cm efm x (x ≥ 0), (2.12)

using O(s) suitable samples in a deterministic way, where fm ∈ (−∞, 0) + i[−π, π), m =
1, . . . , s, are distinct complex numbers and cm ∈ C \ {0}, m = 1, . . . , s, are coefficients. This
reconstruction using a singular value decomposition has an arithmetic complexity of O(s3).

For our special case, the idea is to use the Prony method in Algorithm 2 instead of the
inverse rank-1 lattice FFTs and 1d iFFTs in step 2d, or instead of the Basis Pursuit (`1
minimization) approach from Section 2.3. In order to apply the Prony method, we need to
transform our frequency detection task in the steps 2d and 2e of Algorithm 2 to the form
(2.12). In step 2d for dimension increment step t ∈ {2, . . . , d}, we reconstruct the Fourier

22

coefficients ˜̂p(1,...,t),k ∈ P(1,...,t)(supp p̂) of the trigonometric polynomial g : Tt → C,

g(x) =
∑

k∈P(1,...,t)(supp p̂)

 ∑
h′:=(ht+1,...,hd)>∈Zd

(k>,h′>)>∈supp p̂

p̂(k
h′

) e2πih′·(x′t+1,...,x
′
d)>


︸ ︷︷ ︸

=˜̂p(1,...,t),k

e2πik·x = p

 x
x′t+1

...
x′d

 .

Assuming P(1,...,t−1)(I
(1,...,t−1)) × P(t)(I

(t)) ⊃ P(1,...,t)(supp p̂), we build a reconstruct-

ing rank-1 lattice Λ(z,Mt,P(1,...,t−1)(I
(1,...,t−1)) × P(t)(I

(t))) for the frequency index set

P(1,...,t−1)(I
(1,...,t−1))×P(t)(I

(t)) according to Theorem 2.2 as in Algorithm 2, which is conse-

quently also a reconstructing rank-1 lattice for P(1,...,t)(I
(1,...,t−1) × I(t)). Then, we choose a

number σ ∈ {2, . . . ,Mt − 1} uniformly at random which is invertible modulo Mt and we use
the generating vector z̃ := σz. Since σ is invertible module Mt, the rank-1 lattice Λ(z̃,Mt)
is also a reconstructing rank-1 lattice for the index set P(1,...,t−1)(I

(1,...,t−1)) × P(t)(I
(t)). We

set the order s ≥ |supp p̂| as well as the vectors c = (c1, . . . , cs) := (˜̂p(1,...,t),k)k∈P(1,...,t)(supp p̂)

and f = (f1, . . . , fs) := (2πi
Mt

(k · z̃ mod Mt))k∈P(1,...,t)(supp p̂). If the imaginary part of an entry
fm, m = 1, . . . , s, of the vector f is ≥ π, we subtract 2πi. Finally, we obtain

g(xj) =
∑

k∈P(1,...,t)(supp p̂)

˜̂p(1,...,t),k e
2πi
Mt

j (k·z̃)
=

s∑
m=1

cm efm j = h(j), j = 0, . . . ,Mt − 1,

(2.13)
and this corresponds to (2.12) for x = 0, . . . ,Mt − 1. Then, the Prony method uses the
first L = O(s) samples of the exponential sum h at the nodes x = 0, . . . , L − 1, which is
equivalent to the samples g(xj) = p((x>j , x

′
t+1, . . . , x

′
d)
>), j = 0, . . . , L − 1, where the nodes

xj := j
M z mod 1 and the number of samples L�M .

The course of action for determining the frequency index set I(1,...,t) is as follows. In step 2b,
we determine St := min

{
m ∈ N : |{kt mod m : kt ∈ I(t)}| = |I(t)|

}
and choose random values

x′t+1, . . . , x
′
d ∈ T as before. Additionally, we draw a number σ ∈ {2, . . . ,Mt− 1} uniformly at

random which is invertible modulo Mt. Then, we use the sampling set

X (1,...,t) := (j
Mt−1·Stσ(z1, . . . , zt−1,Mt−1)>)L−1

j=0 × {x
′
t+1} × . . .× {x′d},

where L = O(|supp p̂|), L ≤ Mt−1 · St, is the number of samples. This means, we use the
first L nodes of the reconstructing rank-1 lattice Λ(z̃,Mt, (I

(1,...,t−1) ∩P(1,...,t−1)(Γ))× (I(t) ∩
P(t)(Γ))), where Mt := Mt−1 ·St and z̃ = σ(z1, . . . , zt−1,Mt−1)>, cf. Theorem 2.2. We sample
the trigonometric polynomial p along this sampling set in step 2c and we apply the Prony
method with order s = |supp p̂| in step 2d which yields s distinct complex numbers f1, . . . , fs.
Next, we determine the frequency index I(1,...,t) based on these distinct complex numbers
fm, m = 1, . . . , s. For this, we start with an empty index set I(1,...,t), we compute f̃m :=

round(Im(log(Mt−1 Ñt
2π fm))) for each m = 1, . . . , s, and we try to determine the frequency

k ∈ I(1,...,t−1) × I(t) for which k · z̃ ≡ fm (mod Mt−1 · Ñt). If this frequency k exists, we add
it to the index set I(1,...,t). Note that the output of the Prony method has to be numerically

correct up to an absolute error of e−
Mt−1 Ñt

π (besides other assumptions) in order to guarantee
the correct frequency detection, i.e., I(1,...,t) = P(1,...,t)(supp p̂).

23

Assuming Γ = ĜdN , we use r 2(N + 1) + rO(s) many samples in each dimension increment
step t ∈ {2, . . . , d} and r 2(N+1) many samples in the beginning. In each dimension increment
step t, the Prony method is performed r ∈ N times and requires O(s3) many arithmethic
operations. Moreover, the rank-1 lattice search requires no more than 6 r s max{2r2s2, 3N}
arithmetic operations for each dimension increment step t ∈ {2, . . . , d}, see Section 2.2.3. In
total, we require O(d s + dN) many samples as well as O(d s3) and O(d sN + dN logN)
arithmetic operations in the case

√
N . s . Nd and s .

√
N , respectively, if Γ = ĜdN .

We apply this version of Prony’s method in Section 3 in Example 3.5.

3 Numerical results

In the following, we verify the methods from Section 2. In Section 3.1, we randomly gen-
erate s-sparse multivariate trigonometric polynomials p : Td → C, s � |ĜdN |, and exactly

reconstruct the frequencies k ∈ supp p̂ ⊂ Γ = ĜdN belonging to the non-zero Fourier coef-
ficients p̂k 6= 0 with the methods described in Section 2.2, 2.3 and 2.4. Furthermore, we
apply the methods from Section 2.2 and 2.3 on trigonometric polynomials with frequencies
supported on symmetric weighted hyperbolic crosses in Section 3.2 where we only assume
supp p̂ ⊂ Γ = ĜdN during the dimension incremental reconstruction. We also test our recon-
struction method from Section 2.2 on a 10-dimensional function in Section 3.3 and we test
the robustness to noise in Section 3.4. For the tests, the algorithms described in Section 2
were implemented in MATLAB. The search for the reconstructing rank-1 lattice in step 2b
of Algorithm 1 as well as in the additional step 2f of Algorithm 1 and 2 were implemented in
C with OpenMP support and these C implementations are called from the MATLAB code
using the MATLAB MEX interface. Instead of using [24, Algorithm 3.5] for the reduction of
the rank-1 lattice size, we implemented a bisection method. All numerical computations were
performed using double-precision floating-point arithmetic. Almost all numerical tests were
run on a computer with 4x Intel Xeon CPU E5-4640 (in total 32 CPU cores) and 512 GB
RAM. Time measurements were taken an a computer with an Intel i7-970 CPU (3.2 GHz)
and 24 GB RAM while using only one thread. An implementation of Algorithm 1 and 2 is
available online on the homepage of the authors.

The aim of the following subsections is a detailed investigation of the algorithms from
Sections 2 with respect to different aspects such as number of sampling points, accuracy and
computational time. In Subsection 3.1, we consider all algorithms from Sections 2.2, 2.3 and
2.4 on sparse trigonometric polynomials with random frequencies and corresponding random
Fourier coefficients. Next, in Subsection 3.2, we apply the algorithms from Sections 2.2 and 2.3
on trigonometric polynomials with frequencies supported on weighted hyperbolic crosses and
random Fourier coefficients. In Subsection 3.3, we demonstrate using Algorithm 1 and 2 from
Section 2.2 to approximately reconstruct the largest Fourier coefficients of a 10-dimensional
periodic tensor-product function of dominating mixed smoothness, which has infinitely many
non-zero Fourier coefficients and we assume only supp p̂ ⊂ Γ = Ĝ10

32. Finally, in Section 3.4, we
perturb sparse trigonometric polynomials with random frequencies using complex Gaussian
noise with various signal-to-noise ratios.

3.1 Random sparse trigonometric polynomial

We set the refinement N := 32 and construct random multivariate trigonometric polynomials
p with frequencies supported within the cube Ĝd32 = [−32, 32]d∩Zd. This means, we randomly

24

choose |supp p̂| frequencies k ∈ Ĝd32 and corresponding Fourier coefficients p̂k ∈ [−1, 1) +
[−1, 1)i, |p̂k| ≥ 10−6, k ∈ I = supp p̂. For the reconstruction of the trigonometric polynomials
p, we only assume supp p̂ ⊂ Γ = Ĝd32. Except for Example 3.5, we do not truncate the
frequency index sets of detected frequencies I(1,...,t), t ∈ {2, . . . , d}, i.e., we set the sparsity
parameter s := |Γ|. Moreover, we set the number of detection iterations r := 1. All tests are
repeated 10 times with newly chosen frequencies and Fourier coefficients.

Example 3.1. Sampling along reconstructing rank-1 lattices using Algorithm 1 (“A1-R1L”).
We set the threshold parameter θ := 10−12. For the sparsities |supp p̂| ∈ {1 000, 10 000},
we applied Algorithm 1. In the cases |supp p̂| = 1 000 and |supp p̂| = 10 000, we ran the
tests for dimensions d ∈ {3, 4, . . . , 10, 15, 20, 25, 30} and d ∈ {3, 4, 5, 6}, respectively. In each
test, all frequencies were successfully detected, I(1,...,d) = supp p̂. The used parameters and
results are presented in Table 3.1. The column “max cand” shows the maximal number
maxt=2,...,d |I(1,...,t−1) × I(t)| of frequency candidates of all 10 repetitions and “max M” the
maximal rank-1 lattice size used. Furthermore, the total number of samples for each repetition
was computed and the maximum of these numbers for the 10 repetitions can be found in the
column “#samples”. The relative `2-error ‖(˜̂pk)k∈I − (p̂k)k∈I‖2/‖(p̂k)k∈I‖2 of the computed
coefficients (˜̂pk)k∈I(1,...,d) was determined for each repetition, where I := supp p̂∪ I(1,...,d) and
˜̂pk := 0 for k ∈ I \ I(1,...,d), and the column “rel. `2-error” contains the maximal value of
the 10 repetitions. In all tests, the relative `2-error is smaller than 10−14. The numbers of
used samples increase for increasing dimensions d and sparsities |supp p̂| of the trigonometric
polynomials p. Compared to the cardinality of the full grids |Γ| = |ĜdN |, the observed numbers
of samples are still moderate.

N d |supp p̂| |Γ| = |ĜdN | max cand max M #samples rel. `2-error

32 3 1 000 274 625 53 365 142 870 145 275 4.5e-16
32 4 1 000 17 850 625 64 870 2 331 030 2 472 145 8.3e-16
32 5 1 000 1.16e+09 65 000 2 935 419 4 979 314 8.9e-16
32 6 1 000 7.54e+10 65 000 2 655 816 7 479 265 7.0e-16
32 7 1 000 4.90e+12 65 000 2 685 234 9 905 378 6.2e-16
32 8 1 000 3.19e+14 65 000 2 665 578 11 820 279 7.8e-16
32 9 1 000 2.07e+16 65 000 2 690 118 14 531 442 6.1e-16
32 10 1 000 1.35e+18 65 000 2 714 623 16 986 369 1.3e-15
32 15 1 000 1.56e+27 65 000 2 827 045 30 461 941 5.0e-16
32 20 1 000 1.81e+36 65 000 2 836 998 42 580 486 7.6e-16
32 25 1 000 2.10e+45 65 000 2 978 356 56 432 050 5.5e-16
32 30 1 000 2.44e+54 65 000 2 920 928 68 237 645 4.3e-16

32 3 10 000 274 625 143 585 147 810 150 280 5.0e-16
32 4 10 000 17 850 625 629 200 9 023 625 9 165 390 6.7e-16
32 5 10 000 1.16e+09 649 740 137 285 053 146 360 548 1.3e-15
32 6 10 000 7.54e+10 650 000 162 562 853 309 453 235 1.1e-15

Table 3.1: Results for random sparse trigonometric polynomials using reconstructing rank-1
lattices and Algorithm 1 when considering frequencies within Γ = Ĝd32.

Example 3.2. Sampling along reconstructing rank-1 lattices using Algorithm 2 (“A2-R1L”).
We set the threshold parameter θ := 10−12. For the sparsities |supp p̂| ∈ {1 000, 10 000}

25

and dimensions d ∈ {3, 4, . . . , 10, 15, 20, 25, 30}, we applied Algorithm 2. In each test, all
frequencies were successfully detected, I(1,...,d) = supp p̂. The numerical results are presented
in Table 3.2, where the column names have the same meaning as described in Example 3.1.
The relative `2 errors are similar to the ones for Algorithm 1 in Table 3.1. In this example,
the maximal rank-1 lattices are larger compared to the results Algorithm 1 in Table 3.1, since
the reconstructing rank-1 lattices are searched for in Algorithm 1 whereas they are explicitly
constructed in Algorithm 2, cf. Theorem 2.2. Correspondingly, the numbers of samples are
slightly higher in this example compared to the results when using Algorithm 1 for identical
parameters N , d and sparsity |supp p̂|. However, the runtime of the algorithms can differ
significantly, see Example 3.6.

d |supp p̂| max cand max M #samples rel. `2-error

3 1 000 58 695 272 155 276 575 4.8e-16
4 1 000 65 000 2 562 040 2 838 810 8.2e-16
5 1 000 65 000 2 735 720 5 262 140 5.0e-16
6 1 000 65 000 2 761 655 8 139 560 6.4e-16
7 1 000 65 000 2 795 390 10 953 150 4.8e-16
8 1 000 65 000 3 052 335 13 145 275 9.1e-16
9 1 000 65 000 2 932 085 16 339 115 8.0e-16

10 1 000 65 000 3 056 560 18 674 565 4.5e-16
15 1 000 65 000 3 007 095 31 954 910 5.2e-16
20 1 000 65 000 3 056 560 46 572 500 4.4e-16
25 1 000 65 000 3 149 055 58 568 770 7.3e-16
30 1 000 65 000 3 068 000 73 665 475 6.2e-16

3 10 000 251 030 274 625 279 045 2.1e-16
4 10 000 639 795 17 463 745 17 742 855 6.2e-16
5 10 000 649 935 181 940 460 199 581 915 1.1e-15
6 10 000 650 000 192 287 810 392 345 005 8.9e-16
7 10 000 650 000 194 595 570 572 814 190 6.8e-16
8 10 000 650 000 197 127 645 745 706 455 8.9e-16
9 10 000 650 000 203 536 385 967 031 390 5.8e-16

10 10 000 650 000 200 068 050 1 132 939 795 9.0e-16
15 10 000 650 000 197 036 775 2 050 649 770 5.8e-16
20 10 000 650 000 200 385 055 2 959 435 895 7.4e-16
25 10 000 650 000 206 296 415 3 959 584 980 6.5e-16
30 10 000 650 000 203 592 740 4 924 539 100 6.9e-16

Table 3.2: Results for random sparse trigonometric polynomials using reconstructing rank-1
lattices and Algorithm 2 when considering frequencies within Γ = Ĝd32.

Next, we successfully applied the modifications described in Section 2.3 and used less sam-
ples to reconstruct the trigonometric polynomials.

Example 3.3. Sub-sampling along reconstructing rank-1 lattices using `1 minimization
(“A2-`1-sR1L”). We set the threshold parameter θ := 10−6. For the sparsity |supp p̂| = 1 000
and dimensions d ∈ {3, 4, . . . , 10, 15, 20, 25, 30}, we used sub-sampling on reconstructing rank-
1 lattices as explained in Section 2.3.1. For this, we only considered L = 10 · |supp p̂| many

26

samples of the reconstructing rank-1 lattice generated in step 2c in each dimension incre-
ment step t of the dimension incremental method. We applied the `1 minimization algorithm
SPGL1, where we set the parameter “optimality tolerance” to 10−7, “Basis pursuit tolerance”
to 10−8 as well as the maximal number of SPGL1 iterations to 2000, and used one-dimensional
FFTs to compute the matrix-vector products of the corresponding Fourier matrices and vec-
tors. The numerical results are presented in Table 3.3. We observe that, in most cases, the
maximal number of frequency candidates “max cand” and the maximal rank-1 lattice sizes
“max M” are similar to the ones from Table 3.2, where we used all rank-1 lattice samples.
However, the total number of samples in the column “#samples” is more than two orders
of magnitude smaller when we use the sub-sampling, while the relative `2-error is still less
than 10−10. We remark that in one test run out of the 10 runs of the numerical tests for
d = 7, dimension increment step t = 3 of the dimension incremental algorithm returned a
large index set of frequencies (|I(1,2,3)| = 5 466) and consequently many frequency candidates
(|I(1,...,3) × I(4)| = 355 290) existed for dimension increment step t = 4, which was about
5 times larger than for the other nine runs, and this yielded a very large rank-1 lattice size
(M = 16 229 850) for dimension increment step t = 4, which was about 6 times larger than for
the other nine runs. Nevertheless, the resulting index set of detected frequencies at the end of
dimension increment step t = 4 was again of the expected size (|I(1,...,4)| = |supp p̂| = 1 000)
and the final results of the test run were correct. Moreover, the total number of samples was
similar for all the 10 test runs of the case d = 7.

d max cand max M #samples rel. `2-error

3 59 085 273 780 14 420 7.0e-11
4 65 000 2 678 520 24 485 8.9e-11
5 65 000 2 693 795 34 550 7.3e-11
6 65 000 2 730 780 44 615 8.5e-11
7 355 290 16 229 850 54 680 9.1e-11
8 65 000 2 897 180 64 745 7.8e-11
9 65 000 3 080 220 74 810 9.1e-11

10 65 000 2 949 180 84 875 9.0e-11
15 65 000 3 197 870 135 200 9.0e-11
20 65 000 3 138 265 185 525 7.6e-11
25 65 000 3 026 335 235 850 9.3e-11
30 65 000 3 113 110 286 175 8.8e-11

Table 3.3: Results for random sparse trigonometric polynomials with |supp p̂| = 1 000 using
`1 minimization with sub-sampling on reconstructing rank-1 lattices from Section
2.3.1 when considering frequencies within Γ = Ĝd32.

Example 3.4. Sub-sampling along generated sets using `1 minimization (“`1-GS”). We set
the threshold parameter θ := 10−6. For the sparsity |supp p̂| = 1 000 and dimensions d ∈
{3, 4, . . . , 10, 15, 20, 25, 30}, we considered sampling on K = 3 random shifted generated sets
as described in Section 2.3.2 using totally L = 10 · |supp p̂| many samples in step 2c in
each dimension increment step t of the dimension incremental method. We applied the `1
minimization algorithm SPGL1 with the parameters from Example 3.3. All test runs were
successful and the results are shown in Table 3.4. The total numbers of samples in the column

27

“#samples” and the relative `2-errors are slightly higher compared to the results in Table 3.3
when sub-sampling on the rank-1 lattices.

d max cand #samples rel. `2-error

3 274 105 20 195 2.4e-10
4 65 000 30 260 1.1e-10
5 65 000 40 325 1.0e-10
6 65 000 50 390 9.8e-11
7 65 000 60 455 9.2e-11
8 65 000 70 520 1.1e-10
9 65 000 80 585 9.3e-11

10 65 000 90 650 1.0e-10
15 65 000 140 975 9.5e-11
20 65 000 191 300 1.1e-10
25 65 000 241 625 1.2e-10
30 65 000 291 950 1.3e-10

Table 3.4: Results for random sparse trigonometric polynomials with |supp p̂| = 1 000 us-
ing `1 minimization with random generated set samples from Section 2.3.2 when
considering frequencies within Γ = Ĝd32.

Example 3.5. Sub-sampling along reconstructing rank-1 lattices using Prony’s method
(“prony”). We set the threshold parameter θ := 10−9. For the sparsity |supp p̂| = 1 000 and
dimensions d ∈ {3, 4, . . . , 10, 15, 20, 25, 30}, we applied Prony’s method with sub-sampling
on reconstructing rank-1 lattices as described in Section 2.4. We set the sparsity parameter
s := 1 000 and we used L = 10 · |supp p̂| many samples of the reconstructing rank-1 lattice
generated in step 2c in each dimension increment step t ∈ {2, . . . , d} of the dimension incre-
mental method. Moreover, in each dimension increment step t, we compute the coefficients
˜̂p(1,...,t),k, k ∈ I(1,...,t), by solving the Vandermonde-like system (2.13) and we check if some

of these values are less than θ ·maxk∈I(1,...,t) | ˜̂p(1,...,t),k|. In this case, the frequency detection
failed in the current dimension increment step t and we repeatedly apply Prony’s method
with another randomly chosen number σ and consequently, we use additional samples. The
numerical results are shown in Table 3.5. We observe that the numbers of samples are iden-
tical or slightly higher than for the `1 minimization in Table 3.3. Ideally, the numbers of
samples should coincide in all cases for identical dimensions d. The higher numbers of sam-
ples are due to repeatedly applying Prony’s method when the frequency detection failed in
an intermediate step. The relative `2-errors in Table 3.5 are similar to the ones in Table 3.3.

Example 3.6. Computation times. In Table 3.6, we compare the runtimes for the different
methods considered above. We investigate the runtimes for refinement N = 32, dimensions
d ∈ {6, 10} and sparsity |supp p̂| = 1 000 for all methods. For Algorithm 2 from Section 2.2.1,
we additionally consider the sparsity |supp p̂| = 10 000. The tests for each method and set of
parameters were repeated 10 times. We present the results in Table 3.6. The “total runtime”
was measured without the time required for sampling the trigonometric polynomials p. We
observe that the total runtimes when using Algorithm 2 (method “A2-R1L”) from Section

28

d max cand max M #samples rel. `2-error

3 58 240 272 610 14 420 6.0e-12
4 65 000 2 561 065 24 485 2.7e-11
5 65 000 2 660 775 44 615 9.6e-11
6 65 000 2 964 000 54 680 9.5e-12
7 65 000 2 737 540 64 745 7.7e-12
8 65 000 2 810 275 64 745 1.3e-11
9 65 000 2 920 255 84 875 3.6e-11

10 65 000 2 905 695 94 940 2.3e-11
15 65 000 3 121 365 145 265 1.9e-11
20 65 000 2 942 355 195 590 9.0e-11
25 65 000 3 048 305 255 980 1.3e-11
30 65 000 3 084 120 296 240 1.2e-11

Table 3.5: Results for random sparse trigonometric polynomials with |supp p̂| = 1 000 using
Prony’s method with sub-sampling on reconstructing rank-1 lattices from Section
2.4 when considering frequencies within Γ = Ĝd32.

2.2.1 are dramatically smaller by about two orders of magnitude compared to the other
methods. The reason for this behavior is that Algorithm 2 is a direct method which is mainly
based on 1d iFFTs and only one reconstructing rank-1 lattice for the index set of detected
frequencies I(1,...,t), |I(1,...,t)| ≤ s, is searched in the additional step 2f in each dimension
increment step t ∈ {2, . . . , d}, whereas an additional reconstructing rank-1 lattice for the index
set of frequency candidates I(1,...,t−1)× I(t) is searched for in step 2b of Algorithm 1 (method
“A2-R1L”). This is apparent from the runtimes required for the rank-1 lattice constructions
in column “time lattice search” in Table 3.6. Prony’s method (“prony”) from Section 2.4,
which is based on Algorithm 2, is about six times slower than Algorithm 1 but uses distinctly
less samples. The runtimes of the used Prony method are about 60 times higher compared
to Algorithm 2, since internally a singular value decomposition is applied in the method
“prony”. The sub-sampling methods (“A2-`1-sR1L” and “`1-GS”) based on `1 minimization
from Sections 2.3.1 and 2.3.2 are iterative methods which require a certain number of iterations
for a desired accuracy. The used numbers of iterations per dimension increment step t for our
tests are shown in the column “#iterations per dim. increment step t” and the total runtimes
are higher compared to Algorithm 1 and 2 but distinctly lower compared to the used Prony
method. If we use more than the 10-times oversampling in Table 3.6 for the `1 minimization,
then the number of iterations and the total runtime may decrease significantly. For instance,
for the method “`1-GS” with L = 30 000 samples using K = 10 generated sets of size 3 000
each, we obtained a maximal number of iterations of 98 and 112 in the cases d = 6 and d = 10,
respectively, compared to 520 and 557 for L = 10 000 samples in Table 3.6. Correspondingly,
we observed a maximal total runtime of only 791 s and 1 655 s for L = 30 000 samples in the
cases d = 6 and d = 10, respectively, compared to 1 374 s and 2 678 s for L = 10 000 samples
in Table 3.6.

In all our examples, the frequency detections succeeded and the Fourier coefficients were
reconstructed exactly up to a small error caused by the used double-precision floating point
arithmetic. We observe for the runtimes rt(◦) in Table 3.6 that

rt(A2-R1L)� rt(A1-R1L) < rt(A2-`1-sR1L) < rt(prony) < rt(`1-GS).

29

time #iterations per total runtime
lattice search dim. increment (in s)

(in s) step t
method d |supp p̂| min max avg min max avg min max avg

A1-R1L 6 1 000 191 247 215 1 1 1 193 249 217
A2-R1L 6 1 000 0.3 0.4 0.4 1 1 1 2.0 2.6 2.2
A2-`1-sR1L 6 1 000 0.3 0.4 0.3 1 200 120 419 632 491
`1-GS 6 1 000 - - - 79 520 363 1 196 1 374 1 268
prony 6 1 000 0.3 0.3 0.3 1 1 1 1 119 1 135 1 129
A1-R1L 10 1 000 608 746 662 1 1 1 612 751 667
A2-R1L 10 1 000 0.6 0.8 0.7 1 1 1 3.8 4.9 4.4
A2-`1-sR1L 10 1 000 0.6 0.9 0.7 1 159 134 959 1 197 1 117
`1-GS 10 1 000 - - - 91 557 392 2 445 2 678 2 583
prony 10 1 000 0.6 0.7 0.6 1 1 1 2 223 2 239 2 235

A2-R1L 6 10 000 63 215 133 1 1 1 168 324 231
A2-R1L 10 10 000 137 359 263 1 1 1 430 652 566

Table 3.6: Runtimes for random sparse trigonometric polynomial using different algorithms
and methods. The methods “A1-R1L” and “A2-R1L” are Algorithm 1 and 2 from
Section 2.2.1, respectively. “A2-`1-sR1L” and “`1-GS” mean `1 minimization with
sub-sampling on rank-1 lattice and sampling on generated sets from Section 2.3.1
and 2.3.2, respectively. “prony” is Prony’s method from Section 2.4. For “A2-`1-
sR1L”, “`1-GS” and “prony”, L = 10 000 samples were used.

Moreover, the numbers of samples #s(◦) behave like

#s(A2-`1-sR1L) < #s(`1-GS) < #s(prony)� #s(A1-R1L) < #s(A2-R1L)

in most cases.

3.2 Symmetric weighted hyperbolic cross

In this test case, we reconstruct trigonometric polynomials with frequencies supported on
symmetric weighted hyperbolic crosses Hd,γ

N := {k ∈ Zd :
∏d
t=1 max(1, γ−1

t |kt|) ≤ N}, where

we only assume supp p̂ ⊂ Γ = ĜdN for our method from Section 2.2. As in the examples
in Section 3.1, we do not truncate the frequency index sets of detected frequencies I(1,...,t),
t ∈ {2, . . . , d}, i.e., we set the sparsity parameter s := |Γ|. Moreover, we set the threshold
parameter θ := 10−12 and the number of detection iterations r := 1. All tests are repeated
10 times with different randomly chosen Fourier coefficients p̂k ∈ [−1, 1) + [−1, 1)i, |p̂k| ≥
10−6, k ∈ I. In each test case, all the frequencies were successfully detected, I(1,...,d) =
Hd,γ
N , and coefficients (˜̂pk)

k∈Hd,γ
N

were computed. Then, the relative `2-error ‖(˜̂pk)
k∈Hd,γ

N
−

(p̂k)
k∈Hd,γ

N
‖2/‖(p̂k)

k∈Hd,γ
N
‖2 was computed.

Example 3.7. Sampling along reconstructing rank-1 lattices (“A1-R1L” and “A2-R1L”).
The used parameters and numerical results are shown in Table 3.7 for Algorithm 1 and in
Table 3.8 for Algorithm 2, where the columns have the same meaning as in Section 3.1.
We observe that the obtained relative `2-errors are comparable for both algorithms and the
numbers of samples are slightly higher for Algorithm 2 compared to Algorithm 1, which is as
expected.

30

N d γ2 |Hd,γ
N | max cand max M #samples rel. `2-error

32 6 0.80 11 593 173 397 898 485 1 653 217 2.1e-16
32 8 0.80 15 477 197 081 1 349 994 4 180 523 2.9e-16
32 10 0.80 16 871 197 081 1 349 994 6 632 518 5.5e-16

16 10 0.87 22 953 200 541 1 358 148 5 039 519 3.0e-16
16 15 0.87 25 963 200 541 1 358 148 10 057 035 2.8e-16
16 20 0.87 26 185 200 541 1 358 148 12 555 880 3.3e-16

32 10 0.84 40 387 531 145 5 116 951 21 632 742 5.2e-16
32 15 0.84 44 201 531 145 5 116 951 38 955 122 2.6e-16
32 20 0.84 44 433 531 145 5 116 951 46 851 702 8.2e-16

Table 3.7: Results for trigonometric polynomials with frequencies supported on symmetric
weighted hyperbolic cross Hd,γ

N with weights γ = (1, γ2, γ
2
2 , . . . , γ

d−1
2)> using re-

constructing rank-1 lattices with Algorithm 1 when considering frequencies within
Γ = ĜdN .

N d γ2 |Hd,γ
N | max cand max M #samples rel. `2-error

32 6 0.80 11 593 173 397 990 990 1745 779 2.1e-16
32 8 0.80 15 477 197 081 1 338 974 4 360 512 5.0e-16
32 10 0.80 16 871 197 081 1 430 231 6 961 062 5.5e-16

16 10 0.87 22 953 200 541 1 358 148 5 032 864 6.3e-16
16 15 0.87 25 963 200 541 1 358 148 10 175 387 7.3e-16
16 20 0.87 26 185 200 541 1 358 148 12 687 242 7.6e-16

32 10 0.84 40 387 531 145 5 337 879 23 712 165 3.4e-16
32 15 0.84 44 201 531 145 5 337 879 41 732 585 2.6e-16
32 20 0.84 44 433 531 145 5 337 879 49 777 589 2.7e-16

Table 3.8: Results for trigonometric polynomials with frequencies supported on symmetric
weighted hyperbolic cross Hd,γ

N with weights γ = (1, γ2, γ
2
2 , . . . , γ

d−1
2)> using re-

constructing rank-1 lattices with Algorithm 2 when considering frequencies within
Γ = ĜdN .

Again, we successfully applied the modifications described in Section 2.3.

Example 3.8. Sub-sampling along reconstructing rank-1 lattices using `1 minimization (“A2-
`1-sR1L”). We used sub-sampling on reconstructing rank-1 lattices as described in in Section
2.3.1. This time, we considered L = |I(1,...,t−1) × I(t)| many samples of the reconstructing
rank-1 lattices generated in step 2c in each dimension increment step t of the dimension
incremental method. We applied the `1 minimization algorithm SPGL1, where we set the
parameter “optimality tolerance” to 10−7, “Basis pursuit tolerance” to 10−8 as well as the
maximal number of SPGL1 iterations to 2000, and used one-dimensional FFTs to compute
the matrix-vector products of the corresponding Fourier matrices and vectors. The numerical
results are shown in Table 3.9. We observe that the maximal number of frequency candidates
“max cand” and the maximal rank-1 lattice sizes “max M” are identical to the ones from
Example 3.7 in Table 3.8, where we used all rank-1 lattice samples, except for one case. The
total number of samples in the column “#samples” is about 5 times smaller when we use the
sub-sampling, while the relative `2-error is still less than 10−11.

31

N d γ2 |Hd,γ
N | max cand max M #samples rel. `2-error

32 6 0.80 11 593 173 397 990 990 383 585 3.6e-12
32 8 0.80 15 477 197 081 1 338 974 763 225 3.6e-12
32 10 0.80 16 871 197 081 1 430 231 1 080 761 4.2e-12

16 10 0.87 22 953 200 541 1 358 148 867 879 3.5e-12
16 15 0.87 25 963 200 541 1 358 148 1 629 241 4.7e-12
16 20 0.87 26 185 2 061 664 12 707 266 3 882 026 9.4e-12

32 10 0.84 40 387 531 145 5 337 879 2 633 711 1.3e-12
32 15 0.84 44 201 531 145 5 337 879 4 283 003 3.3e-12
32 20 0.84 44 433 531 145 5 337 879 5 036 917 6.0e-12

Table 3.9: Results for trigonometric polynomials with frequencies supported on symmetric
weighted hyperbolic cross Hd,γ

N with weights γ = (1, γ2, γ
2
2 , . . . , γ

d−1
2)> using `1

minimization with sub-sampling on reconstructing rank-1 lattices with Algorithm 2
when considering frequencies within Γ = ĜdN .

Example 3.9. Sub-sampling along generated sets using `1 minimization (“`1-GS”). We con-
sidered sampling on K = 3 random shifted generated sets as described in Section 2.3.2. and
we used totally L = |I(1,...,t−1) × I(t)| many samples in step 2c in each dimension increment
step of the dimension incremental method. All test runs were successful and the results are
presented in Table 3.10. The total numbers of samples in the column “#samples” is similar
to the results from Example 3.9 in Table 3.9 when sub-sampling on the rank-1 lattices and
the relative `2-errors are still less than 10−9 in Table 3.10.

N d γ2 |Hd,γ
N | max cand #samples rel. `2-error

32 6 0.80 11 593 173 397 383 585 1.2e-10
32 8 0.80 15 477 197 081 763 225 1.3e-10
32 10 0.80 16 871 197 081 1 098 746 1.1e-10

16 10 0.87 22 953 200 541 884 929 1.1e-10
16 15 0.87 25 963 200 541 1 630 891 8.7e-11
16 20 0.87 26 185 200 541 2 021 078 3.2e-11

32 10 0.84 40 387 531 145 2 633 711 3.2e-10
32 15 0.84 44 201 531 145 4 283 138 2.2e-10
32 20 0.84 44 433 531 145 5 164 672 1.5e-10

Table 3.10: Results for trigonometric polynomials with frequencies supported on symmetric
weighted hyperbolic cross Hd,γ

N with weights γ = (1, γ2, γ
2
2 , . . . , γ

d−1
2)> using `1

minimization with random generated set samples with Algorithm 2 when consid-
ering frequencies within Γ = ĜdN .

3.3 Tensor-product function

Next, we apply our method from Section 2.2 to a multivariate periodic function f : Td → C,
which is not sparse in frequency domain. For this, we perform all the steps as described
in Section 2.2.1. However, we also have to take into consideration that the situation may

32

occur where the index set I(t) = [−N,N] ∩ Z after computing (2.5) and the index sets
I(1,...,t) = [−N,N]t ∩ Zt after computing (2.7) for some or all t ∈ {2, . . . , d}. The resulting
index set of detected frequencies I(1,...,d) could be the full cube ĜdN or a subset with cardinality
of the same magnitude. Correspondingly, for a general search space Γ ⊂ Zd, |Γ| < ∞, the
index sets I(1,...,t) could be P(1,...,t)(Γ) for some or all t ∈ {2, . . . , d} and the resulting index

set of detected frequencies I(1,...,d) could be the search space Γ itself. Therefore, we apply
strategies to truncate the index sets I(t) and I(1,...,t), t ∈ {2, . . . , d}, in Section 3.3.1 and 3.3.2.

Here, we consider the function f : T10 → R,

f((x1, . . . , x10)>) :=
∏

t∈{1,3,8}

N2(xt) +
∏

t∈{2,5,6,10}

N4(xt) +
∏

t∈{4,7,9}

N6(xt), (3.1)

where Nm : T→ R is the B-Spline of order m ∈ N,

Nm(x) := Cm
∑
k∈Z

sinc
(π
m
k
)m

cos(πk) e2πikx,

with a constant Cm > 0 such that ‖Nm|L2(T)‖ = 1. We approximate the function f by
trigonometric polynomials (1.1). For this, we determine a frequency index set I = I(1,...,10) ⊂
Γ = Ĝ10

N and compute approximated Fourier coefficients ˜̂pk, k ∈ I, from sampling values
of f as described in Section 2.2.1. We expect the frequency index set to “consist of” three
manifolds, a three-dimensional symmetric hyperbolic cross in the dimensions 1, 3, 8, a four-
dimensional symmetric hyperbolic cross in the dimensions 2, 5, 6, 10 and a three-dimensional
symmetric hyperbolic cross in the dimensions 4, 7, 9. Furthermore, the cardinality |I| should
be O(N log3N) and the largest rank-1 lattice of size M = O(N3 log2N). All tests were run
10 times and the relative L2(T10) approximation error

‖f − S̃If |L2(T10)‖/‖f |L2(T10)‖ =

√
‖f |L2(T10)‖2 −

∑
k∈I
|f̂k|2 +

∑
k∈I
| ˜̂pk − f̂k|2/‖f |L2(T10)‖

was computed, where S̃If :=
∑
k∈I

˜̂pk e2πik·◦.

3.3.1 s-sparse

One possibility is to use the sparsity input parameter s ∈ N of Algorithm 1 and 2. Conse-
quently, the detected frequencies in each dimension increment step t are truncated and only
those frequencies are used which belong to the s � |Γ| < ∞ largest Fourier coefficients ˜̂pt,kt
and ˜̂p(1,...,t),k. The relative threshold parameter θ ∈ (0, 1) should then be set to a very small
value like θ := 10−12. Due to possible aliasing effects, see (2.6) and (2.8), it might be reason-
able to use a larger value of s for the intermediate dimension increment steps t ∈ {2, . . . , d−1}
than for the final truncation of the index set I(1,...,d) in dimension increment step t = d.

Example 3.10. s-sparse approximate reconstruction of a function (“A1-R1L” and “A2-
R1L”). We set N = 16, 32, 64 and search for frequencies within the cube Γ = Ĝ10

N . We
use r := 5 detection iterations and set the relative threshold parameter θ := 10−7. The
used parameters and results are presented in Table 3.11 for Algorithm 1 and in Table 3.12
for Algorithm 2. In the column “sparsity”, two parameters are found. The first one is the
maximal number of frequencies belonging to the largest Fourier coefficients, which are used

33

for the approximate reconstruction. The second sparsity number is the maximal number
|I(1,...,t)|, t = 1, . . . , d − 1, of frequencies and Fourier coefficients kept during the computa-
tion. Here, the column “rel. L2-error” contains the relative L2(T10) approximation error
‖f− S̃If |L2(T10)‖/‖f |L2(T10)‖. The remaining columns have the same meaning as described
in Section 3.1. We observe that for increasing sparsity parameter, the number of frequency
candidates and samples increases while the relative L2(T10) approximation error decreases.
Furthermore, it is not sufficient to only increase the used sparsity s but the refinement param-
eter N also needs to be increased. Using a large refinement parameter N and a small target
sparsity s results in the usage of distinctly more samples, e.g., about 41 million samples for
N = 16 and sparsity s = 1000 compared to about 156 million samples for N = 64 in Table
3.11. The relative L2(T10) approximation errors for Algorithm 1 and 2 are almost identical.

N sparsity max cand max M #samples rel. L2-error

16 1 000/02 000 105 468 2 005 179 40 776 032 1.2e-02
16 2 000/04 000 213 345 7 400 212 109 229 485 4.3e-03
16 3 000/06 000 302 610 10 731 031 210 260 190 3.5e-03
16 4 000/08 000 402 468 16 554 352 306 647 729 3.3e-03

32 1 000/02 000 225 875 4 387 563 62 971 360 1.2e-02
32 2 000/04 000 392 795 15 793 929 232 962 422 3.4e-03
32 3 000/06 000 597 155 26 146 120 439 980 245 1.7e-03
32 4 000/08 000 830 375 40 409 497 686 588 714 1.4e-03
32 5 000/10 000 1 021 410 56 177 093 949 349 167 1.2e-03

64 1 000/02 000 483 105 5 541 810 155 887 998 1.2e-02
64 2 000/04 000 913 257 16 775 973 354 498 370 3.4e-03
64 3 000/06 000 1 167 321 28 981 586 591 378 719 1.6e-03
64 4 000/08 000 1 512 654 44 180 388 819 754 426 9.8e-04
64 5 000/10 000 1 982 214 136 551 319 2 170 526 041 7.1e-04
64 6 000/12 000 2 256 790 199 917 497 2 991 975 918 5.6e-04

Table 3.11: Results for function f : T10 → R from (3.1) for Algorithm 1 when considering
frequencies within Γ = Ĝ10

N . “#samples” means worst case number of function
evaluations for 1 test run (out of the 10 runs).

Example 3.11. s-sparse approximate reconstruction of a function restricting the search space
(“A1-R1L” with Γ = Hd,1

N). In this example, we use the identical test sets and input param-
eters as in Example 3.10 except for the search space Γ. If we assume that the frequencies
belonging to the largest Fourier coefficients lie within a hyperbolic cross Γ = H10,1

N , i.e., if
we restrict the search space for the frequencies when using Algorithm 1, then the number of
frequency candidates and the total number of samples can further be reduced while obtaining
almost the same relative L2(T10) approximation errors. The numerical results for this case
can be found in Table 3.13. In the case N = 64 and sparsity s = 4000, we used only about
1/5 of total samples compared with the results from Example 3.10 in Table 3.11, where we
assumed that the frequencies belonging to the largest Fourier coefficients lie within the cube
Γ = Ĝ10

N .

34

N sparsity max cand max M #samples rel. L2-error

16 1 000/02 000 104 016 2 275 218 41 440 344 1.2e-02
16 2 000/04 000 200 071 7 103 613 112 486 704 4.3e-03
16 3 000/06 000 293 766 11 447 502 211 976 106 4.2e-03
16 4 000/08 000 359 271 15 939 363 290 592 654 3.3e-03

32 1 000/02 000 217 230 5 867 095 76 456 418 1.2e-02
32 2 000/04 000 375 960 13 411 060 213 581 140 3.4e-03
32 3 000/06 000 609 895 36 135 125 362 485 290 1.7e-03
32 4 000/08 000 776 295 47 140 210 590 538 705 1.4e-03
32 5 000/10 000 922 025 67 627 755 788 170 875 1.2e-03

64 1 000/02 000 426 990 6 017 334 72 186 288 1.2e-02
64 2 000/04 000 766 002 21 572 928 278 124 358 3.4e-03
64 3 000/06 000 1 220 727 72 115 386 698 575 406 1.6e-03
64 4 000/08 000 1 423 386 88 214 715 870 806 143 9.8e-04
64 5 000/10 000 1 820 190 125 092 203 1 293 939 642 7.1e-04
64 6 000/12 000 2 180 487 164 668 113 1 660 790 581 5.6e-04

Table 3.12: Results for function f : T10 → R from (3.1) for Algorithm 2 when considering
frequencies within Γ = Ĝ10

N . “#samples” means worst case number of function
evaluations for 1 test run (out of the 10 runs).

N sparsity |H10,1
N | max cand max M #samples rel. L2-error

16 1 000/02 000 45 548 649 17 742 512 496 7 362 160 1.2e-02
16 2 000/04 000 45 548 649 27 112 1 190 389 15 922 974 4.4e-03
16 3 000/06 000 45 548 649 37 268 1 795 031 22 501 808 3.6e-03
16 4 000/08 000 45 548 649 45 662 2 449 317 31 680 101 3.6e-03

32 1 000/02 000 182 183 661 27 740 1 027 474 14 476 254 1.2e-02
32 2 000/04 000 182 183 661 43 898 2 308 048 33 723 808 3.4e-03
32 3 000/06 000 182 183 661 55 583 3 818 404 47 146 657 1.7e-03
32 4 000/08 000 182 183 661 65 510 5 413 888 65 824 783 1.4e-03
32 5 000/10 000 182 183 661 74 514 7 232 979 86 519 822 1.3e-03

64 1 000/02 000 696 036 321 50 014 1 745 803 28 427 634 1.2e-02
64 2 000/04 000 696 036 321 64 596 3 891 632 64 616 902 3.4e-03
64 3 000/06 000 696 036 321 87 599 6 779 467 101 748 629 1.6e-03
64 4 000/08 000 696 036 321 106 452 10 035 867 157 725 439 9.8e-04
64 5 000/10 000 696 036 321 122 236 15 199 650 186 959 406 7.2e-04
64 6 000/12 000 696 036 321 134 195 17 019 323 225 136 643 5.6e-04

Table 3.13: Results for function f : T10 → R from (3.1) for Algorithm 1 when only considering
frequencies within Γ = H10,1

N . “#samples” means worst case number of function
evaluations for 1 test run (out of the 10 runs).

In the following example, we compare the numerical results of the algorithms presented in
this paper with the ones when applying the non-incremental, single-step algorithm from [29].
We observe that the latter one has a drastically higher number of samples for similar relative
L2(T10) approximation errors.

35

Example 3.12. s-sparse approximate reconstruction of a function using a single-step algo-
rithm. In this example, we do not use the dimension incremental method to approximately
reconstruct the largest Fourier coefficients of the function f from (3.1) but we apply the direct
single-step method described in [29]. This means we have to choose frequency index sets I
which contain the largest Fourier coefficients of f . Due to the tensor product structure of our
function f , we used hyperbolic cross index sets I = H10,1

N := {k ∈ Zd :
∏10
t=1 max(1, |kt|) ≤

N}, N = 4, 8, 16, and the corresponding reconstructing rank-1 lattices for H10,1
N from [29,

Table 6.2], We sampled the function f at the rank-1 lattice nodes and computed all approx-

imated Fourier coefficients
ˆ̃
fk, k ∈ H10,1

N . Then, we used sparsity s = 1000, 2000, 3000, 4000
many of the largest of these Fourier coefficients for the function approximation. The results
are shown in Table 3.14. Comparing the number of samples and obtained relative L2(T10)
approximation errors with the results of our dimension incremental method in Table 3.11 and
3.12 for N = 16, we observe that the errors are almost the same and the numbers of samples
are dramatically larger for the single-step algorithm. This means that the dimension incre-
mental reconstruction method required distinctly less samples than the single-step algorithm
while achieving similar approximation errors.

N sparsity |H10,1
N | M = #samples rel. L2-error

4 1 000 2 421 009 30 780 958 3.8e-02
4 2 000 2 421 009 30 780 958 3.8e-02

8 1 000 10 819 089 194 144 634 1.4e-02
8 2 000 10 819 089 194 144 634 1.1e-02
8 3 000 10 819 089 194 144 634 1.1e-02

16 1 000 45 548 649 2 040 484 044 1.2e-02
16 2 000 45 548 649 2 040 484 044 4.3e-03
16 3 000 45 548 649 2 040 484 044 3.6e-03
16 4 000 45 548 649 2 040 484 044 3.6e-03

Table 3.14: Results for function f : T10 → R from (3.1) for single-step algorithm from [29]
when only considering frequencies within Γ = H10,1

N .

3.3.2 threshold-based

Another variant is to use the relative threshold parameter θ ∈ (0, 1) of Algorithm 1 and 2
for the truncation. The sparsity input parameter s ∈ N is set to |Γ|. We remark that due
to the aliasing (2.6) and (2.8), smaller thresholds for the intermediate dimension increment
steps t ∈ {2, . . . , d− 1} should be used.

We search for frequencies within the cube Γ = Ĝ10
N for various refinements N ∈ N belonging

to those frequencies above a certain relative threshold and we use r := 10 detection iterations.

Example 3.13. Threshold-based approximate reconstruction of a function (“A1-R1L” and
“A2-R1L”). The parameters and results are shown in Table 3.15 for Algorithm 1 and in Ta-
ble 3.16 for Algorithm 2. For the truncation of the one-dimensional index sets I(t) of frequency
candidates for component t, t ∈ {1, . . . , 10}, the relative threshold parameter θ := 10−12 is
used. Moreover, for the truncation of the final index set I(1,...,10), the relative threshold pa-
rameter θ ∈ (0, 1) with the value from the column “threshold” is used and θ :=“threshold”/10

36

for all other truncations. We observe that the numbers of frequency candidates, the rank-1
lattice sizes and the total numbers of samples are dramatically smaller compared to the re-
sults from Section 3.3.1 while the relative L2(T10) approximation errors are about the same
for similar numbers |I| of Fourier coefficients ˜̂pk used for the approximation S̃If of f . More-
over, the total numbers of samples are distinctly lower when using Algorithm 1 compared to
Algorithm 2.

N threshold |I| max cand max M #samples rel. L2-error

64 1.0e-02 491 3 885 21 970 254 530 1.4e-01
64 1.0e-03 1 121 27 521 217 494 2 789 050 1.1e-02
64 1.0e-04 3 013 123 195 903 906 17 836 042 1.7e-03
64 1.0e-05 7 163 256 065 7 820 238 82 222 438 4.7e-04
64 1.0e-06 19 771 1 096 335 66 734 128 439 149 744 3.9e-04

2 1.0e-02 439 1 325 5 860 72 205 1.4e-01
4 1.0e-03 1 039 4 571 36 554 494 564 2.8e-02
8 1.0e-04 2 651 16 599 236 418 3 183 298 1.1e-02

16 1.0e-04 2 807 28 611 388 083 4 912 259 3.5e-03
32 3.0e-05 4 645 82 095 1 327 468 19 226 647 1.3e-03
64 1.0e-05 7 163 256 065 7 820 238 82 222 438 4.7e-04

128 3.0e-06 13 031 849 899 21 505 318 260 000 740 1.8e-04

Table 3.15: Results for function f : T10 → R from (3.1) for Algorithm 1 when considering
frequencies within Γ = Ĝ10

N . “#samples” means worst case number of function
evaluations for 1 test run (out of the 10 runs).

N threshold |I| max cand max M #samples rel. L2-error

64 1.0e-02 477 8041 68 055 890 640 6.5e-02
64 1.0e-03 1 111 77 015 768 840 11 836 434 1.0e-02
64 1.0e-04 2 991 251 679 4 599 792 60 717 348 1.6e-03
64 1.0e-05 7 371 661 059 39 765 728 338 464 342 4.7e-04
64 1.0e-06 20 371 3 091 527 312 897 648 1 989 191 578 4.0e-04

2 1.0e-02 453 2 375 11 955 196 055 9.7e-02
4 1.0e-03 1 041 11 511 147 915 2 057 733 2.8e-02
8 1.0e-04 2 683 55 607 1 183 370 20 299 628 9.2e-03

16 1.0e-04 2 799 96 575 2 255 498 22 864 862 3.4e-03
32 3.0e-05 4 623 297 185 14 475 426 77 830 316 1.2e-03
64 1.0e-05 7 369 665 861 36 740 738 322 531 170 4.7e-04

128 3.0e-06 13 381 2 110 227 166 717 512 1 344 032 822 1.7e-04

Table 3.16: Results for function f : T10 → R from (3.1) for Algorithm 2 when considering
frequencies within Γ = Ĝ10

N . “#samples” means worst case number of function
evaluations for 1 test run (out of the 10 runs).

Example 3.14. Threshold-based approximate reconstruction of a function restricting the
search space (“A1-R1L” with Γ = Hd,1

N). Again, if we assume that the frequencies belonging

37

to the largest Fourier coefficients of f lie within the hyperbolic cross, Γ = H10,1
N , we can dis-

tinctly reduce the total number of function samples when using Algorithm 1 while obtaining
similar relative L2(Td) approximation errors. We used the identical test parameters as in
Example 3.13 except for the search space Γ. The numerical results for this assumption are
presented in Table 3.17.

N threshold |H10,1
N | |I| max cand max M #samples rel. L2-error

64 1.0e-02 696 036 321 479 3 613 20 033 257 096 7.1e-02
64 1.0e-03 696 036 321 1 101 10 623 107 837 1 662 533 1.1e-02
64 1.0e-04 696 036 321 3 009 27 561 617 400 7 740 420 1.7e-03
64 1.0e-05 696 036 321 6 923 46 373 2 015 127 19 288 758 5.1e-04
64 1.0e-06 696 036 321 14 085 66 987 5 408 176 42 893 192 4.3e-04

2 1.0e-02 452 709 399 869 3 828 49 469 1.3e-01
4 1.0e-03 2 421 009 927 2 427 19 150 267 538 3.9e-02
8 1.0e-04 10 819 089 2 301 6 407 85 592 1 101 462 1.1e-02

16 1.0e-04 45 548 649 2 655 9 881 164 590 2 071 588 3.6e-03
32 3.0e-05 182 183 661 4 301 20 991 601 490 5 679 603 2.7e-03
64 1.0e-05 696 036 321 6 937 46 335 2 198 884 20 968 600 5.1e-04

128 3.0e-06 2.53e+09 12 637 104 409 8 400 796 73 500 131 1.8e-04

Table 3.17: Results for function f : T10 → R from (3.1) for Algorithm 1 when only considering
frequencies within Γ = H10,1

N . “#samples” means worst case number of function
evaluations for 1 test run (out of the 10 runs).

3.4 Random sparse trigonometric polynomial with complex Gaussian noise

In this subsection, we test the robustness to noise of our method from Section 2.2. We
construct random multivariate trigonometric polynomials p with frequencies supported within
the cube ĜdN = [−N,N]d ∩ Zd. In doing so, we randomly choose |supp p̂| many frequencies

k ∈ ĜdN and we set the corresponding Fourier coefficients p̂k := e2πiϕk ∈ C, |p̂k| = 1,
k ∈ I = supp p̂, where the angles ϕk ∈ [0, 1) are chosen uniformly at random. For the
reconstruction of the trigonometric polynomials p, we only assume supp p̂ ⊂ Γ = ĜdN . We
perturb the samples p(xj) taken at nodes xj ∈ Td, j = 0, . . . ,M − 1, of the trigonometric
polynomial p by additive complex white Gaussian noise ηj ∈ C with zero mean and standard
deviation σ, i.e., we have measurements f(xj) = p(xj) + ηj . Then, we may approximately
compute the signal-to-noise ratio (SNR) in our case by

SNR ≈
∑M−1

j=0 |p(xj)|2/M∑M−1
j=0 |ηj |2/M

≈
∑
k∈supp p̂ |p̂k|2

σ2
=
|supp p̂|
σ2

.

Correspondingly, we choose σ :=
√
|supp p̂|/

√
SNR for a targeted SNR value. For our nu-

merical tests in MATLAB, we generate the noise by ηj := σ/
√

2 * (randn + 1i*randn),
j = 0, . . . ,M −1. The SNR is often measured using the logarithmic decibel scale (dB), where
SNRdB = 10 log10 SNR and SNR = 10SNRdB/10, i.e., a linear SNR = 108 corresponds to a
logarithmic SNRdB = 80dB and SNR = 1 corresponds to SNRdB = 0dB.

38

SNRdB noise σ #detect. #samples min #freq. success rate rel.
iter. r correct (all freq. correct) `2-error

80 3.2e-03 1 22 216 155 998 0.995 4.5e-02
70 1.0e-02 1 23 004 475 998 0.986 4.5e-02
60 3.2e-02 1 22 381 905 998 0.974 5.5e-02
50 1.0e-01 1 22 533 615 996 0.893 7.1e-02
40 3.2e-01 1 22 434 295 994 0.722 8.4e-02
30 1.0e+00 1 22 662 055 988 0.319 1.2e-01
20 3.2e+00 1 22 646 975 979 0.032 1.5e-01
10 1.0e+01 1 23 084 425 950 0.000 2.3e-01
0 3.2e+01 1 23 185 435 774 0.000 5.0e-01

80 3.2e-03 2 41 283 775 1 000 1.000 2.2e-06
70 1.0e-02 2 42 553 485 1 000 1.000 7.4e-06
60 3.2e-02 2 41 799 485 1 000 1.000 2.4e-05
50 1.0e-01 2 49 597 275 1 000 1.000 7.5e-05
40 3.2e-01 2 55 243 565 998 0.998 4.5e-02
30 1.0e+00 2 41 881 645 998 0.994 5.5e-02
20 3.2e+00 2 42 064 815 996 0.933 7.7e-02
10 1.0e+01 2 41 512 185 990 0.465 1.1e-01
0 3.2e+01 2 43 322 695 942 0.000 2.5e-01

40 3.2e-01 3 61 300 655 1 000 1.000 2.3e-04
30 1.0e+00 3 61 847 825 1 000 1.000 7.1e-04
20 3.2e+00 3 61 477 195 998 0.998 4.5e-02
10 1.0e+01 3 60 542 365 996 0.936 6.4e-02
0 3.2e+01 3 61 832 225 984 0.015 1.4e-01

20 3.2e+00 4 82 104 165 1 000 1.000 2.4e-03
10 1.0e+01 4 80 312 115 998 0.997 4.5e-02
0 3.2e+01 4 81 618 355 994 0.442 9.1e-02

20 3.2e+00 5 101 459 605 1 000 1.000 2.3e-03
10 1.0e+01 5 99 610 745 1 000 1.000 7.3e-03
0 3.2e+01 5 98 090 005 997 0.869 7.4e-02

Table 3.18: Results for random sparse trigonometric polynomials with sparsity |supp p̂| =
1 000 perturbed by additive white Gaussian noise using reconstructing rank-1
lattices and Algorithm 2.

Example 3.15. Sampling along reconstructing rank-1 lattices using Algorithm 2 (“A2-R1L”),
where the samples are perturbed by additive complex Gaussian noise. We choose the dimen-
sionality d := 10, the refinement N := 32 and the sparsity |supp p̂| := 1 000. We apply Algo-
rithm 2 and we set the search space Γ := Ĝ10

32, the sparsity parameter s := 1 000 as well as the
threshold parameter θ := 10−12. The algorithm is run setting the parameter r for the number
of detection iterations to r := 1, 2, 3, 4, 5 and using the SNR values SNRdB := 80, 70, . . . , 10, 0
(which corresponds to SNR = 108, 107, . . . , 10, 1). For each of these 45 test settings, Algo-
rithm 2 is repeatedly run 1 000 times. In each of the total 45 000 test runs, new random
frequencies and Fourier coefficients are drawn. The numerical results are presented in Ta-

39

ble 3.18. The total number of samples for each of the 1 000 repetitions was computed and
the maximum of these numbers for each test setting can be found in the column “#samples”.
In the column “min #freq. correct”, the minimal number of correctly detected frequencies
|I(1,...,10) ∩ supp p̂| for the 1 000 repetitions is shown, where supp p̂ denotes the set of true (in-
put) frequencies of a trigonometric polynomial p and I(1,...,10) the frequencies returned by the
detection algorithm. The column “success rate (all freq. correct)” represents the relative num-
ber of the 1 000 repetitions where all frequencies were successfully detected, I(1,...,10) = supp p̂.
Moreover, the relative `2-error ‖(˜̂pk)k∈I − (p̂k)k∈I‖2/‖(p̂k)k∈I‖2 of the computed coefficients
(˜̂pk)k∈I(1,...,10) was determined for each repetition, where I := supp p̂ ∪ I(1,...,10) and ˜̂pk := 0
for k ∈ I \ I(1,...,10), and the column “rel. `2-error” contains the maximal value of the 1 000
repetitions. For test settings which are not shown in Table 3.18 all frequencies in all 1 000 rep-
etitions where correctly detected, i.e., the column “min #freq. correct”=1 000 and “success
rate”=1.000. In general, we observe that for decreasing SNR values, the minimal number of
correctly detected frequencies and the success rate decrease. When using r = 1 test iterations,
there were always some (of the 1 000 test runs), where one or two frequencies were incorrect.
However, in all test runs of all test settings, more than 77 percent of the frequencies were
correctly detected, even for the case SNRdB = 0 (SNR = 1) where the signal level equals
the noise level. When we increased the number of detection iterations r, the SNR level at
which all frequencies in all of the 1 000 test runs were correctly detected also decreased. For
instance for r = 5 detection iterations, the success rate was at 100 percent including the case
SNRdB = SNR = 10. However, we require about 5 times of the samples for r = 5 detection
iterations compared to the test settings with r = 1.

4 Conclusion

In this paper, we presented methods for the approximate reconstruction of the largest Fourier
coefficients of high-dimensional multivariate period functions, which are sparse in frequency
domain, from sampling values. In doing so, it is assumed that the exact location of these
Fourier coefficients is unknown and only a (possibly) very large search space Γ ⊂ Zd containing
the corresponding frequencies is given.

Our method, presented in Section 2.2, is based on sampling such a function along the nodes
of rank-1 lattices and on applying one-dimensional fast Fourier transforms on the obtained
sampling values. Consequently, the performed numerical computations are fast and stable. In
contrast to other methods, e.g., see [18, 21], we approximately reconstruct first the (projected)
Fourier coefficients and select then the corresponding frequencies which belong to the largest
or non-zero Fourier coefficients. In numerical tests in Section 3.1 and 3.2, we successfully
applied our method. Additionally, we successfully tested the method on a 10-dimensional
function which has infinitely many Fourier coefficients in Section 3.3 and obtained approx-
imately the largest Fourier coefficients and the corresponding frequencies. Furthermore, we
successfully reconstructed the frequencies and Fourier coefficients of trigonometric polynomi-
als from sampling values which were perturbed by white Gaussian noise in Section 3.4.

Moreover, we discussed a possibility to reduce the number of samples by applying methods
from compressed sensing in Section 2.3 with sub-sampling on rank-1 lattices and generated
sets. The application of these sub-sampling methods on trigonometric polynomials in Sec-
tion 3.1 and 3.2 also succeeded and we compared the numerical results with the ones of the
sampling on (full) rank-1 lattices. Additionally, we discussed a variant of Prony’s method

40

in Section 2.4 with sub-sampling on rank-1 lattices and successfully tested this method in
Section 3.1.

method samples arithmetic complexity

A1-R1L O(d s2N) O(d s3N2)
A2-R1L O(d s2N) O(d s3 + d s2N log(sN))
A2-`1-sR1L O(d s log4(sN) + dN) O(d s3 + dR s2N log(sN))
`1-GS O(d s log4(sN) + dN) O

(
dR s(log5(sN) +N log(sN))

)
prony O(d s+ dN) O(d s3)

Table 4.1: Sample and arithmetic complexity of the methods presented in this paper for the
case

√
N . s . Nd with sparsity s and search space Γ = [−N,N]d ∩ Zd.

method samples arithmetic complexity

A1-R1L O(dN2) O(d sN3)
A2-R1L O(dN2) O(dN2 logN)
A2-`1-sR1L O(d s log4(sN) + dN) O(dRN2 logN)
`1-GS O(d s log4(sN) + dN) O

(
dR s(log5(sN) +N log(sN))

)
prony O(d s+ dN) O(d sN + dN logN)

Table 4.2: Sample and arithmetic complexity of the methods presented in this paper for the
case s .

√
N with sparsity s and search space Γ = [−N,N]d ∩ Zd.

Asymptotic upper bounds for the number of samples and arithmetic operations are given
in Table 4.1 and 4.2 for the cases where the sparsity s is within the range

√
N . s . Nd

and s .
√
N , respectively. The methods “A1-R1L” and “A2-R1L” are Algorithm 1 and

2 from Section 2.2.1, respectively. “A2-`1-sR1L” and “`1-GS” mean `1 minimization with
sub-sampling on rank-1 lattice and sampling on generated sets from Section 2.3.1 and 2.3.2,
respectively. “prony” is Prony’s method from Section 2.4. We stress on the fact that when
comparing different approaches for the sparse reconstruction from a practical point of view,
one should also consider the dependence on the dimension d, since algorithms having an
exponential or super-exponential dependence on d may not be applicable in practice for higher
dimensions d. Moreover, also constants independent of d, which may depend on the specific
implementation, can heavily influence the number of arithmetic operations and consequently
the computation times. For instance, the observed computation times in Table 3.6 of the
implementation of Prony’s method from Section 2.4 are distinctly higher compared to the
implementation of Algorithm 2 from Section 2.2.1, whereas the arithmetic complexity is not
higher for Prony’s method.

Acknowledgements

We thank the referees for the valuable suggestions and we thank Lutz Kämmerer for numerous
valuable discussions on the presented subject. Moreover, we gratefully acknowledge support
by the German Research Foundation (DFG) within the Priority Program 1324, project PO
711/10-2.

41

References

[1] G. Baszenski and F.-J. Delvos. A discrete Fourier transform scheme for Boolean sums of
trigonometric operators. In C. K. Chui, W. Schempp, and K. Zeller, editors, Multivariate
Approximation Theory IV, ISNM 90, pages 15 – 24. Birkhäuser, Basel, 1989.

[2] E. J. Candès. Compressive sampling. In International Congress of Mathematicians. Vol.
III, pages 1433 – 1452. Eur. Math. Soc., Zürich, 2006.

[3] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans. Inform. Theory,
51:4203 – 4215, 2005.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput., 20:33 – 61, 1998.

[5] A. Christlieb, D. Lawlor, and Wang. A multiscale sub-linear time fourier algorithm for
noisy data. Appl. Comput. Harmon. Anal., 2015. accepted.

[6] R. Cools, F. Y. Kuo, and D. Nuyens. Constructing lattice rules based on weighted degree
of exactness and worst case error. Computing, 87:63 – 89, 2010.

[7] J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The quasi-Monte
Carlo way. Acta Numer., 22:133 – 288, 2013.

[8] D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289 – 1306, 2006.

[9] S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing. Applied
and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2013.

[10] V. Gradinaru. Fourier transform on sparse grids: Code design and the time dependent
Schrödinger equation. Computing, 80:1 – 22, 2007.

[11] V. Gradinaru. Strang splitting for the time-dependent Schrödinger equation on sparse
grids. SIAM J. Numer. Anal., 46:103 – 123, 2007.

[12] M. Griebel and J. Hamaekers. Sparse grids for the Schrödinger equation. M2AN Math.
Model. Numer. Anal., 41:215 – 247, 2007.

[13] M. Griebel and J. Hamaekers. Fast discrete Fourier transform on generalized sparse
grids. In J. Garcke and D. Pflüger, editors, Sparse Grids and Applications - Munich
2012, volume 97 of Lect. Notes Comput. Sci. Eng., pages 75 – 107. Springer International
Publishing, 2014.

[14] M. Griebel and S. Knapek. Optimized general sparse grid approximation spaces for
operator equations. Math. Comp., 78:2223 – 2257, 2009.

[15] K. Hallatschek. Fouriertransformation auf dünnen Gittern mit hierarchischen Basen.
Numer. Math., 63:83 – 97, 1992.

[16] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal sparse Fourier trans-
form. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Com-
puting, pages 563 – 578. ACM, 2012.

42

[17] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical algorithm for
sparse Fourier transform. In Proceedings of the Twenty-third Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 1183 – 1194. SIAM, 2012.

[18] P. Indyk and M. Kapralov. Sample-Optimal Fourier Sampling in Any Constant Dimen-
sion – Part I. http://arxiv.org/abs/1403.5804, 2014.

[19] P. Indyk, M. Kapralov, and E. Price. (Nearly) sample-optimal sparse Fourier transform.
In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing,
pages 563 – 578. ACM, 2014.

[20] M. A. Iwen. Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math.,
10:303 – 338, 2010.

[21] M. A. Iwen. Improved approximation guarantees for sublinear-time Fourier algorithms.
Appl. Comput. Harmon. Anal., 34:57–82, 2013.

[22] L. Kämmerer. Reconstructing hyperbolic cross trigonometric polynomials by sampling
along rank-1 lattices. SIAM J. Numer. Anal., 51:2773 – 2796, 2013.

[23] L. Kämmerer. Reconstructing multivariate trigonometric polynomials by sampling along
generated sets. In J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, editors, Monte Carlo
and Quasi-Monte Carlo Methods 2012, pages 439 – 454. Springer Berlin Heidelberg, 2013.

[24] L. Kämmerer. High Dimensional Fast Fourier Transform Based on Rank-1 Lattice Sam-
pling. Dissertation. Universitätsverlag Chemnitz, 2014.

[25] L. Kämmerer. Reconstructing multivariate trigonometric polynomials from samples along
rank-1 lattices. In G. E. Fasshauer and L. L. Schumaker, editors, Approximation Theory
XIV: San Antonio 2013, pages 255 – 271. Springer International Publishing, 2014.

[26] L. Kämmerer and S. Kunis. On the stability of the hyperbolic cross discrete Fourier
transform. Numer. Math., 117:581 – 600, 2011.

[27] L. Kämmerer, S. Kunis, I. Melzer, D. Potts, and T. Volkmer. Computational Methods for
the Fourier Analysis of Sparse High-Dimensional Functions. In S. Dahlke, W. Dahmen,
M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab, and H. Yserentant,
editors, Extraction of Quantifiable Information from Complex Systems, 2014.

[28] L. Kämmerer, D. Potts, and T. Volkmer. Approximation of multivariate periodic func-
tions by trigonometric polynomials based on sampling along rank-1 lattice with gener-
ating vector of Korobov form. J. Complexity, 2014.

[29] L. Kämmerer, D. Potts, and T. Volkmer. Approximation of multivariate functions by
trigonometric polynomials based on rank-1 lattice sampling. J. Complexity, accepted,
2015.

[30] J. Keiner, S. Kunis, and D. Potts. Using NFFT3 - a software library for various noneq-
uispaced fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 – 30,
2009.

43

[31] S. Knapek. Approximation und Kompression mit Tensorprodukt-Multiskalenräumen.
Dissertation, Universität Bonn, 2000.

[32] S. Kunis and H. Rauhut. Random sampling of sparse trigonometric polynomials II,
Orthogonal matching pursuit versus basis pursuit. Found. Comput. Math., 8:737 – 763,
2008.

[33] F. Y. Kuo, I. H. Sloan, and H. Woźniakowski. Lattice rules for multivariate approximation
in the worst case setting. In H. Niederreiter and D. Talay, editors, Monte Carlo and
Quasi-Monte Carlo Methods 2004, pages 289 – 330. Springer Berlin Heidelberg, Berlin,
2006.

[34] D. Lawlor, Y. Wang, and A. Christlieb. Adaptive sub-linear time Fourier algorithms.
Adv. Adapt. Data Anal., 5(1):1350003, 25, 2013.

[35] D. Li and F. J. Hickernell. Trigonometric spectral collocation methods on lattices. In
S. Y. Cheng, C.-W. Shu, and T. Tang, editors, Recent Advances in Scientific Computing
and Partial Differential Equations, volume 330 of Contemp. Math., pages 121 – 132.
AMS, 2003.

[36] H. Munthe-Kaas and T. Sørevik. Multidimensional pseudo-spectral methods on lattice
grids. Appl. Numer. Math., 62:155 – 165, 2012.

[37] D. Needell and R. Vershynin. Uniform uncertainty principle and signal recovery via
regularized orthogonal matching pursuit. Found. Comput. Math., 9:317 – 334, 2009.

[38] D. Potts and M. Tasche. Parameter estimation for multivariate exponential sums. Elec-
tron. Trans. Numer. Anal., 40:204 – 224, 2013.

[39] D. Potts and M. Tasche. Parameter estimation for nonincreasing exponential sums by
Prony-like methods. Linear Algebra Appl., 439:1024 – 1039, 2013.

[40] H. Rauhut. Random sampling of sparse trigonometric polynomials. Appl. Comput.
Harmon. Anal., 22:16 – 42, 2007.

[41] H. Rauhut. On the impossibility of uniform sparse reconstruction using greedy methods.
Sampl. Theory Signal Image Process., 7:197 – 215, 2008.

[42] H. Rauhut. Stability results for random sampling of sparse trigonometric polynomials.
IEEE Trans. Inform. Theory, 54:5661 – 5670, 2008.

[43] J. Shen, T. Tang, and L.-L. Wang. Spectral Methods, volume 41 of Springer Ser. Comput.
Math. Springer-Verlag Berlin Heidelberg, Berlin, 2011.

[44] I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science Publi-
cations. The Clarendon Press Oxford University Press, New York, 1994.

[45] V. N. Temlyakov. Reconstruction of periodic functions of several variables from the values
at the nodes of number-theoretic nets. Anal. Math., 12:287 – 305, 1986. In Russian.

[46] V. N. Temlyakov. Approximation of periodic functions. Computational Mathematics and
Analysis Series. Nova Science Publishers Inc., Commack, NY, 1993.

44

[47] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse recon-
struction, 2007. http://www.cs.ubc.ca/labs/scl/spgl1.

[48] E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis pursuit
solutions. SIAM J. Sci. Comput., 31:890 – 912, 2008.

45

	1 Introduction
	2 Reconstruction of trigonometric polynomials
	2.1 Reconstructing rank-1 lattices for known frequency index sets
	2.2 Dimension incremental reconstruction in the multidimensional case d>=2
	2.2.1 The method
	2.2.2 Successful and failed detection
	2.2.3 Number of samples and arithmetic complexity

	2.3 Reducing the number of samples for the dimension incremental reconstruction of trigonometric polynomials using compressed sensing
	2.3.1 Sub-sampling on the rank-1 lattices
	2.3.2 Sub-sampling using random generated sets

	2.4 Reducing the number of samples using Prony's method

	3 Numerical results
	3.1 Random sparse trigonometric polynomial
	3.2 Symmetric weighted hyperbolic cross
	3.3 Tensor-product function
	3.3.1 s-sparse
	3.3.2 threshold-based

	3.4 Random sparse trigonometric polynomial with complex Gaussian noise

	4 Conclusion

