Sparse high-dimensional FFT based on rank-1 lattice sampling

Daniel Potts* Toni Volkmer ${ }^{\dagger}$

In this paper, we suggest approximate algorithms for the reconstruction of sparse high-dimensional trigonometric polynomials, where the support in frequency domain is unknown. Based on ideas of constructing rank-1 lattices component-by-component, we adaptively construct the index set of frequencies belonging to the non-zero Fourier coefficients in a dimension incremental way. When we restrict the search space in frequency domain to a full grid $[-N, N]^{d} \cap \mathbb{Z}^{d}$ of refinement $N \in \mathbb{N}$ and assume that the cardinality of the support of the trigonometric polynomial in frequency domain is bounded by the sparsity $s \in \mathbb{N}$, our method requires $\mathcal{O}\left(d s^{2} N\right)$ samples and $\mathcal{O}\left(d s^{3}+d s^{2} N \log (s N)\right)$ arithmetic operations in the case $\sqrt{N} \lesssim s \lesssim N^{d}$. Moreover, we discuss possibilities to reduce the number of samples and arithmetic operations by applying methods from compressed sensing and a version of Prony's method. For the latter, the number of samples is reduced to $\mathcal{O}(d s+d N)$ and the number of arithmetic operations is $\mathcal{O}\left(d s^{3}\right)$. Various numerical examples demonstrate the efficiency of the suggested method.

Keywords and phrases : trigonometric polynomials, lattice rule, rank-1 lattice, sparse fast Fourier transform, approximation of multivariate functions, FFT.

2000 AMS Mathematics Subject Classification: 65T, 65T40, 42A10.

[^0]
1 Introduction

We consider the approximation of high-dimensional multivariate periodic functions $f \in$ $L^{1}\left(\mathbb{T}^{d}\right)$ by trigonometric polynomials $p \in \Pi_{I}:=\operatorname{span}\left\{\mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \circ}: \boldsymbol{k} \in I\right\}$ with frequencies supported on an unknown index set $I \subset \mathbb{Z}^{d}$ of finite cardinality,

$$
\begin{equation*}
p(\boldsymbol{x})=\sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \cdot \boldsymbol{x}}, \quad \hat{p}_{\boldsymbol{k}} \in \mathbb{C}, \tag{1.1}
\end{equation*}
$$

where $\mathbb{T}^{d} \simeq[0,1)^{d}$ is the d-dimensional torus. If such a function f fulfills certain smoothness conditions, characterized by the decay of its Fourier coefficients $\hat{f}_{\boldsymbol{k}}:=\int_{\mathbb{T}^{d}} f(\boldsymbol{x}) \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}} \mathrm{d} \boldsymbol{x}$, $\boldsymbol{k} \in \mathbb{Z}^{d}$, one theoretical possibility for a good approximation by a trigonometric polynomial $p \in \Pi_{I}$ is using the Fourier partial sum $S_{I} f:=\sum_{k \in I} \hat{f}_{k} \mathrm{e}^{2 \pi \mathrm{i} k \cdot 0} \in \Pi_{I}$ of f. In this case, error estimates are well-known.

A more practical approach than using the Fourier partial sum $S_{I} f$ of the exact Fourier coefficients $\hat{f}_{\boldsymbol{k}}, \boldsymbol{k} \in I$, of a function f is to construct a trigonometric polynomial $p \in \Pi_{I}$ by approximately computing the Fourier coefficients \hat{f}_{k} of f from sampling values using a suitable sampling scheme. In higher dimensions (e.g. $d>4$), (generalized) sparse grids $[46,31,12,14,13]$ are often used, where the corresponding frequency index sets I are (generalized) hyperbolic crosses. However, the discrete/fast Fourier transform [1, 15, 13] for the approximate computation of the Fourier coefficients $\hat{f}_{\boldsymbol{k}}, \boldsymbol{k} \in I$, of f from sparse grid samples may be numerically unstable, cf. [26]. Recently in [29, 28], another sampling scheme was considered, so-called reconstructing rank-1 lattices, which allow for the fast, constructive and perfectly stable approximate reconstruction of the Fourier coefficients $\hat{f}_{\boldsymbol{k}}, \boldsymbol{k} \in I$, of f, where $I \subset \mathbb{Z}^{d},|I|<\infty$, is an arbitrary frequency index set. Lattice rules have extensively been investigated for the integration of functions of many variables for a long time, cf. e.g., $[44,6,7]$ and the extensive reference list therein. Especially, rank-1 lattice rules have also been studied for the approximation of multivariate functions of suitable smoothness and similar error estimates are obtained like when sampling at sparse grid nodes, cf. [45, 35, 33, 36]. Using the ideas of a component-by-component construction of lattice rules for the numerical integration of trigonometric polynomials from [6], a generalized component-by-component construction method for reconstructing rank-1 lattices was presented in [22, 25].

For both sampling schemes, the sparse grids and the rank-1 lattices, a suitable frequency index set I has to be given in order to obtain a good approximation of the function f or a reasonable function class for f has to be known. In that case, very precise error estimates can be shown, see [13, 29]. In this paper, we assume that we do not have (exact) knowledge of a suitable frequency index set I and that we only know a relatively large superset $\Gamma \supset I$. Possible applications for our approach may be pseudo-spectral methods for solving partial differential equations as it was considered in the case of sparse grids discretization in $[10,11$, 43].

Even if we do not consider a general function f but a trigonometric polynomial $p \in \Pi_{I}$, reconstructing the non-zero Fourier coefficients $\mathbf{0} \neq \hat{p}_{\boldsymbol{k}} \in \mathbb{C}$ of p from sampling values becomes very hard in higher dimensions d if the frequency index set I is very large. In the following, we consider the recovery of all the frequencies $\boldsymbol{k} \in I$ belonging to non-zero Fourier coefficients $\mathbf{0} \neq \hat{p}_{\boldsymbol{k}} \in \mathbb{C}$ as well as the Fourier coefficients $\hat{p}_{\boldsymbol{k}} \in \mathbb{C}$ themselves from sampling values of a high-dimensional trigonometric polynomial p in (1.1). We assume that the (unknown) support $\operatorname{supp} \hat{p}:=\left\{\boldsymbol{k} \in I: \hat{p}_{\boldsymbol{k}} \neq 0\right\} \subset \mathbb{Z}^{d}$ of p (in frequency domain) lies within a superset $I=\Gamma$ of finite cardinality, $\operatorname{supp} \hat{p} \subseteq \Gamma$, and is "sparse" in some sense. In this setting, determining
the unknown support supp \hat{p} and the Fourier coefficients $\hat{p}_{\boldsymbol{k}}, \boldsymbol{k} \in \operatorname{supp} \hat{p}$, of the trigonometric polynomial p is equivalent to solving the sparse recovery problem

$$
\begin{equation*}
\|\tilde{\tilde{\boldsymbol{p}}}\|_{0}=\left|\left\{\boldsymbol{k} \in \Gamma: \tilde{\hat{p}}_{\boldsymbol{k}} \neq 0\right\}\right| \xrightarrow{\tilde{\tilde{\hat{p}}}} \min \quad \text { subject to } \quad \boldsymbol{A} \tilde{\tilde{\boldsymbol{p}}}=\boldsymbol{p}, \tag{1.2}
\end{equation*}
$$

for the under-determined case $|\Gamma|>|\mathcal{X}|$, where $\mathcal{X}:=\left\{\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{L-1}\right\}$ is the set of sampling nodes, $|\mathcal{X}|=L, \boldsymbol{p}:=\left(p\left(\boldsymbol{x}_{\ell}\right)\right)_{\boldsymbol{x}_{\ell} \in \mathcal{X}}$ is the vector of sampling values, $\boldsymbol{A}:=\left(\mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}_{\ell}}\right)_{\boldsymbol{x}_{\ell} \in \mathcal{X}, \boldsymbol{k} \in \Gamma}$ is the Fourier matrix and $\tilde{\hat{p}}:=\left(\tilde{\hat{p}}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in \Gamma}$ is the vector of (computed) Fourier coefficients.

In the case where the search space Γ (in frequency domain) is the full grid $\hat{G}_{N}^{d}:=\{\boldsymbol{k} \in$ $\left.\mathbb{Z}^{d}:\|\boldsymbol{k}\|_{\infty} \leq N\right\}$, the straighforward approach would be using a d-dimensional discrete Fourier transform (DFT) of length $(2 N+1, \ldots, 2 N+1)^{\top} \in \mathbb{N}^{d}$ to obtain Fourier coefficients $\tilde{\hat{p}}_{\boldsymbol{k}}, \boldsymbol{k} \in$ \hat{G}_{N}^{d}, which can be computed efficiently by the fast Fourier transform (FFT) in $\mathcal{O}\left(N^{d} \log N\right)$ arithmetic operations. The frequency index set $I=\operatorname{supp} \hat{p}$ is then obtained by $I:=\{\boldsymbol{k} \in$ $\left.\hat{G}_{N}^{d}: \tilde{\hat{p}}_{\boldsymbol{k}} \neq 0\right\}$ and the (non-zero) Fourier coefficients of p are given by $\hat{p}_{\boldsymbol{k}}:=\tilde{\hat{p}}_{\boldsymbol{k}}, \boldsymbol{k} \in I$. Clearly, this approach suffers severely from the curse of dimensions since $\left|\hat{G}_{N}^{d}\right|=(2 N+1)^{d}$ many sampling values are used and $\left|\hat{G}_{N}^{d}\right|=(2 N+1)^{d}$ many Fourier coefficients $\tilde{\hat{p}}_{\boldsymbol{k}}, \boldsymbol{k} \in \hat{G}_{N}^{d}$, are computed as an intermediate result.

One alternate approach to determine the unknown support supp \hat{p} and the Fourier coefficients $\hat{p}_{\boldsymbol{k}}, \boldsymbol{k} \in \operatorname{supp} \hat{p}$, from a smaller amount of samples is applying random sampling in compressed sensing $[8,2,9]$. Provided a so-called restricted isometry condition is fulfilled, the sparse recovery problem can be solved efficiently using ℓ_{1} minimization, cf. [3, 40, 41, 42, 37, 32]. The restricted isometry condition is fulfilled with probability at least $1-\eta$ if the number of samples $L \geq C|\operatorname{supp} \hat{p}| \log ^{4}(|\Gamma|) \log (1 / \eta)$, where C is an absolute constant independent of the dimension d. The arithmetic complexity is then $\mathcal{O}(L|\Gamma|)$, e.g., see [27, Sec. 3.4] and the references therein, and hence impractical for large search spaces Γ, e.g., $\Gamma=\hat{G}_{N}^{d}$.

Another possibility is using the so-called sparse fast Fourier transform, cf. [17, 16, 19, 18]. In [16], an algorithm is presented for the one-dimensional case and $\Gamma=\hat{G}_{N}^{1}$, which allows to determine the (unknown) support supp \hat{p} and the Fourier coefficients $\hat{p}_{\boldsymbol{k}}$ from $\mathcal{O}(|\operatorname{supp} \hat{p}| \log N)$ samples with an arithmetic complexity of $\mathcal{O}(|\operatorname{supp} \hat{p}| \log N)$, as well as a second algorithm, which allows the s-sparse ℓ_{2} best approximation of the Fourier coefficients of p from $\mathcal{O}(s \log (N) \log (N / s))$ samples with an arithmetic complexity of $\mathcal{O}(s \log (N) \log (N / s))$. In [19], another variant was discussed, where the number of samples is $\mathcal{O}(s \log N)(\log \log N)^{\mathcal{O}(1)}$ and the arithmetic complexity is $\mathcal{O}\left(s \log ^{2} N\right)(\log \log N)^{\mathcal{O}(1)}$. Recently in [18], a result was presented for the multivariate case with $\Gamma=\hat{G}_{N}^{d}$, where the number of required samples is $\mathcal{O}(s \log N)$ for constant d and the arithmetic complexity is $\mathcal{O}\left(N^{d} \log \mathcal{O}(1) N\right)$. In general the exact constants, especially the dependence on d, are unknown due to missing implementations. For instance the sample complexity $\mathcal{O}(s \log N)$ of the last mentioned algorithm contains a factor of $d^{\mathcal{O}(d)}$, see [18, Sec. 4].

Moreover, a deterministic sparse Fourier transform algorithm, using the Chinese Remainder Theorem, was presented in [20] for the univariate case and in [21] for the multivariate case, which takes $\mathcal{O}\left(d^{4} s^{2} \log ^{4}(d N)\right)$ samples and arithmetic operations. This means there is neither a exponential/super-exponential dependency on the dimension $d \in \mathbb{N}$ nor a dependency on a failure probability in the asymptotics of the number of samples and arithmetic operations for this method. Besides this deterministic algorithm, there also exists a randomized version which only requires $\mathcal{O}\left(d^{4} s \log ^{4}(d N)\right)$ samples and arithmetic operations.

Recently, another one-dimensional sparse Fourier transform algorithm, which is based on a multiscale approach, was presented in [5] as an extension of the method [34]. Their algo-
rithm is able to handle (additive) noise and requires $\mathcal{O}(|\operatorname{supp} \hat{p}| \log |\operatorname{supp} \hat{p}| \log (N /|\operatorname{supp} \hat{p}|))$ on average.

For a given trigonometric polynomial p, the main idea of this paper is a dimension incremental construction of the frequency index set supp \hat{p} of the non-zero Fourier coefficients $\mathbf{0} \neq \hat{p}_{\boldsymbol{k}}$ of p. This idea is motivated by the component-by-component construction of reconstructing rank-1 lattices. We stress the fact that our method reconstructs first the (projected) Fourier coefficients $\hat{p}_{\boldsymbol{k}}$ and selects then the index set I, whereas all the methods mentioned above determine first the index set I and then the Fourier coefficients $\hat{p}_{\boldsymbol{k}}$. Since we use reconstructing rank-1 lattices for the sampling and one-dimensional FFTs for the computation of the Fourier coefficients $\hat{p}_{\boldsymbol{k}}$, the numerical computations are stable. Assuming $\Gamma \subseteq \hat{G}_{N}^{d}$, we require $\mathcal{O}\left(d s^{2} N\right)$ many samples and $\mathcal{O}\left(d s^{3}+d s^{2} N \log (s N)\right)$ arithmetic operations in the case $\sqrt{N} \lesssim s \lesssim N^{d}$ as well as $\mathcal{O}\left(d N^{2}\right)$ many samples and $\mathcal{O}\left(d N^{2} \log N\right)$ arithmetic operations in the case $s \lesssim \sqrt{N}$, where the asymptotics have no additional dependence on the dimension d. Furthermore, we apply ℓ_{1} minimization with sub-sampling on rank-1 lattices and sampling on generated sets [23] using the SPGL1 algorithm [48, 47], which results in a reduction of the number of samples to only $\mathcal{O}\left(d s \log ^{4}(s N)+d N\right)$ for $s \geq|\operatorname{supp} \hat{p}|$. When using the ℓ_{1} minimization with sampling on generated sets, we obtain a method with an overall arithmetic complexity of $\mathcal{O}\left(d R s N \log (s N)+d R s \log ^{5}(s N)\right)$, where $R \in \mathbb{N}$ is the number of iterations for SPGL1. Additionally, we use a version of Prony's method [39] with sub-sampling on rank-1 lattices, and we obtain an algorithm which only requires $\mathcal{O}(d s+d N)$ many samples for $s \geq \operatorname{supp} \hat{p}$ as well as $\mathcal{O}\left(d s^{3}\right)$ and $\mathcal{O}(d s N+d N \log N)$ arithmetic operations in the case $\sqrt{N} \lesssim s \lesssim N^{d}$ and $s \lesssim \sqrt{N}$, respectively. In numerical examples, we verify the approach for the reconstruction of sparse high-dimensional trigonometric polynomials with frequencies supported within a subset of the full grid $\Gamma=\hat{G}_{N}^{d}$ from samples and also use it for the s sparse ℓ_{2} approximation of the Fourier coefficients of a high-dimensional 1-periodic function $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$.

The remaining sections of this paper are structured as follows. In Section 2, we discuss the reconstruction of high-dimensional trigonometric polynomials with frequencies supported within a subset of the search space Γ from samples. For this, we briefly explain the fast, exact and perfectly stable reconstruction of trigonometric polynomials with frequencies supported on a known index I with $I \subset \Gamma$ using sampling values at rank-1 lattice nodes in Section 2.1. Using these results, we introduce a method for detecting the frequencies of a trigonometric polynomial belonging to non-zero Fourier coefficients by a dimension incremental method in Section 2.2.1. In Section 2.2.2, we discuss conditions when the frequency detection succeeds and scenarios where it may fail. The number of samples and arithmetic complexity of our approach is given in Section 2.2 .3 for the case where the search space Γ is a full grid \hat{G}_{N}^{d}. As a possibility to reduce the number of samples and the arithmetic complexity, we briefly discuss using ℓ_{1} minimization with sub-sampling on rank-1 lattices and generated sets for the dimension incremental reconstruction of trigonometric polynomials from samples in Section 2.3. Moreover, we apply Prony's method with sub-sampling on rank-1 lattices in Section 2.4 in order to reduce the number of samples. We verify the presented methods using numerical tests in Section 3 and particularly in Section 3.3, we approximately reconstruct the largest Fourier coefficients of a 10-dimensional periodic function of dominating mixed smoothness, which has infinitely many non-zero Fourier coefficients. Moreover, we test the robustness to noise in Section 3.4, where we apply the method from Section 2.2.1 to samples of sparse trigonometric polynomials perturbed by white Gaussian noise. Finally, we summarize the results of this paper in Section 4.

2 Reconstruction of trigonometric polynomials

2.1 Reconstructing rank-1 lattices for known frequency index sets I

As discussed in [25], for a given frequency index set $I \subset \mathbb{Z}^{d}$ of finite cardinality, we are able to exactly reconstruct the Fourier coefficients $\hat{p}_{\boldsymbol{k}}, \boldsymbol{k} \in I$, of an arbitrarily chosen trigonometric polynomial $p(\boldsymbol{x}):=\sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}}$ with frequencies supported on I from sampling values $p\left(\boldsymbol{x}_{j}\right)$. As sampling nodes $\boldsymbol{x}_{j}, j=0, \ldots, M-1$, we use the nodes of a rank-1 lattice $\Lambda(\boldsymbol{z}, M):=$ $\left\{\frac{j}{M} \boldsymbol{z} \bmod 1: j=0, \ldots, M-1\right\}$ with generating vector $\boldsymbol{z} \in \mathbb{Z}^{d}$ of size $M \in \mathbb{N}$, i.e., we set the sampling nodes $\boldsymbol{x}_{j}:=\frac{j}{M} \boldsymbol{z} \bmod \mathbf{1}, j=0, \ldots, M-1$. Formally, the Fourier coefficients $\hat{p}_{\boldsymbol{k}} \in \mathbb{C}$ of the trigonometric polynomial p are given by the Fourier transform of p,

$$
\hat{p}_{\boldsymbol{k}}:=\int_{\mathbb{T}^{d}} p(\boldsymbol{x}) \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}} \mathrm{~d} \boldsymbol{x}, \quad \boldsymbol{k} \in I,
$$

and we approximate these integrals by the (rank-1) lattice rule

$$
\frac{1}{M} \sum_{j=0}^{M-1} p\left(\boldsymbol{x}_{j}\right) \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}_{j}}=\frac{1}{M} \sum_{j=0}^{M-1} p\left(\frac{j}{M} \boldsymbol{z}\right) \mathrm{e}^{-2 \pi \mathrm{i} j \boldsymbol{k} \cdot \boldsymbol{z} / M}=: \tilde{\hat{p}}_{\boldsymbol{k}}
$$

Now, we ask for the exactness of this cubature formula, i.e., when is $\hat{p}_{\boldsymbol{k}}=\tilde{\hat{p}}_{\boldsymbol{k}} \forall \boldsymbol{k} \in I$. Since we have

$$
\tilde{\hat{p}}_{\boldsymbol{k}}=\frac{1}{M} \sum_{j=0}^{M-1} \sum_{\boldsymbol{k}^{\prime} \in I} \hat{p}_{\boldsymbol{k}^{\prime}} \mathrm{e}^{2 \pi \mathrm{i} j \boldsymbol{k}^{\prime} \cdot \boldsymbol{z} / M} \mathrm{e}^{-2 \pi \mathrm{i} j \boldsymbol{k} \cdot \boldsymbol{z} / M}=\sum_{\boldsymbol{k}^{\prime} \in I} \hat{p}_{\boldsymbol{k}^{\prime}} \frac{1}{M} \sum_{j=0}^{M-1} \mathrm{e}^{2 \pi \mathrm{i} j\left(\boldsymbol{k}^{\prime}-\boldsymbol{k}\right) \cdot \boldsymbol{z} / M}
$$

we need the condition

$$
\frac{1}{M} \sum_{j=0}^{M-1} \mathrm{e}^{2 \pi \mathrm{i} j\left(\boldsymbol{k}^{\prime}-\boldsymbol{k}\right) \cdot \boldsymbol{z} / M}= \begin{cases}1 & \text { for } \boldsymbol{k}=\boldsymbol{k}^{\prime} \\ 0 & \text { for } \boldsymbol{k} \neq \boldsymbol{k}^{\prime}, \boldsymbol{k}, \boldsymbol{k}^{\prime} \in I\end{cases}
$$

to be fulfilled. This is the case if and only if $\boldsymbol{k} \cdot \boldsymbol{z} \not \equiv \boldsymbol{k}^{\prime} \cdot \boldsymbol{z}(\bmod M) \forall \boldsymbol{k}, \boldsymbol{k}^{\prime} \in I, \boldsymbol{k} \neq \boldsymbol{k}^{\prime}$, see $[25$, Section 2]. Introducing the difference set $\mathcal{D}(I)$ for the index set $I, \mathcal{D}(I):=\left\{\boldsymbol{k}-\boldsymbol{k}^{\prime}: \boldsymbol{k}, \boldsymbol{k}^{\prime} \in I\right\}$, we can rewrite the above conditions as

$$
\begin{equation*}
\boldsymbol{m} \cdot \boldsymbol{z} \not \equiv 0(\bmod M) \forall \boldsymbol{m} \in \mathcal{D}(I) \backslash\{\mathbf{0}\} . \tag{2.1}
\end{equation*}
$$

A rank-1 lattice $\Lambda(\boldsymbol{z}, M)$ which fulfills the reconstruction property (2.1) for a given frequency index set I will be called reconstructing rank-1 lattice $\Lambda(\boldsymbol{z}, M, I)$ for I.

We remark that an arbitrarily chosen trigonometric polynomial p with frequencies supported on the index set I can be quickly evaluated at all nodes of an arbitrary rank-1 lattice $\Lambda(\boldsymbol{z}, M)$ in $\mathcal{O}(M \log M+d|I|)$ arithmetic operations using a single one-dimensional fast Fourier transform, cf. [35]. Moreover, the Fourier coefficients $\hat{p}_{\boldsymbol{k}}, \boldsymbol{k} \in I$, of p can be exactly reconstructed from sampling values of p at the nodes $\boldsymbol{x}_{j}:=\frac{j}{M} \boldsymbol{z} \bmod \mathbf{1}, j=0, \ldots, M-1$, of a reconstructing rank-1 lattice $\Lambda(\boldsymbol{z}, M, I)$ for I in $\mathcal{O}(M \log M+d|I|)$ arithmetic operations as discussed in [25]. For this, we compute

$$
\hat{p}_{\ell}:=\frac{1}{M} \sum_{j=0}^{M-1} p\left(\frac{j}{M} \boldsymbol{z} \bmod \mathbf{1}\right) \mathrm{e}^{-2 \pi \mathrm{i} j \ell / M}, \quad \ell=0, \ldots, M-1
$$

using a single one-dimensional inverse fast Fourier transform of length M and we set $\hat{p}_{\boldsymbol{k}}:=$ $\hat{p}_{\boldsymbol{k} \cdot \boldsymbol{z} \bmod M}$ for $\boldsymbol{k} \in I$, i.e., we additionally compute the scalar products $\boldsymbol{k} \cdot \boldsymbol{z}$ for $\boldsymbol{k} \in I$. These two computation steps will be called inverse rank-1 lattice FFT in the following.

Theorem 2.1. For a given frequency index set $I \subset \mathbb{Z}^{d}, 1 \leq|I|<\infty$, and any prime rank-1 lattice size

$$
\begin{equation*}
M \geq \max \left\{\frac{|\mathcal{D}(I)|+3}{2}, \max \left\{2\|\boldsymbol{k}\|_{\infty}+1: \boldsymbol{k} \in I\right\}\right\} \tag{2.2}
\end{equation*}
$$

there always exists a generating vector $\boldsymbol{z} \in \mathbb{Z}^{d}$ such that $\Lambda(\boldsymbol{z}, M)=\Lambda(\boldsymbol{z}, M, I)$ is a reconstructing rank-1 lattice for I. Moreover, there always exist a prime rank-1 lattice size M,

$$
\begin{align*}
|I| \leq M & \leq \max \left\{\frac{2}{3}(|\mathcal{D}(I)|+7), \max \left\{3\|\boldsymbol{k}\|_{\infty}: \boldsymbol{k} \in I\right\}\right\} \tag{2.3}\\
& \leq \max \left\{\frac{2}{3}\left(|I|^{2}-|I|+8\right), \max \left\{3\|\boldsymbol{k}\|_{\infty}: \boldsymbol{k} \in I\right\}\right\}
\end{align*}
$$

and a generating vector $\boldsymbol{z} \in \mathbb{Z}^{d}$ such that $\Lambda(\boldsymbol{z}, M)=\Lambda(\boldsymbol{z}, M, I)$ is a reconstructing rank- 1 lattice for I.
For such a suitable rank-1 lattice size M, the generating vector $\boldsymbol{z} \in \mathbb{Z}^{d}$ can be constructed using a component-by-component approach, see [25], and the construction requires no more than $3 d|I| M$ arithmetic operations.

Proof. The inequality (2.3) is a consequence of [25, Corollary 1] and [24, inequality (3.8)]. The lower bound for the rank-1 lattice size M is a consequence from [25, Theorem 1 and Lemma 2].
When searching for the component $z_{t}, t \in\{1, \ldots, d\}$, of the generating vector $\boldsymbol{z}:=$ $\left(z_{1}, \ldots, z_{d}\right)^{\top}$ in the component-by-component step t, the tests for the reconstruction property (2.1) for a given component z_{t} take no more than $|I|$ multiplications, $|I|$ additions as well as $|I|$ modulo operations, and this yields $3|I|$ many arithmetic operations. Due to this and since each component $z_{t}, t \in\{1, \ldots, d\}$, of the generating vector \boldsymbol{z} can only have M different values modulo M, we obtain that the construction requires no more than $3 d|I| M$ arithmetic operations in total.

The following Theorem is stated and proven in [25].
Theorem 2.2. Let a dimension $d \in \mathbb{N}, d \geq 2$, and a frequency index set $I \subset \mathbb{Z}^{d}$ of finite cardinality $|I| \geq 2$ be given. We assume that $\Lambda(\boldsymbol{z}, M)=\Lambda\left(\boldsymbol{z}, M, I^{(1, \ldots, d-1)}\right)$ with generating vector $\boldsymbol{z}:=\left(z_{1}, \ldots, z_{d-1}\right)^{\top}$ is a reconstructing rank-1 lattice for the frequency index set $I^{(1, \ldots, d-1)}:=\left\{\left(k_{s}\right)_{s=1}^{d-1}: \boldsymbol{k} \in I\right\}$. Then, the rank-1 lattice $\Lambda\left(\left(z_{1}, \ldots, z_{d-1}, M\right)^{\top}, M S\right)$ with

$$
S:=\min \left\{m \in \mathbb{N}:\left|\left\{k_{d} \bmod m: \boldsymbol{k} \in I\right\}\right|=\left|\left\{k_{d}: \boldsymbol{k} \in I\right\}\right|\right\}
$$

is a reconstructing rank-1 lattice for I.
Corollary 2.3. Let a frequency set $I^{\prime} \subset \hat{G}_{N}^{d},\left|I^{\prime}\right|=s \geq 2$, be given. Furthermore, let $I^{\prime \prime} \subset \hat{G}_{N}^{1}$ be another non-empty frequency index set. Then, there exists a reconstructing rank-1 lattice for $I^{\prime} \times I^{\prime \prime}$ of size $M \leq \max \left\{2 s^{2}, 3 N\right\} 2(N+1)$.

Proof. Due to (2.3) in Theorem 2.1, there exists a reconstructing rank-1 lattice $\Lambda\left(\boldsymbol{z}, M^{\prime}, I^{\prime}\right)$ for I^{\prime} with generating vector $\boldsymbol{z}:=\left(z_{1}, \ldots, z_{d-1}\right)^{\top}$ and size

$$
M^{\prime} \leq \max \left\{\frac{2}{3}\left(s^{2}-s+8\right), 3 N\right\} \leq \max \left\{2 s^{2}, 3 N\right\}
$$

We apply Theorem 2.2 with $I:=I^{\prime} \times I^{\prime \prime}$. Consequently, $I^{(1, \ldots, d-1)}:=\left\{\left(k_{s}\right)_{s=1}^{d-1}: \boldsymbol{k} \in I\right\}=I^{\prime}$ and $\left\{k_{d}: \boldsymbol{k} \in I\right\}=I^{\prime \prime}$ in Theorem 2.2. Since we have $S \leq \max \left(I^{\prime}\right)-\min \left(I^{\prime}\right)+1 \leq 2(N+1)$, the rank-1 lattice $\Lambda\left(\left(z_{1}, \ldots, z_{d-1}, M^{\prime}\right)^{\top}, M^{\prime} S\right)$ is a reconstructing rank-1 lattice for $I=I^{\prime} \times I^{\prime \prime}$ of size $M^{\prime} S \leq \max \left\{2 s^{2}, 3 N\right\} 2(N+1)$.

2.2 Dimension incremental reconstruction in the multidimensional case $d \geq 2$

In this subsection, we consider multi-dimensional trigonometric polynomials $p: \mathbb{T}^{d} \rightarrow \mathbb{C}$ with frequencies supported on a subset I of the index set $\Gamma \subset \mathbb{Z}^{d},|\Gamma|<\infty$, and we are going to determine the support supp \hat{p} of a trigonometric polynomial p in frequency domain as well as the non-zero Fourier coefficients $\hat{p}_{\boldsymbol{k}}, \boldsymbol{k} \in \operatorname{supp} \hat{p}$, of p from sampling values. For this, we repeatedly use reconstructing rank-1 lattices introduced in Section 2.1 as sampling nodes in order to find the support supp \hat{p} of the trigonometric polynomial p in frequency domain from sampling values in a dimension incremental way. We remark that if Γ is a small subset of the full grid $\hat{G}_{N}^{d},|\Gamma| \ll\left|\hat{G}_{N}^{d}\right|$, and this fact is known, then this knowledge can be used to reduce the number of samples and the arithmetic complexity of our method which is described in the following sub-section.

2.2.1 The method

Recently, a dimension incremental method for anharmonic trigonometric polynomials based on Prony's method was presented in [38]. Here, we proceed similarly. We denote the projection of a frequency $\boldsymbol{k}:=\left(k_{1}, \ldots, k_{d}\right)^{\top} \in \mathbb{Z}^{d}$ to the components $\boldsymbol{i}:=\left(i_{1}, \ldots, i_{m}\right) \in\{1, \ldots, d\}^{m}$ by $\mathcal{P}_{\boldsymbol{i}}(\boldsymbol{k}):=\left(k_{i_{1}}, \ldots, k_{i_{m}}\right)^{\top} \in \mathbb{Z}^{m}$. Correspondingly, we define the projection of a frequency index set $I \subset \mathbb{Z}^{d}$ to the components \boldsymbol{i} by $\mathcal{P}_{\boldsymbol{i}}(I):=\left\{\left(k_{i_{1}}, \ldots, k_{i_{m}}\right): \boldsymbol{k} \in I\right\}$. Using this notation, the general approach is the following:

1. Determine an index set $I^{(1)} \subseteq \mathcal{P}_{1}(\Gamma)$ which should be identical to the projection $\mathcal{P}_{1}(\operatorname{supp} \hat{p})$ or contain this projection, $I^{(1)} \supseteq \mathcal{P}_{1}(\operatorname{supp} \hat{p})$. If $\Gamma=\hat{G}_{N}^{d}$, then $\mathcal{P}_{1}(\Gamma)=\hat{G}_{N}^{1}$ and $I^{(1)} \subseteq \hat{G}_{N}^{1}$.
2. For dimension increment step $t=2, \ldots, d$
a) Determine an index set $I^{(t)} \subseteq \mathcal{P}_{t}(\Gamma)$ which should be identical to the projection $\mathcal{P}_{t}(\operatorname{supp} \hat{p})$ or contain this projection, $I^{(t)} \supseteq \mathcal{P}_{t}(\operatorname{supp} \hat{p})$. If $\Gamma=\hat{G}_{N}^{d}$, then $\mathcal{P}_{t}(\Gamma)=$ \hat{G}_{N}^{1} and $I^{(t)} \subseteq \hat{G}_{N}^{1}$.
b) Determine a suitable sampling set $\mathcal{X}^{(1, \ldots, t)} \subset \mathbb{T}^{d},\left|\mathcal{X}^{(1, \ldots, t)}\right| \ll|\Gamma|$, which allows to determine those frequencies from the index set $\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$ belonging to non-zero Fourier coefficients $\hat{p}_{\boldsymbol{k}}$.
c) Sample the trigonometric polynomial p along the nodes of the sampling set $\mathcal{X}^{(1, \ldots, t)}$.
d) Compute the Fourier coefficients $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}, \boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$.
e) Determine the non-zero Fourier coefficients from $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}, \boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap$ $\mathcal{P}_{(1, \ldots, t)}(\Gamma)$, and obtain the index set $I^{(1, \ldots, t)}$ of detected frequencies. Alternatively, determine those Fourier coefficients from $\hat{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}$ which are larger than a certain threshold. The $I^{(1, \ldots, t)}$ index set should be equal to the projection $\mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$.
3. Use the index set $I^{(1, \ldots, d)}$ and the computed Fourier coefficients $\tilde{\hat{p}}_{(1, \ldots, d), \boldsymbol{k}}, \boldsymbol{k} \in\left(I^{(1, \ldots, d)}\right.$, as an approximation for the support $\operatorname{supp} \hat{p}$ and the Fourier coefficients $\hat{p}_{\boldsymbol{k}}, \boldsymbol{k} \in \operatorname{supp} \hat{p}$.

There exist different methods for the realization of the steps 2 b and 2 d . In the following, we present two possible methods in detail as Algorithm 1 and 2.

Algorithm 1

Algorithm 1 is a realization for this method, which uses one-dimensional inverse fast Fourier transforms (1d iFFTs). Besides the search space $\Gamma \supset \operatorname{supp} \hat{p}$ and the trigonometric polynomial p (as black box), this algorithm has three additional input parameters, which are the relative threshold $\theta \in(0,1)$, the sparsity $s \in \mathbb{N}$ and the number of detection iterations $r \in \mathbb{N}$. The relative threshold parameter $\theta \in(0,1)$ is used to determine the "non-zero" Fourier coefficients from $\tilde{\hat{p}}_{1, k_{1}}$ for $k_{1} \in \mathcal{P}_{1}(\Gamma)$ in step $1, \tilde{\hat{p}}_{t, k_{t}}$ for $k_{t} \in \mathcal{P}_{t}(\Gamma)$ in step $2 \mathrm{a}, t \in\{2, \ldots, d\}$, as well as $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}$ for $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$ in step 2e. Since numerical algorithms are used to compute the Fourier coefficients $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}$, the actual computed values of "zero" Fourier coefficients may be larger than zero but are smaller than a certain (relative) threshold. The sparsity input parameter $s \in \mathbb{N}$ may be used to truncate the number of detected frequencies and corresponding Fourier coefficients. Last, the input parameter $r \in \mathbb{N}$ for the number of detection iterations controls how many times the sampling and frequency detection in the step 2 is performed for each dimension increment step $t \in\{2, \ldots, d\}$. Repetitions in these computations r times may be necessary to ensure a successful exact reconstruction of the trigonometric polynomial p, as we describe in this section and in Section 2.2.2.

First in step 1, we determine the index set of detected frequencies for the first component $I^{(1)} \subset \mathcal{P}_{1}(\operatorname{supp} \hat{p})$. For this, we set the last $d-1$ components in $\boldsymbol{x}:=\left(x_{1}, \ldots, x_{d}\right)^{\top}$ to fixed randomly chosen values $x_{2}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$. We sample the trigonometric polynomial p at the nodes of the set $\mathcal{X}^{(1)}:=\left\{\left(\frac{\ell}{L_{1}}, x_{2}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}: \ell=0, \ldots, L_{1}-1\right\}$, where $L_{1}:=\max \left(\mathcal{P}_{1}(\Gamma)\right)-$ $\min \left(\mathcal{P}_{1}(\Gamma)\right)+1$, and we compute one-dimensional projected Fourier coefficients for the first component

$$
\tilde{\hat{p}}_{1, k_{1}}:=\frac{1}{L_{1}} \sum_{\ell=0}^{L_{1}-1} p\left(\left(\frac{\ell}{L_{1}}, x_{2}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}\right) \mathrm{e}^{-2 \pi \frac{\ell k_{1}}{L_{1}}}, \quad k_{1} \in \mathcal{P}_{1}(\Gamma),
$$

using a 1 d iFFT of length L_{1}. Due to the definition of the trigonometric polynomial p, we obtain

$$
\begin{aligned}
\tilde{\hat{p}}_{1, k_{1}} & =\frac{1}{L_{1}} \sum_{\ell=0}^{L_{1}-1} \sum_{h:=\left(h_{1}, \ldots, h_{d}\right)^{\top} \in \operatorname{supp} \hat{p}} \hat{p}_{\boldsymbol{h}} \mathrm{e}^{2 \pi \mathrm{i}\left(h_{2} x_{2}^{\prime}+\ldots+h_{d} x_{d}^{\prime}\right)} \mathrm{e}^{2 \pi \mathrm{i} \frac{\left(h_{1}-k_{1}\right) \ell}{L_{1}}} \\
& =\sum_{h \in \operatorname{supp} \hat{p}} \hat{p}_{\boldsymbol{h}} \mathrm{e}^{2 \pi \mathrm{i}\left(h_{2} x_{2}^{\prime}+\ldots+h_{d} x_{d}^{\prime}\right)} \frac{1}{L_{1}} \sum_{\ell=0}^{L_{1}-1} \mathrm{e}^{2 \pi \mathrm{i} \frac{\left(h_{1}-k_{1}\right) \ell}{L_{1}}} \\
& =\sum_{\substack{\left(h_{2}, \ldots, h_{d}\right) \in \mathcal{P}_{(2, \ldots, d)(\Gamma)}^{\begin{subarray}{c}{2} }}\left(k_{1}, h_{2}, \ldots, h_{d}\right)^{\top} \in \operatorname{supp} \hat{p}}\end{subarray}} \hat{p}_{\left(k_{1}, h_{2}, \ldots, h_{d}\right)^{\top}} \mathrm{e}^{2 \pi \mathrm{i}\left(h_{2} x_{2}^{\prime}+\ldots+h_{d} x_{d}^{\prime}\right)}
\end{aligned}
$$

for $k_{1} \in \mathcal{P}_{1}(\Gamma)$. We define the index set of detected frequencies for the first component $\tilde{\tilde{p}}^{(1)}:=\left\{k_{1} \in \mathcal{P}_{1}(\Gamma): \tilde{\hat{p}}_{1, k_{1}} \neq 0\right\}$. In practice, we do not test if the Fourier coefficients $\tilde{\hat{p}}_{1, k_{1}} \neq 0$, but use a threshold $\theta \in(0,1)$ relative to the largest absolute value of the computed Fourier coefficients $\tilde{\hat{p}}_{1, k_{1}}$ in numerical computations and we restrict the number of detected

```
Algorithm 1 Reconstruction of a trigonometric polynomial p from sampling values.
    Input: }\quad\Gamma\subset\mp@subsup{\mathbb{Z}}{}{d}\quad\mathrm{ search space in frequency domain, superset for supp}\hat{p
    p(o) trigonometric polynomial p as black box (function handle)
    0\in(0,1) relative threshold
    s\in\mathbb{N}\quad\mathrm{ sparsity}
    r\in\mathbb{N number of detection iterations}
```

(step 1)
Set $L_{1}:=\max \left(\mathcal{P}_{1}(\Gamma)\right)-\min \left(\mathcal{P}_{1}(\Gamma)\right)+1, I^{(1)}:=\emptyset$.
for $i:=1, \ldots, r$ do
Choose $x_{2}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ uniformly at random.
Compute $\tilde{\hat{p}}_{1, k_{1}}:=\frac{1}{L_{1}} \sum_{\ell=0}^{L_{1}-1} p\left(\left(\frac{\ell}{L_{1}}, x_{2}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}\right) \mathrm{e}^{-2 \pi \mathrm{i} \frac{\ell k_{1}}{L_{1}}}, k_{1} \in \mathcal{P}_{1}(\Gamma)$, with 1 d iFFT.
$I^{(1)}:=I^{(1)} \cup\left\{k_{1} \in \mathcal{P}_{1}(\Gamma):(\right.$ up to $) s$-largest values $\left.\left|\tilde{\hat{p}}_{1, k_{1}}\right| \geq \theta \cdot \max _{\tilde{k}_{1} \in \mathcal{P}_{1}(\Gamma)}\left|\tilde{\hat{p}}_{1, \tilde{k}_{1}}\right|\right\}$
end for i
Determine $S_{1}:=\min \left\{m \in \mathbb{N}:\left|\left\{k_{1} \bmod m: k_{1} \in I^{(1)}\right\}\right|=\left|I^{(1)}\right|\right\}$. Set $M_{1}:=S_{1}, z_{1}:=1$.
(step 2) for $t:=2, \ldots, d$ do
(step 2a)
Set $L_{t}:=\max \left(\mathcal{P}_{t}(\Gamma)\right)-\min \left(\mathcal{P}_{t}(\Gamma)\right)+1, I^{(t)}:=\emptyset$.
for $i:=1, \ldots, r$ do
Choose $x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ uniformly at random.
$\tilde{\hat{p}}_{t, k_{t}}:=\sum_{\ell=0}^{L_{t}-1} p\left(x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, \frac{\ell}{L_{t}}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top} \mathrm{e}^{-2 \pi \mathrm{i} \ell k_{t} / L_{t}}, k_{t} \in \mathcal{P}_{t}(\Gamma)$, using 1d iFFT.
Set $I^{(t)}:=I^{(t)} \cup\left\{k_{t} \in \mathcal{P}_{t}(\Gamma):(\right.$ up to $) s$-largest values $\left.\left|\tilde{\hat{p}}_{t, k_{t}}\right| \geq \theta \cdot \max _{\tilde{k}_{t} \in \mathcal{P}_{t}(\Gamma)}\left|\tilde{\hat{p}}_{t, \tilde{k}_{t}}\right|\right\}$.
end for i
(step 2b) Set $\tilde{r}:= \begin{cases}r & \text { for } t<d, \\ 1 & \text { for } t=d .\end{cases}$
Determine $S_{t}:=\min \left\{m \in \mathbb{N}:\left|\left\{k_{t} \bmod m: k_{t} \in I^{(t)}\right\}\right|=\left|I^{(t)}\right|\right\}$. Set $I^{(1, \ldots, t)}:=\emptyset$.
Search for reconstructing rank-1 lattice $\Lambda\left(\boldsymbol{z}, M_{t},\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)\right), \boldsymbol{z} \in \mathbb{Z}^{t}$:
Set initial $M_{t}:=M_{t-1} \cdot S_{t}$, cf. Theorem 2.2.
Search for $z_{t} \in\left\{0, \ldots, M_{t}-1\right\}$ such that reconstruction property (2.1) is fulfilled.
Reduce rank-1 lattice size M_{t} using [24, Algorithm 3.5].
for $i:=1, \ldots, \tilde{r}$ do
Choose $x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ uniformly at random.
Set $\mathcal{X}^{(1, \ldots, t)}:=\left\{\boldsymbol{x}_{j}:=\left(\frac{j}{M_{t}} z_{1}, \ldots, \frac{j}{M_{t}} z_{t}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top} \bmod \mathbf{1}: j=0, \ldots, M_{t}-1\right\}$.
(step 2c) Sample p along the nodes of the sampling set $\mathcal{X}^{(1, \ldots, t)}$.
(step 2d)
Compute $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}:=\frac{1}{M_{t}} \sum_{j=0}^{M_{t}-1} p\left(\boldsymbol{x}_{j}\right) \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}_{j}}$ for $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$
with inverse rank-1 lattice FFT based on a single 1d iFFT, see Section 2.1.
(step 2e)
absolute_threshold $:=\theta \cdot \max _{\tilde{\boldsymbol{k}} \in\left(I^{\left.(1, \ldots, t-1) \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)}\right.}\left|\tilde{\hat{p}}_{(1, \ldots, t), \tilde{\boldsymbol{k}}}\right|$.
Set $I^{(1, \ldots, t)}:=I^{(1, \ldots, t)} \cup\left\{\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)\right.$:
(up to) s-largest values $\left|\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}\right| \geq$ absolute_threshold $\}$.
end for i

```
Algorithm 1 continued.
(additional step 2f)
    If }t<d\mathrm{ , search for reconstructing rank-1 lattice }\Lambda(\boldsymbol{z},\mp@subsup{M}{t}{},\mp@subsup{I}{}{(1,\ldots,t)})
        Search for new }\mp@subsup{z}{t}{}\in{0,\ldots,\mp@subsup{M}{t}{}-1}\mathrm{ such that reconstruction property (2.1) is fulfilled.
        Reduce rank-1 lattice size M}\mp@subsup{M}{t}{}\mathrm{ .
end for t
```

(step 3) Set $I:=I^{(1, \ldots, d)}$ and $\tilde{\hat{\boldsymbol{p}}}:=\left(\tilde{\hat{p}}_{(1, \ldots, d), \boldsymbol{k}}\right)_{\boldsymbol{k} \in I}$.
Output: $\quad I \subset \mathbb{Z}^{d} \quad$ index set of detected frequencies
$\tilde{\hat{\boldsymbol{p}}} \in \mathbb{C}^{|I|} \quad$ corresponding Fourier coefficients
frequencies to the sparsity s, i.e.,

$$
\begin{equation*}
I^{(1)}:=I^{(1)} \cup\left\{k_{1} \in \mathcal{P}_{1}(\Gamma):(\text { up to }) s \text {-largest values }\left|\tilde{\hat{p}}_{1, k_{1}}\right| \geq \theta \max _{\tilde{k}_{1} \in \mathcal{P}_{1}(\Gamma)}\left|\tilde{\hat{p}}_{1, \tilde{k}_{1}}\right|\right\} . \tag{2.4}
\end{equation*}
$$

Since this frequency detection may fail, see Section 2.2 .2 for details, we repeatedly perform the sampling, the computation of the projected Fourier coefficients $\tilde{\hat{p}}_{1, k_{1}}, k_{1} \in \mathcal{P}_{1}(\Gamma)$, and the determination of the index set $I^{(1)}$ in totally $r \in \mathbb{N}$ detection iterations with different randomly chosen values $x_{2}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$. Then, we use the union of the obtained index sets $I^{(1)}$. We determine $S_{1}:=\min \left\{m \in \mathbb{N}:\left|\left\{k_{1} \bmod m: k_{1} \in I^{(1)}\right\}\right|=\left|I^{(1)}\right|\right\}$ and obtain a reconstructing rank-1 lattice $\Lambda\left(z_{1}, M_{1}, I^{(1)}\right)$ for the index set of detected frequencies for the first component $I^{(1)}$ by setting $z_{1}:=1$ and $M_{1}:=S_{1}$.

Then, we continue with the dimension increment step 2 for $t=2, \ldots, d$. In step 2a, we randomly choose values $x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$, we determine $L_{t}:=\max \left(\mathcal{P}_{t}(\Gamma)\right)-$ $\min \left(\mathcal{P}_{t}(\Gamma)\right)+1$ and we compute the one-dimensional projected Fourier coefficients for the t-th component

$$
\begin{align*}
& \tilde{\hat{p}}_{t, k_{t}}:= \frac{1}{L_{t}} \sum_{\ell=0}^{L_{t}-1} p\left(\left(x_{1}^{\prime}, x_{t-1}^{\prime}, \frac{\ell}{L_{t}}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}\right) \mathrm{e}^{-2 \pi \frac{\ell}{2} \frac{k_{t}}{L_{t}}} \tag{2.5}\\
&= \sum_{\substack{\left(h_{1}, \ldots, h_{t-1}, h_{t+1}, \ldots, h_{d}\right)^{\top} \in \mathcal{P}_{(1, \ldots, t-1, t+1, \ldots, d)}(\Gamma) \\
\left(h_{1}, \ldots, h_{t-1}, k_{t}, h_{t+1}, \ldots, h_{d}\right)^{\top} \in \operatorname{supp} \hat{p}}} \hat{p}_{\left(h_{1}, \ldots, h_{t-1}, k_{t}, h_{t+1}, \ldots, h_{d}\right)^{\top}} \\
& \quad \cdot \mathrm{e}^{2 \pi \mathrm{i}\left(h_{1} x_{1}^{\prime}+\ldots+h_{t-1} x_{t-1}^{\prime}+h_{t+1} x_{t+1}^{\prime}+\ldots+h_{d} x_{d}^{\prime}\right)}
\end{align*}
$$

for $k_{t} \in \mathcal{P}_{t}(\Gamma)$, using a 1 d iFFT of length L_{t}. Similarly as in step 1 , we obtain $r \in \mathbb{N}$ many index sets of detected frequencies for the t-th component $\left\{k_{t} \in\right.$ $\mathcal{P}_{t}(\Gamma)$: (up to) s-largest values $\left.\left|\tilde{\hat{p}}_{t, k_{t}}\right| \geq \theta \cdot \max _{\tilde{k}_{t} \in \mathcal{P}_{t}(\Gamma)}\left|\tilde{\hat{p}}_{t, \tilde{k}_{t}}\right|\right\}$ in $r \in \mathbb{N}$ detection iterations with different randomly chosen values $x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, \ldots, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ and we set the union of these sets as the index set $I^{(t)}$.
Afterwards in step 2 b , we determine $S_{t}:=\min \left\{m \in \mathbb{N}:\left|\left\{k_{t} \bmod m: k_{t} \in I^{(t)}\right\}\right|=\left|I^{(t)}\right|\right\}$ and we search for a reconstructing rank-1 lattice for the index set $\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$. For this, the initial rank-1 lattice size M_{t} is set to $M_{t-1} \cdot S_{t}$, cf. Theorem 2.2. The components z_{1}, \ldots, z_{t-1} of the generating vector \boldsymbol{z} from the previous dimension increment steps $1, \ldots, t-1$ are re-used and only one component $z_{t} \in\left\{0, \ldots, M_{t}-1\right\}$ is searched for, such that reconstruction property (2.1) is fulfilled. Next, the rank-1 lattice size
M_{t} is reduced using [24, Algorithm 3.5]. We set the sampling set $\mathcal{X}^{(1, \ldots, t)}:=\left\{\boldsymbol{x}_{j}:=\right.$ $\left.\left(\frac{j}{M_{t}} z_{1}, \ldots, \frac{j}{M_{t}} z_{t}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top} \bmod \mathbf{1}: j=0, \ldots, M_{t}-1\right\}$ containing the sampling nodes \boldsymbol{x}_{j} with fixed randomly chosen values $x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$. Then, we sample the trigonometric polynomial p at these nodes \boldsymbol{x}_{j} in step 2c. Next, we compute t-dimensional projected Fourier coefficients for the first t components

$$
\begin{equation*}
\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}:=\frac{1}{M_{t}} \sum_{j=0}^{M_{t}-1} p\left(\boldsymbol{x}_{j}\right) \mathrm{e}^{-2 \pi \mathrm{i} \frac{j \boldsymbol{k} \cdot \boldsymbol{z}}{M_{t}}} \tag{2.7}
\end{equation*}
$$

for $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$ in step 2d using an inverse rank-1 lattice FFTs, see Section 2.1. This means, we use only a single 1d iFFT. Note that we have

$$
\begin{align*}
\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}} & =\sum_{\boldsymbol{h} \in \operatorname{supp} \hat{p}}\left(\hat{p}_{\boldsymbol{h}} \mathrm{e}^{2 \pi \mathrm{i}\left(h_{t+1}, \ldots, h_{d}\right)^{\top} \cdot\left(x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}}\right)\left(\frac{1}{M_{t}} \sum_{j=0}^{M_{t}-1} \mathrm{e}^{2 \pi \mathrm{i} \frac{j(\boldsymbol{h}-\boldsymbol{k}) \cdot \boldsymbol{z}}{M_{t}}}\right) \\
& =\sum_{\substack{\boldsymbol{h} \in \operatorname{supp} \hat{p} \\
(\boldsymbol{h}-\boldsymbol{k}) \cdot \boldsymbol{z} \equiv 0\left(\bmod M_{t}\right)}} \hat{p}_{\boldsymbol{h}} \mathrm{e}^{2 \pi \mathrm{i}\left(h_{t+1}, \ldots, h_{d}\right)^{\top} \cdot\left(x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}} . \tag{2.8}
\end{align*}
$$

If the conditions $I^{(1, \ldots, t-1)}=\mathcal{P}_{(1, \ldots, t-1)}(\operatorname{supp} \hat{p})$ and $I^{(t)}=\mathcal{P}_{t}(\operatorname{supp} \hat{p})$ are fulfilled, then

$$
\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}=\left\{\begin{array}{ll}
\sum_{\left(h_{t+1}, \ldots, h_{d}\right)^{\top} \in \mathcal{P}_{(t+1, \ldots, d)}(\operatorname{supp} \hat{p})} \hat{p}_{\left(k_{1}, \ldots, k_{t}, h_{t+1}, \ldots, h_{d}\right)^{\top} \mathrm{e}^{2 \pi \mathrm{i}\left(h_{t+1} x_{t+1}^{\prime}+\ldots+h_{d} x_{d}^{\prime}\right)},} \quad t<d, \\
\left.\hat{p}_{\boldsymbol{k}}, \ldots, k_{t}, h_{t+1}, \ldots, h_{d}\right)^{\top} \in \operatorname{supp} \hat{p}
\end{array}, \quad t=d,\right.
$$

for $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$ and $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}=0$ for $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap$ $\left(\mathcal{P}_{(1, \ldots, t)}(\Gamma) \backslash \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})\right)$.
In step 2e, we determine the index set of detected frequencies for the first t components $\tilde{I}^{(1, \ldots, t)}:=\left\{\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma):\left|\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}\right| \geq \theta\right.$. $\left.\max _{\tilde{\boldsymbol{k}} \in\left(I^{\left.(1, \ldots, t-1) \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)}\right.}\left|\tilde{\hat{p}}_{(1, \ldots, t), \tilde{\boldsymbol{k}}}\right|\right\}$. If the cardinality $\left|\tilde{I}^{(1, \ldots, t)}\right|$ is larger than the sparsity parameter $s, s \geq|\operatorname{supp} \hat{p}|$, we restrict the index set in $\tilde{I}^{(1, \ldots, t)}$ to frequencies \boldsymbol{k} belonging to the s-largest values $\left|\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}\right|$. We repeatedly perform the sampling, the computation of the projected Fourier coefficients and the determination of the index sets $\tilde{I}^{(1, \ldots, t)}$ in total for $r \in \mathbb{N}$ detection iterations if $t<d$ and $r=1$ detection iteration if $t=d$. Afterwards, we use the union of the obtained index sets $\tilde{I}^{(1, \ldots, t)}$ as $I^{(1, \ldots, t)}$.
In the additional step 2 f if $t<d$, we build reconstructing rank-1 lattice $\Lambda\left(\boldsymbol{z}, M_{t}, I^{(1, \ldots, t)}\right)$ for the index set $I^{(1, \ldots, t)}$. As initial rank-1 lattice size, we use the value M_{t} from step 2 b . We only search for one component z_{t} of the generating vector \boldsymbol{z} as in step 2 b and then reduce the rank-1 lattice size M_{t}.

Finally in step 3 , we obtain the index set $I=I^{(1, \ldots, d)}$. If all frequency detections were successful, i.e.,

$$
\begin{aligned}
I^{(t)} & =\mathcal{P}_{t}(\operatorname{supp} \hat{p}) \\
I^{(1, \ldots, t)} & =\mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})
\end{aligned}
$$

$$
\begin{array}{ll}
\text { for } t & =1, \ldots, d \\
\text { for } t & =1, \ldots, d-1,
\end{array} \quad \text { and }
$$

then we have

$$
\begin{aligned}
I=I^{(1, \ldots, d)} & =\operatorname{supp} \hat{p} \\
\tilde{\hat{p}}_{(1, \ldots, d), \boldsymbol{k}} & =\hat{p}_{\boldsymbol{k}} \neq 0 \\
p & =\sum_{\boldsymbol{k} \in I^{(1, \ldots, d)}} \tilde{\hat{p}}_{(1, \ldots, d), \boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \circ} . \quad \text { for all } \boldsymbol{k} \in I^{(1, \ldots, d)} \quad \text { and }
\end{aligned}
$$

Note that we do not necessarily have $I^{(1, \ldots, d)} \subset \operatorname{supp} \hat{p}$, i.e., the algorithm may wrongly yield frequencies where the corresponding Fourier coefficients are zero, see case iv in Section 2.2.2 and the discussion concerning this case.

In Figure 2.1, the sampling sets, the frequency index sets and the reconstructing rank-1 lattices for a three-dimensional example with a trigonometric polynomial p with $|\operatorname{supp} \hat{p}|=10$ frequencies, supp $\hat{p} \subset \Gamma:=\hat{G}_{8}^{3}$, are depicted for $r=1$ detection iteration. The support supp \hat{p} is shown in Figure 2.1a.

- Step 1: First in step 1, the parameter $L_{1}=17$ is determined, the sampling set $\mathcal{X}^{(1)}:=$ $\left\{\left(\frac{0}{17}, x_{2}^{\prime}, x_{3}^{\prime}\right)^{\top}, \ldots,\left(\frac{16}{17}, x_{2}^{\prime}, x_{3}^{\prime}\right)^{\top}\right\}$ with randomly chosen points $x_{2}^{\prime}, x_{3}^{\prime} \in \mathbb{T}$ is constructed, see Figure 2.1 b , and the trigonometric polynomial p is sampled at the nodes of the set $\mathcal{X}^{(1)}$. Then, a 1 d iFFT is applied and the index set of detected frequencies for the first component $I^{(1)}$, as depicted in Figure 2.1c, is determined from the resulting Fourier coefficients. In this example, this means obtaining $S_{1}=9, z_{1}:=1$ as well as $M_{1}:=S_{1}=9$, which yields the reconstructing rank-1 lattice $\Lambda\left(z=1, M=9, I^{(1)}\right)$.
- Step $2, t=2$: Correspondingly in step 2a for $t=2$, the parameter $L_{2}=17$ is determined, the sampling set $\mathcal{X}^{(2)}:=\left\{\left(x_{1}^{\prime}, \frac{0}{17}, x_{3}^{\prime}\right)^{\top}, \ldots,\left(x_{1}^{\prime}, \frac{16}{17}, x_{3}^{\prime}\right)^{\top}\right\}$ is constructed with randomly chosen points $x_{1}^{\prime}, x_{3}^{\prime} \in \mathbb{T}$, see Figure 2.1 d , and the index set of detected frequencies for the second component $I^{(2)}$, as depicted in Figure 2.1e, is determined. Next in step 2 b , the parameter $S_{2}=11$ is obtained and the index set of frequency candidates $I^{(1)} \times I^{(2)}$ is built, see Figure 2.1f, which has the cardinality $\left|I^{(1)} \times I^{(2)}\right|=49$ for our example. We search for a reconstructing rank-1 lattice for the index set $I^{(1)} \times I^{(2)}$. For this, the initial rank- 1 lattice size is set to the $M_{2}:=M_{1} \cdot S_{2}$, in our example $M_{2}:=9 \cdot 11=99$. For the generating vector \boldsymbol{z}, the component $z_{1}=1$ is used and the component $z_{2} \in\{0, \ldots, 98\}$ is searched for. In our example, we obtain $z_{2}=9$. Next, the algorithm tries to reduce the rank-1 lattice size M_{2}, which is not possible for this example, and we obtain $M_{2}:=99$. Then, a random point $x_{3}^{\prime} \in \mathbb{T}$ is chosen and the sampling set $\mathcal{X}^{(1,2)}:=\Lambda\left(\boldsymbol{z}=(1,9)^{\top}, M=99, I^{(1)} \times I^{(2)}\right) \times\left\{x_{3}^{\prime}\right\}$ is constructed as shown in Figure 2.1g, which consists of $\left|\mathcal{X}^{(1,2)}\right|=99$ nodes, and then in step 2c, the trigonometric polynomial p is sampled at these nodes. The Fourier coefficients $\tilde{\hat{p}}_{(1,2), \boldsymbol{k}}$, $\boldsymbol{k} \in I^{(1)} \times I^{(2)}$, are computed from the sampling values in step 2 d using a single 1 d iFFT and the index set of detected frequencies for the first two components $I^{(1,2)}$ is determined, see Figure 2.1 h , which yields $\left|I^{(1,2)}\right|=10$ frequencies. Afterwards in the additional step 2 f , a reconstructing rank-1 lattice for the index set $I^{(1,2)}$ is searched, i.e., a component z_{2} as well as a new rank- 1 lattice size M_{2}, and this yields the reconstructing rank-1 lattice $\Lambda\left(\boldsymbol{z}=(1,4)^{\top}, M=23, I^{(1,2)}\right)$ in our example, i.e., $z_{2}=4$ and $M_{2}=23$.
- Step $2, t=3:$ Next, step 2 a is started for $t=3$, where the parameter $L_{3}=17$ is obtained, and the sampling set $\mathcal{X}^{(3)}:=\left\{\left(x_{1}^{\prime}, x_{2}^{\prime}, \frac{0}{17}\right)^{\top}, \ldots,\left(x_{1}^{\prime}, x_{2}^{\prime}, \frac{16}{17}\right)^{\top}\right\}$ is constructed

(a) $\operatorname{supp} \hat{p},|\operatorname{supp} \hat{p}|=10$.

(b) $\mathcal{X}^{(1)},\left|\mathcal{X}^{(1)}\right|=17$ (step 1).

(c) $I^{(1)} \subseteq \mathcal{P}_{1}(\Gamma)$ (step 1).

(d) $\mathcal{X}^{(2)},\left|\mathcal{X}^{(2)}\right|=17$ $(t=2$, step 2 a$)$.
(e) $I^{(2)} \subseteq \mathcal{P}_{2}(\Gamma)$ $(t=2$, step 2 a$)$.

(f) $\begin{aligned} & I^{(1)} \times I^{(2)}, \\ & \left|I^{(1)} \times I^{(2)}\right|=49 \\ & \\ & (t=2, \text { step } 2 \mathrm{~b}) .\end{aligned}$

(g) $\mathcal{X}^{(1,2)},\left|\mathcal{X}^{(1,2)}\right|=99$ $\boldsymbol{z}=(1,9)^{\top}, M=99$ $(t=2$, step 2 b$)$.

(h) $I^{(1,2)},\left|I^{(1,2)}\right|=10$ $(t=2$, step 2 e$)$.

(i) $\Lambda\left(\boldsymbol{z}, M, I^{(1,2)}\right)$, $\boldsymbol{z}=(1,4)^{\top}, M=23$ $(t=2$, step 2 f$)$.

(j) $\mathcal{X}^{(3)},\left|\mathcal{X}^{(3)}\right|=17$ ($t=3$, step 2a).
(k) $I^{(3)} \subseteq \mathcal{P}_{3}(\Gamma)$ $(t=3$, step 2a).

(l) $\begin{aligned} & I^{(1,2)} \times I^{(3)}, \\ & \left|I^{(1,2)} \times I^{(3)}\right|=70 \\ & (t=3, \text { step 2b). }\end{aligned}$

(m) $\begin{aligned} & \mathcal{X}^{(1,2,3)}=\Lambda\left(\boldsymbol{z}, M, I^{(1,2)} \times I^{(3)}\right), \\ & \boldsymbol{z}=(1,4,23)^{\top}, M=276 \\ &(t=3, \text { step } 2 \mathrm{~b}) .\end{aligned}$

(n) $I^{(1,2,3)}=\operatorname{supp} \hat{p}$ $(t=3$, step 2 e, step 3$)$.

Figure 2.1: Example of reconstructing a three-dimensional trigonometric polynomial p using Algorithm 1 with $\Gamma=\hat{G}_{8}^{3},\left|\hat{G}_{8}^{3}\right|=4913$.
with randomly chosen points $x_{1}^{\prime}, x_{2}^{\prime} \in \mathbb{T}$, see Figure 2.1 j . In step 2 b , the index set of detected frequencies for the third component $I^{(3)}$ is determined, see Figure 2.1 k , as well as the parameter $S_{3}=12$. As described for $t=2$, the index set of frequency candidates for the first three components $I^{(1,2)} \times I^{(3)},\left|I^{(1,2)} \times I^{(3)}\right|=70$ is constructed. Similar to dimension increment step $t=2$, we build a reconstructing rank- 1 lattice for the index set $I^{(1,2)} \times I^{(3)}$ and we obtain the sampling set $\mathcal{X}^{(1,2,3)}:=\Lambda\left(\boldsymbol{z}=(1,4,23)^{\top}, M=\right.$ $\left.276, I^{(1,2)} \times I^{(3)}\right),\left|\mathcal{X}^{(1,2,3)}\right|=276$, as depicted in Figures 2.11 and 2.1 m , respectively. The trigonometric polynomial p is sampled along this sampling set in step 2 c and the Fourier coefficients $\tilde{\hat{p}}_{(1,2,3), \boldsymbol{k}}$ are determined in step 2 d . Now, the frequency index set $I^{(1,2,3)}$ is determined in step 2e, see Figure 2.1 n , using a single 1d iFFT.

- Step 3: Finally, this index set $I^{(1,2,3)}$ and the corresponding Fourier coefficients $\tilde{\hat{p}}_{(1,2,3), \boldsymbol{k}}$, $\boldsymbol{k} \in I^{(1,2,3)}$, are used as an approximation for the support supp \hat{p} and for the corresponding Fourier coefficients $\hat{p}_{\boldsymbol{k}}$ of the trigonometric polynomial p, respectively.

Algorithm 2

```
Algorithm 2 Reconstruction of a trigonometric polynomial \(p\) from sampling values.
Modifications of Algorithm 1 :
\(\vdots\)
(step 2b) Set \(\tilde{r}:= \begin{cases}r & \text { for } t<d, \\ 1 & \text { for } t=d .\end{cases}\)
    Determine \(S_{t}:=\min \left\{m \in \mathbb{N}:\left|\left\{k_{t} \bmod m: k_{t} \in I^{(t)}\right\}\right|=\left|I^{(t)}\right|\right\}\). Set \(I^{(1, \ldots, t)}:=\emptyset\).
    Build reconstructing rank-1 lattice \(\Lambda\left(\boldsymbol{z}, M_{t},\left(I^{(1, \ldots, t-1)} \cap \mathcal{P}_{(1, \ldots, t-1)}(\Gamma)\right) \times\left(I^{(t)} \cap \mathcal{P}_{(t)}(\Gamma)\right)\right)\) :
        Set \(M_{t}:=M_{t-1} \cdot S_{t}\) and \(z_{t}:=M_{t-1}\), i.e., \(\boldsymbol{z}=\left(z_{1}, \ldots, z_{t-1}, M_{t-1}\right)^{\top}\), cf. Theorem 2.2.
    for \(i:=1, \ldots, \tilde{r} \boldsymbol{d o}\)
```

Algorithm 2 is another realization for the dimension incremental method, which uses onedimensional inverse fast Fourier transforms (1d iFFTs). The approach is based on Algorithm 1 , but in step 2 b , we do not search for a reconstructing rank-1 lattice for the frequency index set $I^{(1, \ldots, t-1)} \times I^{(t)}$ but we explicitly build one using the construction from Theorem 2.2 in Section 2.1. The other steps of Algorithm 1 remain unchanged in Algorithm 2.

The arithmetic complexity for Algorithm 2 is distinctly lower than for Algorithm 1, see Section 2.2.3, and the upper bound for the number of samples is asymptotically the same for both algorithms. However, in practice, the number of samples when using Algorithm 2 may be larger because we do not search for a preferably small rank-1 lattice size. Especially, if the search space Γ is distinctly smaller than the full $\operatorname{grid} \hat{G}_{N}^{d}$ and Γ is not a tensor product grid, then Algorithm 1 is better suited with respect to the number of samples. We observe this behavior in the numerical results in Section 3. For our small example from Figure 2.1, Algorithm 2 yields the identical index sets and rank-1 lattices as Algorithm 1.

Deterministic version of Algorithm 1 and 2

We remark that we do not need to use random sampling if the Fourier coefficients $\hat{p}_{\boldsymbol{k}}, \boldsymbol{k} \in$ $\operatorname{supp} \hat{p}$, of the trigonometric polynomial p fulfill the property that the signs of the real part
$\operatorname{Re}\left(\hat{p}_{\boldsymbol{k}}\right)$ of all Fourier coefficients $\hat{p}_{\boldsymbol{k}}, \boldsymbol{k} \in \operatorname{supp} \hat{p}$, have to be the same as well as the signs of the imaginary part $\operatorname{Im}\left(\hat{p}_{\boldsymbol{k}}\right)$. This means for all $\boldsymbol{k} \in \operatorname{supp} \hat{p}$, we have either

- $\operatorname{Re}\left(\hat{p}_{\boldsymbol{k}}\right) \geq 0, \operatorname{Im}\left(\hat{p}_{\boldsymbol{k}}\right) \geq 0$ or
- $\operatorname{Re}\left(\hat{p}_{\boldsymbol{k}}\right) \geq 0, \operatorname{Im}\left(\hat{p}_{\boldsymbol{k}}\right) \leq 0$ or
- $\operatorname{Re}\left(\hat{p}_{\boldsymbol{k}}\right) \leq 0, \operatorname{Im}\left(\hat{p}_{\boldsymbol{k}}\right) \geq 0$ or
- $\operatorname{Re}\left(\hat{p}_{\boldsymbol{k}}\right) \leq 0, \operatorname{Im}\left(\hat{p}_{\boldsymbol{k}}\right) \leq 0$.

Then, we may set the number of detection iterations $r:=1$, the sparsity parameter $s:=$ supp \hat{p} as well as the (random) components $x_{1}^{\prime}, \ldots, x_{d}^{\prime}$ of the sampling nodes always to zero in Algorithm 1 and 2, by which both algorithms become deterministic. However for arbitrary Fourier coefficients $\hat{p}_{\boldsymbol{k}} \in \mathbb{C}$, we rely on random sampling in both algorithms.

2.2.2 Successful and failed detection

As mentioned in Section 2.2.1, the successful detection of all non-zero Fourier coefficients and the corresponding frequencies, i.e., obtaining $I^{(1, \ldots, d)}=\operatorname{supp} \hat{p}$, is not guaranteed. In the following, we discuss conditions for the successful detection and we address the question if it is possible to notice that not all frequencies were detected successfully during the incremental detection process in Section 2.2.1. We remark that the computations in (2.5) for Algorithm 1 and 2 are responsible for the correct frequency detection, which belong to the computation steps 1 and 2 a , as well as the computations in (2.7), which belong to the computation step 2d.

For the computation of one-dimensional projected Fourier coefficients for the t-th component $\tilde{\hat{p}}_{t, k_{t}}, t \in\{1, \ldots, d\}$ and $k_{t} \in \mathcal{P}_{t}(\Gamma)$, in formula (2.5), the randomly chosen values $x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ directly influence the successful detection $I^{(t)}=\mathcal{P}_{t}(\operatorname{supp} \hat{p})$, see the aliasing formula (2.6). Note that the computation of the coefficient $\tilde{\hat{p}}_{t, k_{t}}$ for fixed $t \in\{1, \ldots, d\}$ and $k_{t} \in \mathcal{P}_{t}(\Gamma)$ may be regarded as the evaluation of the trigonometric polynomial

$$
\begin{equation*}
\tilde{p}_{t, k_{t}}: \mathbb{T}^{d-1} \rightarrow \mathbb{C}, \quad \tilde{p}_{t, k_{t}}:=\sum_{\substack{\left.\tilde{h}:=\left(h_{1}, \ldots, h_{t-1}, h_{t+1}, \ldots, h_{d}\right)^{\top} \in \mathcal{P}_{(1, \ldots, t-1, t+1, \ldots,()} \boldsymbol{h}:=\left(h_{1}, \ldots, h_{t-1}, k_{t}, h_{t+1}, \ldots, h_{d}\right)^{\top} \in \operatorname{supp} \hat{p}\right)}} \hat{p}_{h} \mathrm{e}^{2 \pi \mathrm{i} \tilde{\mathrm{~h}} \cdot \mathrm{o}}, \tag{2.9}
\end{equation*}
$$

at the node $\tilde{\boldsymbol{x}}^{\prime}:=\left(x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top} \in \mathbb{T}^{d-1}$, i.e., $\tilde{\hat{p}}_{t, k_{t}}=\tilde{p}_{t, k_{t}}\left(\tilde{\boldsymbol{x}}^{\prime}\right)$. Accordingly, for the computation of the t-dimensional projected Fourier coefficients for the first t components $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}, \boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$, the randomly chosen values $x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ directly influence the successful frequency detection, see the aliasing formula (2.8). When we compute the coefficients $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}$, we apply one inverse rank-1 lattice FFT as described in Section 2.1. This means we compute, see step 2d of Algorithm 1,

$$
\begin{equation*}
\hat{g}_{\ell}:=\frac{1}{M_{t}} \sum_{m=0}^{M_{t}-1} p\left(\left(\frac{m}{M_{t}}\left(z_{1}, \ldots, z_{t}\right) \bmod \mathbf{1}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}\right) \mathrm{e}^{-2 \pi \mathrm{i} m \ell / M_{t}} \tag{2.10}
\end{equation*}
$$

for $\ell=0, \ldots, M_{t}-1$ using a single 1 d iFFT and

$$
\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}:=\hat{g}_{\boldsymbol{k} \cdot\left(z_{1}, \ldots, z_{t}\right)^{\top} \bmod M_{t}} \quad \text { for } \boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma) .
$$

We remark that the computation of the coefficient $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}$ for fixed $t \in\{2, \ldots, d-1\}$ and $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$ may be regarded as the evaluation of the trigonometric polynomial

$$
\begin{equation*}
\tilde{p}_{(1, \ldots, t), \boldsymbol{k}}^{\Lambda\left(\boldsymbol{z}, M_{t}\right)}: \mathbb{T}^{d-t} \rightarrow \mathbb{C}, \quad \sum_{(1, \ldots, t), \boldsymbol{k}}^{\Lambda\left(\boldsymbol{z}, M_{t}\right)}:=\sum_{\substack{\boldsymbol{h} \in \operatorname{supp} \hat{p} \\\left(\left(h_{1}, \ldots, h_{t}\right)^{\top}-\boldsymbol{k}\right) \cdot \boldsymbol{z} \equiv 0\left(\bmod M_{t}\right)}} \hat{p}_{\boldsymbol{h}} \mathrm{e}^{2 \pi \mathrm{i}\left(h_{t+1}, \ldots, h_{d}\right)^{\top} \cdot \circ} \tag{2.11}
\end{equation*}
$$

at the node $\tilde{\boldsymbol{x}}^{\prime}:=\left(x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top} \in \mathbb{T}^{d-t}$, i.e., $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}=\tilde{p}_{(1, \ldots, t), \boldsymbol{k}}^{\Lambda\left(\boldsymbol{z}, M_{t}\right)}\left(\tilde{\boldsymbol{x}}^{\prime}\right)$.
In Theorem 2.5, we give an upper bound on the probability that the frequency detections in step 1 , step 2 a as well as step 2 e do not recognize a frequency $k_{t} \in \mathcal{P}_{t}(\operatorname{supp} \hat{p})$ and $\boldsymbol{k} \in$ $\mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$, respectively. Prior to this, we require

Lemma 2.4. Let $\delta \geq 0$ be a threshold value and let a trigonometric polynomial $g: \mathbb{T}^{n} \rightarrow \mathbb{C}$, $n \in \mathbb{N}, g(\boldsymbol{x}):=\sum_{\boldsymbol{k} \in \tilde{I}} \hat{g}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}}, \tilde{I} \subset \mathbb{Z}^{n},|\tilde{I}|<\infty$, be given by its Fourier coefficients $\hat{g}_{\boldsymbol{k}} \in \mathbb{C}, \boldsymbol{k} \in \tilde{I}$, such that the property $\left\|g \mid L^{1}\left(\mathbb{T}^{n}\right)\right\|>\delta \geq 0$ or $\max _{\boldsymbol{k} \in \tilde{I}}\left|\hat{g}_{\boldsymbol{k}}\right|>\delta \geq 0$ is fulfilled. Moreover, let $X_{1}, \ldots, X_{n} \in \mathbb{T}^{d}$ be independent, identical, uniformly distributed random variables and the random vector $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{n}\right)^{\top}$. Then, the probability

$$
\begin{gathered}
\mathbb{P}(|g(\boldsymbol{X})| \leq \delta) \leq \mathrm{e}^{-\frac{2\left(\left\|g \mid L^{1}\left(\mathbb{T}^{n}\right)\right\|-\delta\right)^{2}}{\left\|g \mid L^{\infty}\left(\mathbb{T}^{n}\right)\right\|^{2}}}<1 \\
\text { If } \max _{\boldsymbol{k} \in \tilde{I}}\left|\hat{g}_{\boldsymbol{k}}\right|>\delta, \text { then } \quad \mathbb{P}(|g(\boldsymbol{X})| \leq \delta) \leq \mathrm{e}^{-\frac{2\left(\left\|g \mid L^{1}\left(\mathbb{T}^{n}\right)\right\|-\delta\right)^{2}}{\left\|g \mid L^{\infty}\left(\mathbb{T}^{n}\right)\right\|^{2}}} \leq \mathrm{e}^{-\frac{2\left(\max _{\boldsymbol{k} \in \tilde{I}}\left|\hat{g}_{\boldsymbol{g}}\right|-\delta\right)^{2}}{\left(\sum_{\boldsymbol{k} \in \tilde{I}}\left|\hat{g}_{\boldsymbol{k}}\right|\right)^{2}}}<1
\end{gathered}
$$

Proof. We define the random variable $Y_{1}:=-|g(\boldsymbol{X})|$. Formally, for the expectation value of Y_{1}, we have $\mathbb{E}\left(Y_{1}\right)=\int_{\mathbb{T}^{n}}-\left|g\left(\left(x_{1}, \ldots, x_{n}\right)^{\top}\right)\right| f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$, where $f_{X_{1}, \ldots, X_{n}}$ is the joint probability density function of the random variables X_{1}, \ldots, X_{n}. Since the random variables X_{1}, \ldots, X_{n} are independent and uniformly distributed, we obtain $f_{X_{1}, \ldots, X_{n}} \equiv 1$. This yields $\mathbb{E}\left(Y_{1}\right)=-\int_{\mathbb{T}^{n}}|g(\boldsymbol{x})| \mathrm{d} \boldsymbol{x}=-\left\|g \mid L^{1}\left(\mathbb{T}^{n}\right)\right\|$. Next, we apply Hoeffdings inequality and obtain

$$
\mathbb{P}\left(Y_{1}-\mathbb{E}\left(Y_{1}\right) \geq\left\|g \mid L^{1}\left(\mathbb{T}^{n}\right)\right\|-\delta\right) \leq \mathrm{e}^{-\frac{2\left(\left\|g \mid L^{1}\left(\mathbb{T}^{n}\right)\right\|-\delta\right)^{2}}{\left\|g \mid L^{\infty}\left(\mathbb{T}^{n}\right)\right\|^{2}}}
$$

for $\left\|g \mid L^{1}\left(\mathbb{T}^{n}\right)\right\|>\delta$ since $\mathbb{P}\left(g\left(Y_{1}\right) \in\left[-\left\|g \mid L^{\infty}\left(\mathbb{T}^{n}\right)\right\|, 0\right]\right)=1$.
Due to $\left|\hat{g}_{\boldsymbol{k}}\right|=\left|\int_{\mathbb{T}^{n}} g(\boldsymbol{x}) \mathrm{e}^{-2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}} \mathrm{d} \boldsymbol{x}\right| \leq \int_{\mathbb{T}^{n}}|g(\boldsymbol{x})| \mathrm{d} \boldsymbol{x}=\left\|g \mid L^{1}\left(\mathbb{T}^{n}\right)\right\|$ for all $\boldsymbol{k} \in \tilde{I}$, we have $\max _{\boldsymbol{k} \in \tilde{I}}\left|\hat{g}_{\boldsymbol{k}}\right| \leq\left\|g \mid L^{1}\left(\mathbb{T}^{n}\right)\right\|$. Since $\left\|g\left|L^{\infty}\left(\mathbb{T}^{n}\right) \|=\operatorname{ess} \sup _{\boldsymbol{x} \in \mathbb{T}^{n}}\right| g(\boldsymbol{x})\left|\leq \sum_{\boldsymbol{k} \in \tilde{I}}\right| \hat{g}_{\boldsymbol{k}} \mid\right.$ and

$$
\begin{aligned}
\mathbb{P}\left(Y_{1}-\mathbb{E}\left(Y_{1}\right) \geq\left\|g \mid L^{1}\left(\mathbb{T}^{n}\right)\right\|-\delta\right) & =\mathbb{P}\left(-|g(\boldsymbol{X})|+\left\|g\left|L^{1}\left(\mathbb{T}^{n}\right)\|\geq\| g\right| L^{1}\left(\mathbb{T}^{n}\right)\right\|-\delta\right) \\
& =\mathbb{P}(|g(\boldsymbol{X})| \leq \delta)
\end{aligned}
$$

we obtain the assertion.

Theorem 2.5. Let a threshold value $\delta \geq 0$, a trigonometric polynomial p of the form (1.1) with the property $\min _{\boldsymbol{h} \in \operatorname{supp} \hat{p}}\left|\hat{p}_{\boldsymbol{h}}\right|>\delta \geq 0$ and a search space $\Gamma \supset \operatorname{supp} \hat{p}$ of finite cardinality be given. For fixed $t \in\{1, \ldots, d\}$ and $L_{t}:=\max \left(\mathcal{P}_{t}(\Gamma)\right)-\min \left(\mathcal{P}_{t}(\Gamma)\right)+1$, $\underset{\sim}{w}$ e compute the one-dimensional projected Fourier coefficients for the t-th component $\tilde{\hat{p}}_{t, k_{t}}=\tilde{p}_{t, k_{t}}\left(x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right), k_{t} \in \mathcal{P}_{t}(\Gamma)$, by formula (2.5), where the values
$x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ are independently chosen uniformly at random. Then, the probability

$$
\mathbb{P}\left(\left|\tilde{\hat{p}}_{t, k_{t}}\right| \leq \delta\right) \leq \mathrm{e}^{-2 \frac{\left(\min _{\boldsymbol{h} \in \operatorname{supp} \hat{p}}\left|\hat{p}_{\boldsymbol{h}}\right|-\delta\right)^{2}}{\left(\sum_{\boldsymbol{h} \in \operatorname{supp}} \hat{p}^{\mid \hat{p}} \hat{h}^{\prime} \mid\right)^{2}}}<1 \quad \text { for } k_{t} \in \mathcal{P}_{t}(\operatorname{supp} \hat{p})
$$

Moreover, for fixed $t \in\{2, \ldots, d-1\}$, we compute the t-dimensional projected Fourier coefficients for the first t components $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}=\tilde{p}_{(1, \ldots, t), \boldsymbol{k}}^{\Lambda\left(\boldsymbol{z}, M_{t}\right)}\left(x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right), \boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap$ $\mathcal{P}_{(1, \ldots, t)}(\Gamma)$, by formula (2.7), where the values $x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ are independently chosen uniformly at random. If the rank-1 lattice $\Lambda\left(\boldsymbol{z}, M_{t}\right)$ is a reconstructing rank-1 lattice for $\mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$, then the probability

$$
\mathbb{P}\left(\left|\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}\right| \leq \delta\right) \leq \mathrm{e}^{\left.-2 \frac{\left(\min _{\boldsymbol{h} \in \operatorname{supp} \hat{p}}\left|\hat{p}_{\boldsymbol{h}}\right|-\delta\right)^{2}}{\left(\sum_{\boldsymbol{h} \in \operatorname{supp} \hat{p}} \mid \hat{p} \boldsymbol{h}\right.}\right)^{2}}<1 \quad \text { for } \boldsymbol{k} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p}) \cap\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right)
$$

Proof. For fixed $t \in\{1, \ldots, d\}$ and for each $k_{t} \in \mathcal{P}_{t}(\operatorname{supp} \hat{p})$, we regard the computation of the one-dimensional projected Fourier coefficient for the t-th component $\tilde{\hat{p}}_{t, k_{t}}$ as the evaluation of the trigonometric polynomial $\tilde{p}_{t, k_{t}}$ from (2.9) at the node $\left(x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top} \in \mathbb{T}^{d-1}$. We apply Lemma 2.4 setting the index set $\tilde{I}:=\mathcal{P}_{(1, \ldots, t-1, t+1, \ldots, d)}\left(\left\{\boldsymbol{h} \in \operatorname{supp} \hat{p}: h_{t}=k_{t}\right\}\right)$ and the Fourier coefficients $\hat{g}_{\mathcal{P}_{(1, \ldots, t-1, t+1, \ldots, d)}(\boldsymbol{h})}:=\hat{p}_{\boldsymbol{h}}$ for $\boldsymbol{h} \in\left\{\boldsymbol{h} \in \operatorname{supp} \hat{p}: h_{t}=k_{t}\right\}$. Since $0 \leq \delta<\min _{\boldsymbol{h} \in \operatorname{supp} \hat{p}}\left|\hat{p}_{\boldsymbol{h}}\right| \leq \max _{\boldsymbol{l} \in \tilde{I}}\left|\hat{g}_{\boldsymbol{l}}\right|$ and $\sum_{\boldsymbol{l} \in \tilde{I}}\left|\hat{g}_{\boldsymbol{l}}\right| \leq \sum_{\boldsymbol{h} \in \operatorname{supp} \hat{p}}\left|\hat{p}_{\boldsymbol{h}}\right|$, we obtain the assertion for the coefficients $\tilde{\hat{p}}_{t, k_{t}}, k_{t} \in \mathcal{P}_{t}(\operatorname{supp} \hat{p})$.
Similarly, for fixed $t \in\{2, \ldots, d-1\}$ and for each $\boldsymbol{k} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p}) \cap\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right)$, we regard the computation of the t-dimensional projected Fourier coefficients for the first t components $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}$ as the evaluation of the trigonometric polynomial $\tilde{p}_{(1, \ldots, t), \boldsymbol{k}}^{\Lambda\left(\boldsymbol{z}, M_{t}\right)}$ from (2.11) at the node $\left(x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top} \in \mathbb{T}^{d-t}$. We apply Lemma 2.4 setting the index set $\tilde{I}:=\mathcal{P}_{(t+1, \ldots, d)}\left(\left\{\boldsymbol{h} \in \operatorname{supp} \hat{p}:\left(\left(h_{1}, \ldots, h_{t}\right)^{\top}-\boldsymbol{k}\right) \cdot \boldsymbol{z} \equiv 0\left(\bmod M_{t}\right)\right\}\right)$ and the Fourier coefficients $\hat{g}_{\mathcal{P}_{(t+1, \ldots, d)}(\boldsymbol{h})}:=\hat{p}_{\boldsymbol{h}}$ for $\boldsymbol{h} \in\left\{\boldsymbol{h} \in \operatorname{supp} \hat{p}:\left(\left(h_{1}, \ldots, h_{t}\right)^{\top}-\boldsymbol{k}\right) \cdot \boldsymbol{z} \equiv 0\left(\bmod M_{t}\right)\right\}$. This yields the assertion for the coefficients $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}, \boldsymbol{k} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p}) \cap\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right)$.

In Algorithm 1 and 2, for a specified relative threshold parameter $\theta \in \mathbb{R}, 0<\theta<1$, we use the threshold value $\delta:=\theta \cdot \max _{k_{t} \in \mathcal{P}_{t}(\operatorname{supp} \hat{p} \mid}\left|\tilde{\hat{p}}_{t, k_{t}}\right|$ in step 1 and 2 a for $t \in\{1, \ldots, d\}$ as well as $\delta:=\theta \cdot \max _{\boldsymbol{k} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})}\left|\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}\right|$ in step 2 e for $t \in\{2, \ldots, d-1\}$. In the case $0<\theta<\left(\min _{\boldsymbol{h} \in \operatorname{supp} \hat{p}}\left|\hat{p}_{\boldsymbol{h}}\right|\right) / \sum_{\boldsymbol{h} \in \operatorname{supp} \hat{p}}\left|\hat{p}_{\boldsymbol{h}}\right|$, Theorem 2.5 yields

$$
\mathbb{P}\left(\left|\tilde{\hat{p}}_{t, k_{t}}\right| \leq \delta\right) \leq C(p)<1 \quad \text { and } \quad \mathbb{P}\left(\left|\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}\right| \leq \delta\right) \leq C(p)<1
$$

 $r \in \mathbb{N}$ many detection iterations with new values $x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ independently chosen uniformly at random, the frequency detection for $k_{t} \in \mathcal{P}_{t}(\operatorname{supp} \hat{p})$ succeeds if

$$
\left|\tilde{\hat{p}}_{t, k_{t}}\right|=\left|\tilde{p}_{t, k_{t}}\left(\left(x_{1}^{\prime}, \ldots, x_{t-1}^{\prime}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}\right)\right| \geq \theta \max _{\tilde{k}_{t} \in \mathcal{P}_{t}(\operatorname{supp} \hat{p})}\left|\tilde{\hat{p}}_{t, \tilde{k}_{t}}\right|
$$

in at least one detection iteration $i \in\{1, \ldots, r\}$, and we obtain $\mathbb{P}\left(k_{t} \in I^{(t)}\right) \geq 1-(C(p))^{r}$ for each $k_{t} \in \mathcal{P}_{t}(\operatorname{supp} \hat{p})$, see step 2a of Algorithm 1 for the index set $I^{(t)}$, assuming that
the sparsity input parameter $s \geq|\operatorname{supp} \hat{p}|$ and the search space $\Gamma \supset \operatorname{supp} \hat{p}$. Note that this probability can be arbitrarily close to 1 if the number r of detection iterations is sufficiently large. Similarly, the frequency detection for $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$ succeeds if

$$
\left|\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}\right|=\left|\tilde{p}_{(1, \ldots, t), \boldsymbol{k}}^{\Lambda\left(\boldsymbol{z}, M_{t}\right)}\left(\left(x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}\right)\right| \geq \theta \cdot \max _{\tilde{\boldsymbol{k}} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})}\left|\tilde{\hat{p}}_{(1, \ldots, t), \tilde{\boldsymbol{k}}}\right|
$$

in at least one detection iteration $i \in\{1, \ldots, r\}$, and this yields $\mathbb{P}\left(\boldsymbol{k} \in I^{(1, \ldots, t)}\right) \geq 1-(C(p))^{r}$ for each $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$, assuming that the sparsity input parameter $s \geq|\operatorname{supp} \hat{p}|$, the search space $\Gamma \supset \operatorname{supp} \hat{p}, I^{(\tau)}=\mathcal{P}_{\tau}(\operatorname{supp} \hat{p})$ for $\tau \in\{1, \ldots, t\}$ and $I^{(1, \ldots, \tau)}=$ $\mathcal{P}_{(1, \ldots, \tau)}(\operatorname{supp} \hat{p})$ for $\tau \in\{2, \ldots, t-1\}$.

Finally, all non-zero Fourier coefficients and the corresponding frequencies are successfully detected if the frequency detections in the dimension increment steps $t \in\{1, \ldots, d\}$ succeed.

During the computations in step 2 of Algorithm 1 and 2 , the following cases may occur.
i. For a frequency $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$, we have $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}} \neq 0$ and $\boldsymbol{k} \in$ $\mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$, i.e., the detection of the frequency \boldsymbol{k} was successful.
ii. For a frequency $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$, we have $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}=0$ but $\boldsymbol{k} \in$ $\mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$, i.e., the frequency \boldsymbol{k} was considered but not recognized, and the detection of the frequency \boldsymbol{k} failed.
iii. For a frequency $\boldsymbol{k} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$, we have $\boldsymbol{k} \notin\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$, i.e., the frequency \boldsymbol{k} was not considered. This means the detection of the frequency \boldsymbol{k} failed.
a) For a frequency $\ell \in\left\{0, \ldots, M_{t}-1\right\}$, we have $\hat{g}_{\ell} \neq 0$ in (2.10) but $\nexists \boldsymbol{k} \in I^{(1, \ldots, t-1)} \times I^{(t)}$ such that $\boldsymbol{k} \cdot\left(z_{1}, \ldots, z_{t}\right)^{\top} \equiv \ell\left(\bmod M_{t}\right)$.
iv. For a frequency $\boldsymbol{k} \in\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$, we have $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}} \neq 0$ but $\boldsymbol{k} \notin$ $\mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$, i.e., the frequency \boldsymbol{k} was falsely detected.

As discussed in Section 2.2.1, we do not test the Fourier coefficients for zero/non-zero but if their absolute values are below/above a certain threshold. Correspondly, $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}} \neq 0$ means $\left|\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}\right| \geq$ threshold_value and $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}=0$ means $\left|\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}\right|<$ threshold_value.

Case i is the optimal case where the frequency \boldsymbol{k} was in the candidate list $\left(I^{(1, \ldots, t-1)} \times\right.$ $\left.I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$ and detected correctly.

In contrast, case ii means that the frequency also was in the candidate list but was wrongly not included in the index set $I^{(1, \ldots, t)}$ of detected frequencies. Similar to the discussion for the computation (2.5), the fixed values $x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ influence the successful frequency detection, see the aliasing formula (2.8). Again, we suggest to repeatedly evaluate (2.7) with different randomly chosen values $x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ and compare the obtained index sets $I^{(1, \ldots, t)}$ of detected frequencies. If all of them coincide, it is very likely that the case ii did not occur. Otherwise, we suggest to use the union of the obtained index sets $I^{(1, \ldots, t)}$ for the computations that follow in Section 2.2.1.

In case iii, at least one frequency $\boldsymbol{k} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$ is already missing in the candidate list $\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$. Possibly, we will not be able to even notice this. If we encounter case iiia, which is a special variant of case iii, we know that there exists at least one frequency $\boldsymbol{k}:=\binom{\boldsymbol{k}^{\prime}}{k^{\prime \prime}} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$ for which $\boldsymbol{k} \notin\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right) \cap \mathcal{P}_{(1, \ldots, t)}(\Gamma)$, but we do
not exactly know which and how many frequencies are affected by this. However, we know that these frequencies are from the set $\left\{\boldsymbol{h} \in \mathcal{P}_{(1, \ldots, t)}(\Gamma): \boldsymbol{h} \cdot\left(z_{1}, \ldots, z_{t}\right)^{\top} \equiv \ell\left(\bmod M_{t}\right)\right\}$ for Algorithm 1.

Furthermore, case iv may occur and is a consequence of having $I^{(t)} \not \supset \mathcal{P}_{t}(\operatorname{supp} \hat{p})$ in the current (t-th) dimension increment step or case iii in one of the preceding dimension increment steps $1, \ldots, t-1$. This means, in the current or one of the previous dimension increment steps, at least one frequency was not detected. Moreover, we have $I^{(1, \ldots, t)} \not \subset \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$. However, we may not be able to notice that this case has occurred.

2.2.3 Number of samples and arithmetic complexity

In this section, we give upper bounds for the number of samples and for the arithmetic complexity of the methods described in Section 2.2 .1 as Algorithm 1 and 2 in the case where the search space Γ is the full grid \hat{G}_{N}^{d}. For computing the index set of detected frequencies for the t-th component $I^{(t)}$ in the steps 1 and 2 a of Algorithm 2, $(2 N+1)$ function samples are taken and the used 1 d iFFT requires at most $C_{1} N \log N$ arithmetic operations in each detection iteration $i \in\{1, \ldots, r\}$ for each $t \in\{1, \ldots, d\}$, where the constant $C_{1} \geq 1$ does not depend on N. This yields $r d\left|\hat{G}_{N}^{1}\right|=r d(2 N+1)$ function samples and at most $\tilde{C} r d N \log N$ arithmetic operations for determining the index sets $I^{(1)}, \ldots, I^{(d)}$, where $\tilde{C} \geq 1$ is an absolute constant.

In step 2 of Algorithm 1 and 2 for dimension increment step t, the index sets $I^{(1, \ldots, t-1)}$ and $I^{(t)}$ consist of at most $r s$ many frequencies. This yields that the index set $I^{(1, \ldots, t-1)} \times I^{(t)}$ consists of $\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right| \leq r s\left|\hat{G}_{N}^{1}\right|$ frequency candidates. The sampling set $\mathcal{X}^{(1, \ldots, t)}$ constructed in step 2 b of Algorithm 1 and 2 has the size $\left|\mathcal{X}^{(1, \ldots, t)}\right|=M_{t}$, where the rank- 1 lattice size $M_{t} \leq \max \left\{2 r^{2} s^{2}, 3 N\right\}(2 N+1)$ due to Corollary 2.3. The inverse rank-1 lattice FFT in step 2 d requires no more than $C_{1} M_{t} \log M_{t}+2 t\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right|$ arithmetic operations for each detection iteration $i \in\{1, \ldots, r\}$ and each dimension increment step $t \in\{2, \ldots, d\}$.
For each detection iteration $i \in\{1, \ldots, r\}$ and each dimension increment step $t \in\{2, \ldots, d\}$ when searching for the next component z_{t} of the generating vector \boldsymbol{z} in step 2 b in Algorithm 1 , the number of arithmetic operations is bounded by $3\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right| M_{t} \leq$ $3 \operatorname{rs}(2 N+1) \max \left\{2 r^{2} s^{2}, 3 N\right\}(2 N+1)$, see the proof of Theorem 2.1. Moreover, reducing the rank-1 lattice size M_{t} using [24, Algorithm 3.5] requires no more arithmetic operations. At the end of step 2e, the index set $I^{(1, \ldots, t)}$ consists of no more than $\left|I^{(1, \ldots, t)}\right| \leq r s$ frequencies. Consequently, when searching for the new rank-1 lattice in the additional step 2f of Algorithm 1 and 2 for each $t \in\{2, \ldots, d-1\}$, the new rank-1 lattice size M_{t} is bounded by $\max \left\{2 r^{2} s^{2}, 3 N\right\}$ due to Theorem 2.1. The number of arithmetic operations for the search of the next component z_{t} of the generating vector \boldsymbol{z} is bounded by $3\left|I^{(1, \ldots, t)}\right| M_{t} \leq 3 r s \max \left\{2 r^{2} s^{2}, 3 N\right\}$, see the proof of Theorem 2.1. Reducing the rank-1 lattice size M_{t} requires no more than $3 r s \max \left\{2 r^{2} s^{2}, 3 N\right\}$ arithmetic operations.

In total, this yields no more than

$$
r(d-1) \max \left\{2 r^{2} s^{2}, 3 N\right\} 2(N+1)+r d(2 N+1)
$$

many samples for Algorithm 1 and 2 as well as

$$
C d \cdot\left(\max \left\{r^{3} s^{3} N^{2}, r s N^{3}\right\}+\max \left\{r^{3} s^{2} N, r N^{2}\right\} \log \left(\max \left\{r^{2} s^{2} N, N^{2}\right\}\right)\right)
$$

arithmetic operations for Algorithm 1 and

$$
C d \cdot\left(\max \left\{r^{3} s^{3}, r s N\right\}+\max \left\{r^{3} s^{2} N, r N^{2}\right\} \log \left(\max \left\{r^{2} s^{2} N, N^{2}\right\}\right)\right)
$$

arithmetic operations for Algorithm 2, where $C>1$ is an absolute constant. We remark that a large contribution to the arithmetic complexity comes from the rank- 1 lattice search, in particular for Algorithm 1 in step 2b. Moreover, we have no exponential dependence in the dimension d, neither for the number of samples nor the arithmetic complexity. Assuming $\sqrt{N} \lesssim s \lesssim N^{d}$, we require $\mathcal{O}\left(d s^{2} N\right)$ many samples for both algorithms as well as $\mathcal{O}\left(d s^{3} N^{2}\right)$ and $\mathcal{O}\left(d s^{3}+d s^{2} N \log (s N)\right)$ arithmetic operations for Algorithm 1 and 2, respectively. In the case $s \lesssim \sqrt{N}$, we need $\mathcal{O}\left(d N^{2}\right)$ many samples for both algorithms as well as $\mathcal{O}\left(d s N^{3}\right)$ and $\mathcal{O}\left(d N^{2} \log N\right)$ arithmetic operations for Algorithm 1 and 2, respectively.

2.3 Reducing the number of samples for the dimension incremental reconstruction of trigonometric polynomials using compressed sensing

The dimension incremental reconstruction method for trigonometric polynomials from samples presented in Section 2.2.1 and realized as Algorithm 1 and 2 may require $\mathcal{O}\left(d s^{2} N\right)$ and $\mathcal{O}\left(d N^{2}\right)$ many samples in the case $\sqrt{N} \lesssim s \lesssim N^{d}$ and $s \lesssim \sqrt{N}$, respectively, see Section 2.2.3, if the search space Γ is the full grid \hat{G}_{N}^{d}. In this section, we discuss a possible approach to reduce this number of samples. In Section 1, we have already mentioned the possibility to recover trigonometric polynomials, i.e., solving the problem (1.2), using random sampling in compressed sensing, see [32] and the references therein. Then, $L \geq C|\operatorname{supp} \hat{p}| \log ^{4}(|\Gamma|) \log (1 / \eta)$ random samples suffice in order to reconstruct a trigonometric polynomial with frequencies supported on the search space $\Gamma \subset \mathbb{Z}^{d}$ with probability $1-\eta$, where $C>0$ is an absolute constant. However, the arithmetic complexity contains in general the factor $|\Gamma|$ when we apply such a compressed sensing algorithm directly, since the computations usually involve multiplications with the Fourier matrix $\boldsymbol{A}:=\left(\mathrm{e}^{2 \pi \mathrm{i} \cdot \boldsymbol{x}_{\ell}}\right)_{\boldsymbol{x}_{\ell} \in \mathcal{X}, \boldsymbol{k} \in \Gamma}$ and its adjoint \boldsymbol{A}^{*}, where \mathcal{X} is the set of samples \boldsymbol{x}_{ℓ} of cardinality $|\mathcal{X}|=L$. Using our dimension incremental reconstruction approach from Section 2.2 in combination with compressed sensing methods, we can reduce this arithmetic complexity and still limit the number of random samples.
First, we consider the case where the sampling nodes $\boldsymbol{x}_{\ell} \in \mathcal{X} \subset \mathbb{T}^{d},|\mathcal{X}|=L$, are chosen uniformly at random. For this, we remove the building of the reconstructing rank1 lattices from the steps 2 b and 2 f in Algorithm 2. As mentioned before, the index set $I^{(1, \ldots, t-1)} \times I^{(t)}$ of frequency candidates in dimension increment step $t \in\{2, \ldots, d\}$ consists of at most $r s\left|\hat{G}_{N}^{1}\right|=r s(2 N+1)$ frequency candidates if $\Gamma=\hat{G}_{N}^{d}$. Consequently, using $L=\left\lceil C|\operatorname{supp} \hat{p}| \log ^{4}\left(r s\left|\hat{G}_{N}^{1}\right|\right) \log (1 / \eta)\right\rceil$ many random samples from \mathbb{T}^{d} is sufficient in each detection iteration $i \in\{1, \ldots, r\}$ and in each dimension increment step $t \in\{2, \ldots, d\}$ if we apply compressed sensing instead of the inverse rank-1 lattice FFT in step 2d. For this, we can use ℓ_{1} minimization (Basis Pursuit) [4]. Concretely, we use the SPGL1 algorithm [48, 47], which is an iterative method for solving the ℓ_{1} minimization problem that utilizes matrix-vector multiplications of the Fourier matrix $\boldsymbol{A}:=\left(\mathrm{e}^{2 \pi \mathrm{i} \cdot \boldsymbol{\boldsymbol { x } _ { \ell }}}\right)_{\boldsymbol{x}_{\ell} \in \mathcal{X}, \boldsymbol{k} \in I}$ and its adjoint \boldsymbol{A}^{*}. The arithmetic complexity of the SPGL1 algorithm is dominated by the matrix-vector multiplications involving the Fourier matrix \boldsymbol{A} and its adjoint \boldsymbol{A}^{*} requiring each $\mathcal{O}(L|I|)$ arithmetic operations as well as a one-norm projection requiring $\mathcal{O}(|I| \log |I|)$ arithmetic operations in each of $R \in \mathbb{N}$ many iterations for SPGL1, cf. [48, Sec. 4.2]. For $s=\mathcal{O}(|\operatorname{supp} \hat{p}|)$, the ℓ_{1} minimization using SPGL1 requires no more than $r L=\mathcal{O}\left(s \log ^{4}(s N)\right)$ many samples and $\mathcal{O}\left(R L\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right|\right)=\mathcal{O}\left(R s^{2} N \log ^{4}(s N)\right)$ arithmetic operations in each dimension increment step $t \in\{2, \ldots, d\}$.

Totally, this means $\mathcal{O}\left(d s \log ^{4}(s N)+d N\right)$ many samples and $\mathcal{O}\left(d R s^{2} N \log ^{4}(s N)\right)$ arith-
metic operations for the dimension incremental reconstruction using ℓ_{1} minimization if $\Gamma=$ \hat{G}_{N}^{d}.

2.3.1 Sub-sampling on the rank-1 lattices

We can use also the SPGL1 ℓ_{1} minimization in combination with reconstructing rank- 1 lattices if we use partial derandomisation for the choice of the sampling nodes \boldsymbol{x}_{ℓ} by using a random subset of the rank-1 lattice $\mathcal{X}^{(1, \ldots, t)}$ in step 2 b of Algorithm 2 as the set of sampling nodes for the dimension increment step $t \in\{2, \ldots, d\}$. Here, we apply one-dimensional fast Fourier transforms to compute the matrix-vector product of the Fourier matrix \boldsymbol{A} and a vector from $\mathbb{C}^{I I \mid}$ as well as 1d iFFTs to compute the matrix-vector product of the adjoint Fourier matrix \boldsymbol{A}^{*} and a vector from \mathbb{C}^{L}, see Section 2.1. The ℓ_{1} minimization then requires $\mathcal{O}\left(R M_{t} \log M_{t}+\right.$ $\left.\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right|\right)$ arithmetic operations in each dimension increment step $t \in\{2, \ldots, d\}$, where $R \in \mathbb{N}$ is the number of iterations for SPGL1, $M_{t} \leq \max \left\{2 r^{2} s^{2}, 3 N\right\} 2(N+1)$ due to Corollary 2.3 and $\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right| \leq r s(2 N+1)$.
In total, this means $\mathcal{O}\left(d s \log ^{4}(s N)+d N\right)$ many samples as well as $\mathcal{O}\left(d s^{3}+\right.$ $\left.d R s^{2} N \log (s N)\right)$ and $\mathcal{O}\left(d R N^{2} \log N\right)$ arithmetic operations in the case $\sqrt{N} \lesssim s \lesssim N^{d}$ and $s \lesssim \sqrt{N}$, respectively, if $\Gamma=\hat{G}_{N}^{d}$. We successfully apply the sub-sampling on the rank-1 lattice in Section 3 in Example 3.3 and 3.8.

2.3.2 Sub-sampling using random generated sets

Instead of sub-sampling on the rank-1 lattices, we may also use so-called generated sets [23] as sampling set \mathcal{X}. This allows us to omit the rank- 1 lattice search in the additional step 2 f of Algorithm 2 and to potentially reduce the arithmetic complexity. A generated set, which is characterized by the number L of sampling nodes and a generating vector $r \in \mathbb{R}^{t}, t \in \mathbb{N}$, is defined by $\mathcal{G}(\boldsymbol{r}, L):=\left\{\boldsymbol{x}_{\ell}=\ell \boldsymbol{r} \bmod \mathbf{1}, \ell=0, \ldots, L-1\right\} \subset \mathbb{T}^{t}$. We remark that a rank- 1 lattice $\Lambda(\boldsymbol{z}, M)$ as defined in Section 2.1 is a special case of a generated set, since we have $\Lambda(\boldsymbol{z}, M) \equiv \mathcal{G}(\boldsymbol{z} / M, M)$.

Here, we use shifted generated sets $\mathcal{G}(\boldsymbol{r}, L, \boldsymbol{\Delta}):=\left\{\boldsymbol{x}_{\ell}+\boldsymbol{\Delta}: \boldsymbol{x}_{\ell} \in \mathcal{G}(\boldsymbol{r}, L)\right\} \subset \mathbb{T}^{t}$, where $\boldsymbol{\Delta} \in \mathbb{T}^{t}$ is an arbitrary offset. For $\ell=0, \ldots, L-1$, the evaluation of a t-variate trigonometric polynomial p with frequencies supported on an arbitrary index set $I \subset \mathbb{Z}^{t}$ simplifies dramatically since

$$
\begin{aligned}
p\left(\boldsymbol{x}_{\ell}+\boldsymbol{\Delta}\right) & =\sum_{\boldsymbol{k} \in I} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot\left(\boldsymbol{x}_{\ell}+\boldsymbol{\Delta}\right)}=\sum_{\boldsymbol{k} \in I}\left(\hat{p}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \cdot \boldsymbol{\Delta}}\right) \mathrm{e}^{2 \pi \mathrm{i} \ell \boldsymbol{k} \cdot \boldsymbol{r}} \\
& =\sum_{y \in\{\boldsymbol{k} \cdot \boldsymbol{r} \bmod 1: \boldsymbol{k} \in I\}}\left(\sum_{\boldsymbol{k} \cdot \boldsymbol{r} \equiv y(\bmod 1)} \hat{p}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{\Delta}}\right) \mathrm{e}^{2 \pi \mathrm{i} \ell y},
\end{aligned}
$$

cf. [23, 27]. Using the adjoint variant of the so-called nonequispaced fast Fourier transform (NFFT) [30], these function evaluations $p\left(\boldsymbol{x}_{\ell}+\boldsymbol{\Delta}\right)$ for $\ell=0, \ldots, L-$ 1, which are equivalent to the matrix-vector multiplication of the Fourier matrix $\boldsymbol{A}:=\left(\mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}_{\ell}}\right)_{\ell=0, \ldots, L-1 ; \boldsymbol{k} \in I}$ and the vector $\left(\hat{p}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \cdot \boldsymbol{\Delta}}\right)_{\boldsymbol{k} \in I}$, take $\mathcal{O}(L \log L+t|I|)$ arithmetic operations. Similarly, the matrix-vector multiplication of the adjoint Fourier matrix \boldsymbol{A}^{*} and a vector from \mathbb{C}^{L} can be computed in $\mathcal{O}(L \log L+t|I|)$ arithmetic operations using a one-dimensional NFFT. This means that R iterations of the SPGL1 algorithm require $\mathcal{O}\left(R L \log L+R\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right| \log \left|I^{(1, \ldots, t-1)} \times I^{(t)}\right|\right)=$
$\mathcal{O}\left(R s \log ^{4}(s N) \log \left(s \log ^{4}(s N)\right)+R s N \log (s N)\right) \quad=\quad \mathcal{O}\left(R s \log ^{5}(s N)+R s N \log (s N)\right)$ arithmetic operations in each dimension increment step $t \in\{2, \ldots, d\}$, since $L=$ $\mathcal{O}\left(s \log ^{4}(s N)\right)$ and $\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right|=\mathcal{O}(s N)$.

Totally, this means $\mathcal{O}\left(d s \log ^{4}(s N)+d N\right)$ many samples and

$$
\mathcal{O}\left(d R s \log ^{5}(s N)+d R s N \log (s N)\right)
$$

arithmetic operations for the dimension incremental reconstruction using ℓ_{1} minimization if $\Gamma=\hat{G}_{N}^{d}$.

In our heuristic approach for improving the condition number of the Fourier matrix \boldsymbol{A}, we choose more than one random shifted generated set $\mathcal{G}(\boldsymbol{r}, L, \boldsymbol{\Delta})$ with random generating vector $\boldsymbol{r} \in \mathbb{R}^{t}$ and random offset $\boldsymbol{\Delta} \in \mathbb{T}^{t}$ as sampling scheme \mathcal{X}. When we use $K \in \mathbb{N}$ many random shifted generated sets $\mathcal{G}\left(\boldsymbol{r}_{1}, L_{1}, \boldsymbol{\Delta}_{1}\right), \ldots, \mathcal{G}\left(\boldsymbol{r}_{K}, L_{K}, \boldsymbol{\Delta}_{K}\right), L=\sum_{p=1}^{K} L_{p}$, then the Fourier matrix is $\boldsymbol{A}:=\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{K}\right)^{\top}, \boldsymbol{A}_{p}:=\left(\mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{\ell} \cdot \boldsymbol{r}_{p}}\right)_{\ell=0, \ldots, L_{p}-1 ; \boldsymbol{k} \in I}$, and

$$
\left(p\left(\boldsymbol{x}^{\prime}+\boldsymbol{\Delta}\right)\right)_{\boldsymbol{x}^{\prime} \in \mathcal{G}\left(\boldsymbol{r}_{1}, L_{1}, \boldsymbol{\Delta}_{1}\right) \cup \ldots \mathcal{G}\left(\boldsymbol{r}_{K}, L_{K}, \boldsymbol{\Delta}_{K}\right)}=\boldsymbol{A}\left(\hat{p}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{\Delta}}\right)_{\boldsymbol{k} \in I}
$$

We remark that we can compute the matrix-vector-product of the Fourier matrix \boldsymbol{A} and a vector $\hat{\boldsymbol{h}} \in \mathbb{C}^{|I|}$ as well as the matrix-vector-product of the adjoint Fourier matrix \boldsymbol{A}^{*} and a vector $\boldsymbol{h}:=\left(\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{K}\right)^{\top}, \boldsymbol{h}_{p} \in \mathbb{C}^{L_{p}}$ for $p=1, \ldots, K$, using K (adjoint) NFFTs due to

$$
\boldsymbol{A} \hat{\boldsymbol{h}}=\left(\begin{array}{c}
\boldsymbol{A}_{1} \hat{\boldsymbol{h}} \\
\vdots \\
\boldsymbol{A}_{K} \hat{\boldsymbol{h}}
\end{array}\right), \quad \boldsymbol{A}^{*} \boldsymbol{h}=\left(\begin{array}{lll}
\boldsymbol{A}_{1}^{*} & \ldots & \boldsymbol{A}_{K}^{*}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{h}_{1} \\
\vdots \\
\boldsymbol{h}_{K}
\end{array}\right)=\sum_{p=1}^{K} \boldsymbol{A}_{p}^{*} \boldsymbol{h}_{p}
$$

We successfully apply the sub-sampling on generated sets in Section 3 in Example 3.4 and 3.9 .

2.4 Reducing the number of samples using Prony's method

The Prony method, see e.g. [39] and the references therein, allows the reconstruction of nonincreasing exponential sums $h: \mathbb{R} \rightarrow \mathbb{C}$ of order $s \in \mathbb{N}$,

$$
\begin{equation*}
h(x):=\sum_{m=1}^{s} c_{m} \mathrm{e}^{f_{m} x} \quad(x \geq 0) \tag{2.12}
\end{equation*}
$$

using $\mathcal{O}(s)$ suitable samples in a deterministic way, where $f_{m} \in(-\infty, 0)+\mathrm{i}[-\pi, \pi), m=$ $1, \ldots, s$, are distinct complex numbers and $c_{m} \in \mathbb{C} \backslash\{0\}, m=1, \ldots, s$, are coefficients. This reconstruction using a singular value decomposition has an arithmetic complexity of $\mathcal{O}\left(s^{3}\right)$.

For our special case, the idea is to use the Prony method in Algorithm 2 instead of the inverse rank-1 lattice FFTs and 1d iFFTs in step 2d, or instead of the Basis Pursuit (ℓ_{1} minimization) approach from Section 2.3. In order to apply the Prony method, we need to transform our frequency detection task in the steps 2d and 2e of Algorithm 2 to the form (2.12). In step 2 d for dimension increment step $t \in\{2, \ldots, d\}$, we reconstruct the Fourier
coefficients $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$ of the trigonometric polynomial $g: \mathbb{T}^{t} \rightarrow \mathbb{C}$,

$$
g(\boldsymbol{x})=\sum_{\boldsymbol{k} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})} \underbrace{\left.\left(\sum_{\begin{array}{c}
\boldsymbol{h}^{\prime}:=\left(h_{t+1}, \ldots, h_{d}\right)^{\top} \in \mathbb{Z}^{d} \\
\left(\boldsymbol{k}^{\top}, \boldsymbol{h}^{\top} \top \top^{\top} \in \operatorname{supp} \hat{p}\right.
\end{array}} \hat{\boldsymbol{h}^{\prime}}\right)^{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} h^{\prime} \cdot\left(x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}}\right)}_{=\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}} \mathrm{e}^{2 \pi \mathrm{i} \cdot \boldsymbol{x}}=p\left(\left(\begin{array}{c}
x \\
x_{t+1}^{x} \\
\vdots \\
x_{d}^{\prime}
\end{array}\right)\right) .
$$

Assuming $\mathcal{P}_{(1, \ldots, t-1)}\left(I^{(1, \ldots, t-1)}\right) \times \mathcal{P}_{(t)}\left(I^{(t)}\right) \supset \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$, we build a reconstructing rank-1 lattice $\Lambda\left(\boldsymbol{z}, M_{t}, \mathcal{P}_{(1, \ldots, t-1)}\left(I^{(1, \ldots, t-1)}\right) \times \mathcal{P}_{(t)}\left(I^{(t)}\right)\right)$ for the frequency index set $\mathcal{P}_{(1, \ldots, t-1)}\left(I^{(1, \ldots, t-1)}\right) \times \mathcal{P}_{(t)}\left(I^{(t)}\right)$ according to Theorem 2.2 as in Algorithm 2, which is consequently also a reconstructing rank-1 lattice for $\mathcal{P}_{(1, \ldots, t)}\left(I^{(1, \ldots, t-1)} \times I^{(t)}\right)$. Then, we choose a number $\sigma \in\left\{2, \ldots, M_{t}-1\right\}$ uniformly at random which is invertible modulo M_{t} and we use the generating vector $\tilde{\boldsymbol{z}}:=\sigma \boldsymbol{z}$. Since σ is invertible module M_{t}, the rank-1 lattice $\Lambda\left(\tilde{\boldsymbol{z}}, M_{t}\right)$ is also a reconstructing rank-1 lattice for the index set $\mathcal{P}_{(1, \ldots, t-1)}\left(I^{(1, \ldots, t-1)}\right) \times \mathcal{P}_{(t)}\left(I^{(t)}\right)$. We set the order $s \geq|\operatorname{supp} \hat{p}|$ as well as the vectors $\boldsymbol{c}=\left(c_{1}, \ldots, c_{s}\right):=\left(\hat{p}_{(1, \ldots, t), \boldsymbol{k}}\right)_{\boldsymbol{k} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})}$ and $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right):=\left(\frac{2 \pi \mathrm{i}}{M_{t}}\left(\boldsymbol{k} \cdot \tilde{\boldsymbol{z}} \bmod M_{t}\right)\right)_{\boldsymbol{k} \in \mathcal{P}_{(1, \ldots, t)}(\text { supp } \hat{p})}$. If the imaginary part of an entry $f_{m}, m=1, \ldots, s$, of the vector \boldsymbol{f} is $\geq \pi$, we subtract 2π i. Finally, we obtain

$$
\begin{equation*}
g\left(\boldsymbol{x}_{j}\right)=\sum_{\boldsymbol{k} \in \mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})} \tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}} \mathrm{e}^{\frac{2 \pi \mathrm{i}}{M_{t}} j(\boldsymbol{k} \cdot \tilde{\boldsymbol{z}})}=\sum_{m=1}^{s} c_{m} \mathrm{e}^{f_{m} j}=h(j), \quad j=0, \ldots, M_{t}-1, \tag{2.13}
\end{equation*}
$$

and this corresponds to (2.12) for $x=0, \ldots, M_{t}-1$. Then, the Prony method uses the first $L=\mathcal{O}(s)$ samples of the exponential sum h at the nodes $x=0, \ldots, L-1$, which is equivalent to the samples $g\left(\boldsymbol{x}_{j}\right)=p\left(\left(\boldsymbol{x}_{j}^{\top}, x_{t+1}^{\prime}, \ldots, x_{d}^{\prime}\right)^{\top}\right), j=0, \ldots, L-1$, where the nodes $\boldsymbol{x}_{j}:=\frac{j}{M} \boldsymbol{z} \bmod \mathbf{1}$ and the number of samples $L \ll M$.

The course of action for determining the frequency index set $I^{(1, \ldots, t)}$ is as follows. In step 2b, we determine $S_{t}:=\min \left\{m \in \mathbb{N}:\left|\left\{k_{t} \bmod m: k_{t} \in I^{(t)}\right\}\right|=\left|I^{(t)}\right|\right\}$ and choose random values $x_{t+1}^{\prime}, \ldots, x_{d}^{\prime} \in \mathbb{T}$ as before. Additionally, we draw a number $\sigma \in\left\{2, \ldots, M_{t}-1\right\}$ uniformly at random which is invertible modulo M_{t}. Then, we use the sampling set

$$
\mathcal{X}^{(1, \ldots, t)}:=\left(\frac{j}{M_{t-1} \cdot S_{t}} \sigma\left(z_{1}, \ldots, z_{t-1}, M_{t-1}\right)^{\top}\right)_{j=0}^{L-1} \times\left\{x_{t+1}^{\prime}\right\} \times \ldots \times\left\{x_{d}^{\prime}\right\},
$$

where $L=\mathcal{O}(|\operatorname{supp} \hat{p}|), L \leq M_{t-1} \cdot S_{t}$, is the number of samples. This means, we use the first L nodes of the reconstructing rank-1 lattice $\Lambda\left(\tilde{\boldsymbol{z}}, M_{t},\left(I^{(1, \ldots, t-1)} \cap \mathcal{P}_{(1, \ldots, t-1)}(\Gamma)\right) \times\left(I^{(t)} \cap\right.\right.$ $\left.\mathcal{P}_{(t)}(\Gamma)\right)$), where $M_{t}:=M_{t-1} \cdot S_{t}$ and $\tilde{\boldsymbol{z}}=\sigma\left(z_{1}, \ldots, z_{t-1}, M_{t-1}\right)^{\top}$, cf. Theorem 2.2. We sample the trigonometric polynomial p along this sampling set in step 2c and we apply the Prony method with order $s=|\operatorname{supp} \hat{p}|$ in step 2 d which yields s distinct complex numbers f_{1}, \ldots, f_{s}. Next, we determine the frequency index $I^{(1, \ldots, t)}$ based on these distinct complex numbers $f_{m}, m=1, \ldots, s$. For this, we start with an empty index set $I^{(1, \ldots, t)}$, we compute $\tilde{f}_{m}:=$ $\operatorname{round}\left(\operatorname{Im}\left(\log \left(\frac{M_{t-1} \tilde{N}_{t}}{2 \pi} f_{m}\right)\right)\right)$ for each $m=1, \ldots, s$, and we try to determine the frequency $\boldsymbol{k} \in I^{(1, \ldots, t-1)} \times I^{(t)}$ for which $\boldsymbol{k} \cdot \tilde{\boldsymbol{z}} \equiv f_{m}\left(\bmod M_{t-1} \cdot \tilde{N}_{t}\right)$. If this frequency \boldsymbol{k} exists, we add it to the index set $I^{(1, \ldots, t)}$. Note that the output of the Prony method has to be numerically correct up to an absolute error of $\mathrm{e}^{-\frac{M_{t-1} \tilde{N}_{t}}{\pi}}$ (besides other assumptions) in order to guarantee the correct frequency detection, i.e., $I^{(1, \ldots, t)}=\mathcal{P}_{(1, \ldots, t)}(\operatorname{supp} \hat{p})$.

Assuming $\Gamma=\hat{G}_{N}^{d}$, we use $r 2(N+1)+r \mathcal{O}(s)$ many samples in each dimension increment step $t \in\{2, \ldots, d\}$ and $r 2(N+1)$ many samples in the beginning. In each dimension increment step t, the Prony method is performed $r \in \mathbb{N}$ times and requires $\mathcal{O}\left(s^{3}\right)$ many arithmethic operations. Moreover, the rank- 1 lattice search requires no more than $6 r s \max \left\{2 r^{2} s^{2}, 3 N\right\}$ arithmetic operations for each dimension increment step $t \in\{2, \ldots, d\}$, see Section 2.2.3. In total, we require $\mathcal{O}(d s+d N)$ many samples as well as $\mathcal{O}\left(d s^{3}\right)$ and $\mathcal{O}(d s N+d N \log N)$ arithmetic operations in the case $\sqrt{N} \lesssim s \lesssim N^{d}$ and $s \lesssim \sqrt{N}$, respectively, if $\Gamma=\hat{G}_{N}^{d}$.

We apply this version of Prony's method in Section 3 in Example 3.5.

3 Numerical results

In the following, we verify the methods from Section 2. In Section 3.1, we randomly generate s-sparse multivariate trigonometric polynomials $p: \mathbb{T}^{d} \rightarrow \mathbb{C}, s \ll\left|\hat{G}_{N}^{d}\right|$, and exactly reconstruct the frequencies $\boldsymbol{k} \in \operatorname{supp} \hat{p} \subset \Gamma=\hat{G}_{N}^{d}$ belonging to the non-zero Fourier coefficients $\hat{p}_{\boldsymbol{k}} \neq 0$ with the methods described in Section 2.2, 2.3 and 2.4. Furthermore, we apply the methods from Section 2.2 and 2.3 on trigonometric polynomials with frequencies supported on symmetric weighted hyperbolic crosses in Section 3.2 where we only assume $\operatorname{supp} \hat{p} \subset \Gamma=\hat{G}_{N}^{d}$ during the dimension incremental reconstruction. We also test our reconstruction method from Section 2.2 on a 10 -dimensional function in Section 3.3 and we test the robustness to noise in Section 3.4. For the tests, the algorithms described in Section 2 were implemented in MATLAB. The search for the reconstructing rank-1 lattice in step 2b of Algorithm 1 as well as in the additional step 2 f of Algorithm 1 and 2 were implemented in C with OpenMP support and these C implementations are called from the MATLAB code using the MATLAB MEX interface. Instead of using [24, Algorithm 3.5] for the reduction of the rank-1 lattice size, we implemented a bisection method. All numerical computations were performed using double-precision floating-point arithmetic. Almost all numerical tests were run on a computer with 4x Intel Xeon CPU E5-4640 (in total 32 CPU cores) and 512 GB RAM. Time measurements were taken an a computer with an Intel i7-970 CPU (3.2 GHz) and 24 GB RAM while using only one thread. An implementation of Algorithm 1 and 2 is available online on the homepage of the authors.

The aim of the following subsections is a detailed investigation of the algorithms from Sections 2 with respect to different aspects such as number of sampling points, accuracy and computational time. In Subsection 3.1, we consider all algorithms from Sections 2.2, 2.3 and 2.4 on sparse trigonometric polynomials with random frequencies and corresponding random Fourier coefficients. Next, in Subsection 3.2, we apply the algorithms from Sections 2.2 and 2.3 on trigonometric polynomials with frequencies supported on weighted hyperbolic crosses and random Fourier coefficients. In Subsection 3.3, we demonstrate using Algorithm 1 and 2 from Section 2.2 to approximately reconstruct the largest Fourier coefficients of a 10-dimensional periodic tensor-product function of dominating mixed smoothness, which has infinitely many non-zero Fourier coefficients and we assume only supp $\hat{p} \subset \Gamma=\hat{G}_{32}^{10}$. Finally, in Section 3.4, we perturb sparse trigonometric polynomials with random frequencies using complex Gaussian noise with various signal-to-noise ratios.

3.1 Random sparse trigonometric polynomial

We set the refinement $N:=32$ and construct random multivariate trigonometric polynomials p with frequencies supported within the cube $\hat{G}_{32}^{d}=[-32,32]^{d} \cap \mathbb{Z}^{d}$. This means, we randomly
choose \mid supp $\hat{p} \mid$ frequencies $\boldsymbol{k} \in \hat{G}_{32}^{d}$ and corresponding Fourier coefficients $\hat{p}_{\boldsymbol{k}} \in[-1,1)+$ $[-1,1) \mathrm{i},\left|\hat{p}_{\boldsymbol{k}}\right| \geq 10^{-6}, \boldsymbol{k} \in I=\operatorname{supp} \hat{p}$. For the reconstruction of the trigonometric polynomials p, we only assume supp $\hat{p} \subset \Gamma=\hat{G}_{32}^{d}$. Except for Example 3.5, we do not truncate the frequency index sets of detected frequencies $I^{(1, \ldots, t)}, t \in\{2, \ldots, d\}$, i.e., we set the sparsity parameter $s:=|\Gamma|$. Moreover, we set the number of detection iterations $r:=1$. All tests are repeated 10 times with newly chosen frequencies and Fourier coefficients.

Example 3.1. Sampling along reconstructing rank-1 lattices using Algorithm 1 ("A1-R1L"). We set the threshold parameter $\theta:=10^{-12}$. For the sparsities $|\operatorname{supp} \hat{p}| \in\{1000,10000\}$, we applied Algorithm 1. In the cases $|\operatorname{supp} \hat{p}|=1000$ and $|\operatorname{supp} \hat{p}|=10000$, we ran the tests for dimensions $d \in\{3,4, \ldots, 10,15,20,25,30\}$ and $d \in\{3,4,5,6\}$, respectively. In each test, all frequencies were successfully detected, $I^{(1, \ldots, d)}=\operatorname{supp} \hat{p}$. The used parameters and results are presented in Table 3.1. The column "max cand" shows the maximal number $\max _{t=2, \ldots, d}\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right|$ of frequency candidates of all 10 repetitions and "max M " the maximal rank- 1 lattice size used. Furthermore, the total number of samples for each repetition was computed and the maximum of these numbers for the 10 repetitions can be found in the column "\#samples". The relative ℓ_{2}-error $\left\|\left(\tilde{\hat{p}}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in I}-\left(\hat{p}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in I}\right\|_{2} /\left\|\left(\hat{p}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in I}\right\|_{2}$ of the computed coefficients $\left(\tilde{\hat{p}}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in I^{(1, \ldots, d)}}$ was determined for each repetition, where $I:=\operatorname{supp} \hat{p} \cup I^{(1, \ldots, d)}$ and $\tilde{\hat{p}}_{\boldsymbol{k}}:=0$ for $\boldsymbol{k} \in I \backslash I^{(1, \ldots, d)}$, and the column "rel. ℓ_{2}-error" contains the maximal value of the 10 repetitions. In all tests, the relative ℓ_{2}-error is smaller than 10^{-14}. The numbers of used samples increase for increasing dimensions d and sparsities $|\operatorname{supp} \hat{p}|$ of the trigonometric polynomials p. Compared to the cardinality of the full grids $|\Gamma|=\left|\hat{G}_{N}^{d}\right|$, the observed numbers of samples are still moderate.

N	d	\mid supp $\hat{p} \mid$	$\|\Gamma\|=\left\|\hat{G}_{N}^{d}\right\|$	\max cand	$\max M$	\#samples	rel. ℓ_{2}-error
32	3	1000	274625	53365	142870	145275	$4.5 \mathrm{e}-16$
32	4	1000	17850625	64870	2331030	2472145	$8.3 \mathrm{e}-16$
32	5	1000	$1.16 \mathrm{e}+09$	65000	2935419	4979314	$8.9 \mathrm{e}-16$
32	6	1000	$7.54 \mathrm{e}+10$	65000	2655816	7479265	$7.0 \mathrm{e}-16$
32	7	1000	$4.90 \mathrm{e}+12$	65000	2685234	9905378	$6.2 \mathrm{e}-16$
32	8	1000	$3.19 \mathrm{e}+14$	65000	2665578	11820279	$7.8 \mathrm{e}-16$
32	9	1000	$2.07 \mathrm{e}+16$	65000	2690118	14531442	$6.1 \mathrm{e}-16$
32	10	1000	$1.35 \mathrm{e}+18$	65000	2714623	16986369	$1.3 \mathrm{e}-15$
32	15	1000	$1.56 \mathrm{e}+27$	65000	2827045	30461941	$5.0 \mathrm{e}-16$
32	20	1000	$1.81 \mathrm{e}+36$	65000	2836998	42580486	$7.6 \mathrm{e}-16$
32	25	1000	$2.10 \mathrm{e}+45$	65000	2978356	56432050	$5.5 \mathrm{e}-16$
32	30	1000	$2.44 \mathrm{e}+54$	65000	2920928	68237645	$4.3 \mathrm{e}-16$
32	3	10000	274625	143585	147810	150280	$5.0 \mathrm{e}-16$
32	4	10000	17850625	629200	9023625	9165390	$6.7 \mathrm{e}-16$
32	5	10000	$1.16 \mathrm{e}+09$	649740	137285053	146360548	$1.3 \mathrm{e}-15$
32	6	10000	$7.54 \mathrm{e}+10$	650000	162562853	309453235	$1.1 \mathrm{e}-15$

Table 3.1: Results for random sparse trigonometric polynomials using reconstructing rank-1 lattices and Algorithm 1 when considering frequencies within $\Gamma=\hat{G}_{32}^{d}$.

Example 3.2. Sampling along reconstructing rank-1 lattices using Algorithm 2 ("A2-R1L"). We set the threshold parameter $\theta:=10^{-12}$. For the sparsities $|\operatorname{supp} \hat{p}| \in\{1000,10000\}$
and dimensions $d \in\{3,4, \ldots, 10,15,20,25,30\}$, we applied Algorithm 2. In each test, all frequencies were successfully detected, $I^{(1, \ldots, d)}=\operatorname{supp} \hat{p}$. The numerical results are presented in Table 3.2, where the column names have the same meaning as described in Example 3.1. The relative ℓ_{2} errors are similar to the ones for Algorithm 1 in Table 3.1. In this example, the maximal rank-1 lattices are larger compared to the results Algorithm 1 in Table 3.1, since the reconstructing rank-1 lattices are searched for in Algorithm 1 whereas they are explicitly constructed in Algorithm 2, cf. Theorem 2.2. Correspondingly, the numbers of samples are slightly higher in this example compared to the results when using Algorithm 1 for identical parameters N, d and sparsity $|\operatorname{supp} \hat{p}|$. However, the runtime of the algorithms can differ significantly, see Example 3.6.

d	\mid supp $\hat{p} \mid$	max cand	$\max M$	\#samples	rel. ℓ_{2}-error
3	1000	58695	272155	276575	$4.8 \mathrm{e}-16$
4	1000	65000	2562040	2838810	$8.2 \mathrm{e}-16$
5	1000	65000	2735720	5262140	$5.0 \mathrm{e}-16$
6	1000	65000	2761655	8139560	$6.4 \mathrm{e}-16$
7	1000	65000	2795390	10953150	$4.8 \mathrm{e}-16$
8	1000	65000	3052335	13145275	$9.1 \mathrm{e}-16$
9	1000	65000	2932085	16339115	$8.0 \mathrm{e}-16$
10	1000	65000	3056560	18674565	$4.5 \mathrm{e}-16$
15	1000	65000	3007095	31954910	$5.2 \mathrm{e}-16$
20	1000	65000	3056560	46572500	$4.4 \mathrm{e}-16$
25	1000	65000	3149055	58568770	$7.3 \mathrm{e}-16$
30	1000	65000	3068000	73665475	$6.2 \mathrm{e}-16$
3	10000	251030	274625	279045	$2.1 \mathrm{e}-16$
4	10000	639795	17463745	17742855	$6.2 \mathrm{e}-16$
5	10000	649935	181940460	199581915	$1.1 \mathrm{e}-15$
6	10000	650000	192287810	392345005	$8.9 \mathrm{e}-16$
7	10000	650000	194595570	572814190	$6.8 \mathrm{e}-16$
8	10000	650000	197127645	745706455	$8.9 \mathrm{e}-16$
9	10000	650000	203536385	967031390	$5.8 \mathrm{e}-16$
10	10000	650000	200068050	1132939795	$9.0 \mathrm{e}-16$
15	10000	650000	197036775	2050649770	$5.8 \mathrm{e}-16$
20	10000	650000	200385055	2959435895	$7.4 \mathrm{e}-16$
25	10000	650000	206296415	3959584980	$6.5 \mathrm{e}-16$
30	10000	650000	203592740	4924539100	$6.9 \mathrm{e}-16$

Table 3.2: Results for random sparse trigonometric polynomials using reconstructing rank-1 lattices and Algorithm 2 when considering frequencies within $\Gamma=\hat{G}_{32}^{d}$.

Next, we successfully applied the modifications described in Section 2.3 and used less samples to reconstruct the trigonometric polynomials.

Example 3.3. Sub-sampling along reconstructing rank-1 lattices using ℓ_{1} minimization ("A2- $\ell_{1}-s R 1 L$ "). We set the threshold parameter $\theta:=10^{-6}$. For the sparsity $|\operatorname{supp} \hat{p}|=1000$ and dimensions $d \in\{3,4, \ldots, 10,15,20,25,30\}$, we used sub-sampling on reconstructing rank1 lattices as explained in Section 2.3.1. For this, we only considered $L=10 \cdot|\operatorname{supp} \hat{p}|$ many
samples of the reconstructing rank-1 lattice generated in step 2c in each dimension increment step t of the dimension incremental method. We applied the ℓ_{1} minimization algorithm SPGL1, where we set the parameter "optimality tolerance" to 10^{-7}, "Basis pursuit tolerance" to 10^{-8} as well as the maximal number of SPGL1 iterations to 2000, and used one-dimensional FFTs to compute the matrix-vector products of the corresponding Fourier matrices and vectors. The numerical results are presented in Table 3.3. We observe that, in most cases, the maximal number of frequency candidates "max cand" and the maximal rank-1 lattice sizes "max M " are similar to the ones from Table 3.2, where we used all rank-1 lattice samples. However, the total number of samples in the column "\#samples" is more than two orders of magnitude smaller when we use the sub-sampling, while the relative ℓ_{2}-error is still less than 10^{-10}. We remark that in one test run out of the 10 runs of the numerical tests for $d=7$, dimension increment step $t=3$ of the dimension incremental algorithm returned a large index set of frequencies $\left(\left|I^{(1,2,3)}\right|=5466\right)$ and consequently many frequency candidates $\left(\left|I^{(1, \ldots, 3)} \times I^{(4)}\right|=355290\right)$ existed for dimension increment step $t=4$, which was about 5 times larger than for the other nine runs, and this yielded a very large rank-1 lattice size ($M=16229850$) for dimension increment step $t=4$, which was about 6 times larger than for the other nine runs. Nevertheless, the resulting index set of detected frequencies at the end of dimension increment step $t=4$ was again of the expected size $\left(\left|I^{(1, \ldots, 4)}\right|=|\operatorname{supp} \hat{p}|=1000\right)$ and the final results of the test run were correct. Moreover, the total number of samples was similar for all the 10 test runs of the case $d=7$.

d	max cand	$\max M$	\#samples	rel. ℓ_{2}-error
3	59085	273780	14420	$7.0 \mathrm{e}-11$
4	65000	2678520	24485	$8.9 \mathrm{e}-11$
5	65000	2693795	34550	$7.3 \mathrm{e}-11$
6	65000	2730780	44615	$8.5 \mathrm{e}-11$
7	355290	16229850	54680	$9.1 \mathrm{e}-11$
8	65000	2897180	64745	$7.8 \mathrm{e}-11$
9	65000	3080220	74810	$9.1 \mathrm{e}-11$
10	65000	2949180	84875	$9.0 \mathrm{e}-11$
15	65000	3197870	135200	$9.0 \mathrm{e}-11$
20	65000	3138265	185525	$7.6 \mathrm{e}-11$
25	65000	3026335	235850	$9.3 \mathrm{e}-11$
30	65000	3113110	286175	$8.8 \mathrm{e}-11$

Table 3.3: Results for random sparse trigonometric polynomials with $|\operatorname{supp} \hat{p}|=1000$ using ℓ_{1} minimization with sub-sampling on reconstructing rank-1 lattices from Section 2.3.1 when considering frequencies within $\Gamma=\hat{G}_{32}^{d}$.

Example 3.4. Sub-sampling along generated sets using ℓ_{1} minimization (" $\ell_{1}-G S$ "). We set the threshold parameter $\theta:=10^{-6}$. For the sparsity $|\operatorname{supp} \hat{p}|=1000$ and dimensions $d \in$ $\{3,4, \ldots, 10,15,20,25,30\}$, we considered sampling on $K=3$ random shifted generated sets as described in Section 2.3.2 using totally $L=10 \cdot|\operatorname{supp} \hat{p}|$ many samples in step 2c in each dimension increment step t of the dimension incremental method. We applied the ℓ_{1} minimization algorithm SPGL1 with the parameters from Example 3.3. All test runs were successful and the results are shown in Table 3.4. The total numbers of samples in the column
"\#samples" and the relative ℓ_{2}-errors are slightly higher compared to the results in Table 3.3 when sub-sampling on the rank-1 lattices.

d	max cand	\#samples	rel. ℓ_{2}-error
3	274105	20195	$2.4 \mathrm{e}-10$
4	65000	30260	$1.1 \mathrm{e}-10$
5	65000	40325	$1.0 \mathrm{e}-10$
6	65000	50390	$9.8 \mathrm{e}-11$
7	65000	60455	$9.2 \mathrm{e}-11$
8	65000	70520	$1.1 \mathrm{e}-10$
9	65000	80585	$9.3 \mathrm{e}-11$
10	65000	90650	$1.0 \mathrm{e}-10$
15	65000	140975	$9.5 \mathrm{e}-11$
20	65000	191300	$1.1 \mathrm{e}-10$
25	65000	241625	$1.2 \mathrm{e}-10$
30	65000	291950	$1.3 \mathrm{e}-10$

Table 3.4: Results for random sparse trigonometric polynomials with $|\operatorname{supp} \hat{p}|=1000$ using ℓ_{1} minimization with random generated set samples from Section 2.3.2 when considering frequencies within $\Gamma=\hat{G}_{32}^{d}$.

Example 3.5. Sub-sampling along reconstructing rank-1 lattices using Prony's method ("prony"). We set the threshold parameter $\theta:=10^{-9}$. For the sparsity $|\operatorname{supp} \hat{p}|=1000$ and dimensions $d \in\{3,4, \ldots, 10,15,20,25,30\}$, we applied Prony's method with sub-sampling on reconstructing rank-1 lattices as described in Section 2.4. We set the sparsity parameter $s:=1000$ and we used $L=10 \cdot|\operatorname{supp} \hat{p}|$ many samples of the reconstructing rank- 1 lattice generated in step 2c in each dimension increment step $t \in\{2, \ldots, d\}$ of the dimension incremental method. Moreover, in each dimension increment step t, we compute the coefficients $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}, \boldsymbol{k} \in I^{(1, \ldots, t)}$, by solving the Vandermonde-like system (2.13) and we check if some of these values are less than $\theta \cdot \max _{\boldsymbol{k} \in I^{(1, \ldots, t)} \mid}\left|\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}\right|$. In this case, the frequency detection failed in the current dimension increment step t and we repeatedly apply Prony's method with another randomly chosen number σ and consequently, we use additional samples. The numerical results are shown in Table 3.5. We observe that the numbers of samples are identical or slightly higher than for the ℓ_{1} minimization in Table 3.3. Ideally, the numbers of samples should coincide in all cases for identical dimensions d. The higher numbers of samples are due to repeatedly applying Prony's method when the frequency detection failed in an intermediate step. The relative ℓ_{2}-errors in Table 3.5 are similar to the ones in Table 3.3.

Example 3.6. Computation times. In Table 3.6, we compare the runtimes for the different methods considered above. We investigate the runtimes for refinement $N=32$, dimensions $d \in\{6,10\}$ and sparsity $|\operatorname{supp} \hat{p}|=1000$ for all methods. For Algorithm 2 from Section 2.2.1, we additionally consider the sparsity $|\operatorname{supp} \hat{p}|=10000$. The tests for each method and set of parameters were repeated 10 times. We present the results in Table 3.6. The "total runtime" was measured without the time required for sampling the trigonometric polynomials p. We observe that the total runtimes when using Algorithm 2 (method "A2-R1L") from Section

d	max cand	$\max M$	\#samples	rel. ℓ_{2}-error
3	58240	272610	14420	$6.0 \mathrm{e}-12$
4	65000	2561065	24485	$2.7 \mathrm{e}-11$
5	65000	2660775	44615	$9.6 \mathrm{e}-11$
6	65000	2964000	54680	$9.5 \mathrm{e}-12$
7	65000	2737540	64745	$7.7 \mathrm{e}-12$
8	65000	2810275	64745	$1.3 \mathrm{e}-11$
9	65000	2920255	84875	$3.6 \mathrm{e}-11$
10	65000	2905695	94940	$2.3 \mathrm{e}-11$
15	65000	3121365	145265	$1.9 \mathrm{e}-11$
20	65000	2942355	195590	$9.0 \mathrm{e}-11$
25	65000	3048305	255980	$1.3 \mathrm{e}-11$
30	65000	3084120	296240	$1.2 \mathrm{e}-11$

Table 3.5: Results for random sparse trigonometric polynomials with $|\operatorname{supp} \hat{p}|=1000$ using Prony's method with sub-sampling on reconstructing rank-1 lattices from Section 2.4 when considering frequencies within $\Gamma=\hat{G}_{32}^{d}$.
2.2.1 are dramatically smaller by about two orders of magnitude compared to the other methods. The reason for this behavior is that Algorithm 2 is a direct method which is mainly based on 1 d iFFTs and only one reconstructing rank-1 lattice for the index set of detected frequencies $I^{(1, \ldots, t)},\left|I^{(1, \ldots, t)}\right| \leq s$, is searched in the additional step 2 f in each dimension increment step $t \in\{2, \ldots, d\}$, whereas an additional reconstructing rank-1 lattice for the index set of frequency candidates $I^{(1, \ldots, t-1)} \times I^{(t)}$ is searched for in step 2b of Algorithm 1 (method "A2-R1L"). This is apparent from the runtimes required for the rank-1 lattice constructions in column "time lattice search" in Table 3.6. Prony's method ("prony") from Section 2.4, which is based on Algorithm 2, is about six times slower than Algorithm 1 but uses distinctly less samples. The runtimes of the used Prony method are about 60 times higher compared to Algorithm 2, since internally a singular value decomposition is applied in the method "prony". The sub-sampling methods ("A2- $\ell_{1}-$ sR1L" and " $\ell_{1}-G S$ ") based on ℓ_{1} minimization from Sections 2.3.1 and 2.3.2 are iterative methods which require a certain number of iterations for a desired accuracy. The used numbers of iterations per dimension increment step t for our tests are shown in the column "\#iterations per dim. increment step t " and the total runtimes are higher compared to Algorithm 1 and 2 but distinctly lower compared to the used Prony method. If we use more than the 10 -times oversampling in Table 3.6 for the ℓ_{1} minimization, then the number of iterations and the total runtime may decrease significantly. For instance, for the method " ℓ_{1}-GS" with $L=30000$ samples using $K=10$ generated sets of size 3000 each, we obtained a maximal number of iterations of 98 and 112 in the cases $d=6$ and $d=10$, respectively, compared to 520 and 557 for $L=10000$ samples in Table 3.6. Correspondingly, we observed a maximal total runtime of only 791 s and 1655 s for $L=30000$ samples in the cases $d=6$ and $d=10$, respectively, compared to 1374 s and 2678 s for $L=10000$ samples in Table 3.6.

In all our examples, the frequency detections succeeded and the Fourier coefficients were reconstructed exactly up to a small error caused by the used double-precision floating point arithmetic. We observe for the runtimes $\mathrm{rt}(\mathrm{o})$ in Table 3.6 that

$$
\mathrm{rt}(\mathrm{~A} 2-\mathrm{R} 1 \mathrm{~L}) \ll \mathrm{rt}(\mathrm{~A} 1-\mathrm{R} 1 \mathrm{~L})<\mathrm{rt}\left(\mathrm{~A} 2-\ell_{1}-\mathrm{sR} 1 \mathrm{~L}\right)<\mathrm{rt}(\text { prony })<\mathrm{rt}\left(\ell_{1}-\mathrm{GS}\right)
$$

method	d	$\|\operatorname{supp} \hat{p}\|$	time lattice search (in s)			\#iterations per dim. increment step t			$\begin{aligned} & \text { total runtime } \\ & \quad \text { (in } s \text {) } \end{aligned}$		
			min	nax	avg	min	ax	avg	min	max	avg
A1-R1L	6	1000	191	247	215	1	1	1	193	249	217
A2-R1L	6	1000	0.3	0.4	0.4	1	1	1	2.0	2.6	2.2
A $2-\ell_{1}$-sR1L	6	1000	0.3	0.4	0.3	1	200	120	419	632	491
ℓ_{1}-GS	6	1000	-	-	-	79	520	363	1196	1374	1268
prony	6	1000	0.3	0.3	0.3	1	1	1	1119	1135	1129
A1-R1L	10	1000	608	746	662	1	1	1	612	751	667
A2-R1L	10	1000	0.6	0.8	0.7	1	1	1	3.8	4.9	4.4
A $2-\ell_{1}$-sR1L	10	1000	0.6	0.9	0.7	1	159	134	959	1197	1117
ℓ_{1}-GS	10	1000	-	-	-	91	557	392	2445	2678	2583
prony	10	1000	0.6	0.7	0.6	1	1	1	2223	2239	2235
A2-R1L	6	10000	63	215	133	1	1	1	168	324	231
A2-R1L	10	10000	137	359	263	1	1	1	430	652	566

Table 3.6: Runtimes for random sparse trigonometric polynomial using different algorithms and methods. The methods "A1-R1L" and "A2-R1L" are Algorithm 1 and 2 from Section 2.2.1, respectively. "A $2-\ell_{1}$-sR1L" and " ℓ_{1}-GS" mean ℓ_{1} minimization with sub-sampling on rank-1 lattice and sampling on generated sets from Section 2.3.1 and 2.3.2, respectively. "prony" is Prony's method from Section 2.4. For "A2- $\ell_{1}-$ sR1L", " ℓ_{1}-GS" and "prony", $L=10000$ samples were used.

Moreover, the numbers of samples \#s(o) behave like

$$
\# \mathrm{~s}\left(\mathrm{~A} 2-\ell_{1}-\mathrm{sR} 1 \mathrm{~L}\right)<\# \mathrm{~s}\left(\ell_{1}-\mathrm{GS}\right)<\# \mathrm{~s}(\text { prony }) \ll \# \mathrm{~s}(\mathrm{~A} 1-\mathrm{R} 1 \mathrm{~L})<\# \mathrm{~s}(\mathrm{~A} 2-\mathrm{R} 1 \mathrm{~L})
$$

in most cases.

3.2 Symmetric weighted hyperbolic cross

In this test case, we reconstruct trigonometric polynomials with frequencies supported on symmetric weighted hyperbolic crosses $H_{N}^{d, \gamma}:=\left\{\boldsymbol{k} \in \mathbb{Z}^{d}: \prod_{t=1}^{d} \max \left(1, \gamma_{t}^{-1}\left|k_{t}\right|\right) \leq N\right\}$, where we only assume supp $\hat{p} \subset \Gamma=\hat{G}_{N}^{d}$ for our method from Section 2.2. As in the examples in Section 3.1, we do not truncate the frequency index sets of detected frequencies $I^{(1, \ldots, t)}$, $t \in\{2, \ldots, d\}$, i.e., we set the sparsity parameter $s:=|\Gamma|$. Moreover, we set the threshold parameter $\theta:=10^{-12}$ and the number of detection iterations $r:=1$. All tests are repeated 10 times with different randomly chosen Fourier coefficients $\hat{p}_{\boldsymbol{k}} \in[-1,1)+[-1,1) \mathrm{i},\left|\hat{p}_{\boldsymbol{k}}\right| \geq$ $10^{-6}, \boldsymbol{k} \in I$. In each test case, all the frequencies were successfully detected, $I^{(1, \ldots, d)}=$ $H_{N}^{d, \gamma}$, and coefficients $\left(\tilde{\hat{p}}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in H_{N}^{d, \gamma}}$ were computed. Then, the relative ℓ_{2}-error $\|\left(\tilde{\hat{p}}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in H_{N}^{d, \gamma}}-$ $\left(\hat{p}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in H_{N}^{d, \gamma} \gamma}\left\|_{2} /\right\|\left(\hat{p}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in H_{N}^{d, \gamma}} \|_{2}$ was computed.

Example 3.7. Sampling along reconstructing rank-1 lattices ("A1-R1L" and "A2-R1L"). The used parameters and numerical results are shown in Table 3.7 for Algorithm 1 and in Table 3.8 for Algorithm 2, where the columns have the same meaning as in Section 3.1. We observe that the obtained relative ℓ_{2}-errors are comparable for both algorithms and the numbers of samples are slightly higher for Algorithm 2 compared to Algorithm 1, which is as expected.

N	d	γ_{2}	$\left\|H_{N}^{d, \gamma}\right\|$	\max cand	$\max M$	\#samples	rel. ℓ_{2}-error
32	6	0.80	11593	173397	898485	1653217	$2.1 \mathrm{e}-16$
32	8	0.80	15477	197081	1349994	4180523	$2.9 \mathrm{e}-16$
32	10	0.80	16871	197081	1349994	6632518	$5.5 \mathrm{e}-16$
16	10	0.87	22953	200541	1358148	5039519	$3.0 \mathrm{e}-16$
16	15	0.87	25963	200541	1358148	10057035	$2.8 \mathrm{e}-16$
16	20	0.87	26185	200541	1358148	12555880	$3.3 \mathrm{e}-16$
32	10	0.84	40387	531145	5116951	21632742	$5.2 \mathrm{e}-16$
32	15	0.84	44201	531145	5116951	38955122	$2.6 \mathrm{e}-16$
32	20	0.84	44433	531145	5116951	46851702	$8.2 \mathrm{e}-16$

Table 3.7: Results for trigonometric polynomials with frequencies supported on symmetric weighted hyperbolic cross $H_{N}^{d, \gamma}$ with weights $\gamma=\left(1, \gamma_{2}, \gamma_{2}^{2}, \ldots, \gamma_{2}^{d-1}\right)^{\top}$ using reconstructing rank-1 lattices with Algorithm 1 when considering frequencies within $\Gamma=\hat{G}_{N}^{d}$.

N	d	γ_{2}	$\left\|H_{N}^{d, \boldsymbol{\gamma}}\right\|$	\max cand	$\max M$	\#samples	rel. ℓ_{2}-error
32	6	0.80	11593	173397	990990	1745779	$2.1 \mathrm{e}-16$
32	8	0.80	15477	197081	1338974	4360512	$5.0 \mathrm{e}-16$
32	10	0.80	16871	197081	1430231	6961062	$5.5 \mathrm{e}-16$
16	10	0.87	22953	200541	1358148	5032864	$6.3 \mathrm{e}-16$
16	15	0.87	25963	200541	1358148	10175387	$7.3 \mathrm{e}-16$
16	20	0.87	26185	200541	1358148	12687242	$7.6 \mathrm{e}-16$
32	10	0.84	40387	531145	5337879	23712165	$3.4 \mathrm{e}-16$
32	15	0.84	44201	531145	5337879	41732585	$2.6 \mathrm{e}-16$
32	20	0.84	44433	531145	5337879	49777589	$2.7 \mathrm{e}-16$

Table 3.8: Results for trigonometric polynomials with frequencies supported on symmetric weighted hyperbolic cross $H_{N}^{d, \gamma}$ with weights $\gamma=\left(1, \gamma_{2}, \gamma_{2}^{2}, \ldots, \gamma_{2}^{d-1}\right)^{\top}$ using reconstructing rank-1 lattices with Algorithm 2 when considering frequencies within $\Gamma=\hat{G}_{N}^{d}$.

Again, we successfully applied the modifications described in Section 2.3.
Example 3.8. Sub-sampling along reconstructing rank-1 lattices using ℓ_{1} minimization ("A2-$\left.\ell_{1}-s R 1 L "\right)$. We used sub-sampling on reconstructing rank-1 lattices as described in in Section 2.3.1. This time, we considered $L=\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right|$ many samples of the reconstructing rank-1 lattices generated in step 2c in each dimension increment step t of the dimension incremental method. We applied the ℓ_{1} minimization algorithm SPGL1, where we set the parameter "optimality tolerance" to 10^{-7}, "Basis pursuit tolerance" to 10^{-8} as well as the maximal number of SPGL1 iterations to 2000, and used one-dimensional FFTs to compute the matrix-vector products of the corresponding Fourier matrices and vectors. The numerical results are shown in Table 3.9. We observe that the maximal number of frequency candidates "max cand" and the maximal rank-1 lattice sizes "max M " are identical to the ones from Example 3.7 in Table 3.8, where we used all rank-1 lattice samples, except for one case. The total number of samples in the column "\#samples" is about 5 times smaller when we use the sub-sampling, while the relative ℓ_{2}-error is still less than 10^{-11}.

N	d	γ_{2}	$\left\|H_{N}^{d, \gamma}\right\|$	max cand	$\max M$	\#samples	rel. ℓ_{2}-error
32	6	0.80	11593	173397	990990	383585	$3.6 \mathrm{e}-12$
32	8	0.80	15477	197081	1338974	763225	$3.6 \mathrm{e}-12$
32	10	0.80	16871	197081	1430231	1080761	$4.2 \mathrm{e}-12$
16	10	0.87	22953	200541	1358148	867879	$3.5 \mathrm{e}-12$
16	15	0.87	25963	200541	1358148	1629241	$4.7 \mathrm{e}-12$
16	20	0.87	26185	2061664	12707266	3882026	$9.4 \mathrm{e}-12$
32	10	0.84	40387	531145	5337879	2633711	$1.3 \mathrm{e}-12$
32	15	0.84	44201	531145	5337879	4283003	$3.3 \mathrm{e}-12$
32	20	0.84	44433	531145	5337879	5036917	$6.0 \mathrm{e}-12$

Table 3.9: Results for trigonometric polynomials with frequencies supported on symmetric weighted hyperbolic cross $H_{N}^{d, \gamma}$ with weights $\gamma=\left(1, \gamma_{2}, \gamma_{2}^{2}, \ldots, \gamma_{2}^{d-1}\right)^{\top}$ using ℓ_{1} minimization with sub-sampling on reconstructing rank-1 lattices with Algorithm 2 when considering frequencies within $\Gamma=\hat{G}_{N}^{d}$.

Example 3.9. Sub-sampling along generated sets using ℓ_{1} minimization (" $\ell_{1}-G S$ "). We considered sampling on $K=3$ random shifted generated sets as described in Section 2.3.2. and we used totally $L=\left|I^{(1, \ldots, t-1)} \times I^{(t)}\right|$ many samples in step 2 c in each dimension increment step of the dimension incremental method. All test runs were successful and the results are presented in Table 3.10. The total numbers of samples in the column "\#samples" is similar to the results from Example 3.9 in Table 3.9 when sub-sampling on the rank- 1 lattices and the relative ℓ_{2}-errors are still less than 10^{-9} in Table 3.10.

N	d	γ_{2}	$\left\|H_{N}^{d, \gamma}\right\|$	max cand	\#samples	rel. ℓ_{2}-error
32	6	0.80	11593	173397	383585	$1.2 \mathrm{e}-10$
32	8	0.80	15477	197081	763225	$1.3 \mathrm{e}-10$
32	10	0.80	16871	197081	1098746	$1.1 \mathrm{e}-10$
16	10	0.87	22953	200541	884929	$1.1 \mathrm{e}-10$
16	15	0.87	25963	200541	1630891	$8.7 \mathrm{e}-11$
16	20	0.87	26185	200541	2021078	$3.2 \mathrm{e}-11$
32	10	0.84	40387	531145	2633711	$3.2 \mathrm{e}-10$
32	15	0.84	44201	531145	4283138	$2.2 \mathrm{e}-10$
32	20	0.84	44433	531145	5164672	$1.5 \mathrm{e}-10$

Table 3.10: Results for trigonometric polynomials with frequencies supported on symmetric weighted hyperbolic cross $H_{N}^{d, \gamma}$ with weights $\gamma=\left(1, \gamma_{2}, \gamma_{2}^{2}, \ldots, \gamma_{2}^{d-1}\right)^{\top}$ using ℓ_{1} minimization with random generated set samples with Algorithm 2 when considering frequencies within $\Gamma=\hat{G}_{N}^{d}$.

3.3 Tensor-product function

Next, we apply our method from Section 2.2 to a multivariate periodic function $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$, which is not sparse in frequency domain. For this, we perform all the steps as described in Section 2.2.1. However, we also have to take into consideration that the situation may
occur where the index set $I^{(t)}=[-N, N] \cap \mathbb{Z}$ after computing (2.5) and the index sets $I^{(1, \ldots, t)}=[-N, N]^{t} \cap \mathbb{Z}^{t}$ after computing (2.7) for some or all $t \in\{2, \ldots, d\}$. The resulting index set of detected frequencies $I^{(1, \ldots, d)}$ could be the full cube \hat{G}_{N}^{d} or a subset with cardinality of the same magnitude. Correspondingly, for a general search space $\Gamma \subset \mathbb{Z}^{d},|\Gamma|<\infty$, the index sets $I^{(1, \ldots, t)}$ could be $\mathcal{P}_{(1, \ldots, t)}(\Gamma)$ for some or all $t \in\{2, \ldots, d\}$ and the resulting index set of detected frequencies $I^{(1, \ldots, d)}$ could be the search space Γ itself. Therefore, we apply strategies to truncate the index sets $I^{(t)}$ and $I^{(1, \ldots, t)}, t \in\{2, \ldots, d\}$, in Section 3.3.1 and 3.3.2.

Here, we consider the function $f: \mathbb{T}^{10} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
f\left(\left(x_{1}, \ldots, x_{10}\right)^{\top}\right):=\prod_{t \in\{1,3,8\}} N_{2}\left(x_{t}\right)+\prod_{t \in\{2,5,6,10\}} N_{4}\left(x_{t}\right)+\prod_{t \in\{4,7,9\}} N_{6}\left(x_{t}\right), \tag{3.1}
\end{equation*}
$$

where $N_{m}: \mathbb{T} \rightarrow \mathbb{R}$ is the B-Spline of order $m \in \mathbb{N}$,

$$
N_{m}(x):=C_{m} \sum_{k \in \mathbb{Z}} \operatorname{sinc}\left(\frac{\pi}{m} k\right)^{m} \cos (\pi k) \mathrm{e}^{2 \pi \mathrm{i} k x}
$$

with a constant $C_{m}>0$ such that $\left\|N_{m} \mid L^{2}(\mathbb{T})\right\|=1$. We approximate the function f by trigonometric polynomials (1.1). For this, we determine a frequency index set $I=I_{\sim}^{(1, \ldots, 10)} \subset$ $\Gamma=\hat{G}_{N}^{10}$ and compute approximated Fourier coefficients $\tilde{\hat{p}}_{\boldsymbol{k}}, \boldsymbol{k} \in I$, from sampling values of f as described in Section 2.2.1. We expect the frequency index set to "consist of" three manifolds, a three-dimensional symmetric hyperbolic cross in the dimensions $1,3,8$, a fourdimensional symmetric hyperbolic cross in the dimensions $2,5,6,10$ and a three-dimensional symmetric hyperbolic cross in the dimensions $4,7,9$. Furthermore, the cardinality $|I|$ should be $\mathcal{O}\left(N \log ^{3} N\right)$ and the largest rank-1 lattice of size $M=\mathcal{O}\left(N^{3} \log ^{2} N\right)$. All tests were run 10 times and the relative $L^{2}\left(\mathbb{T}^{10}\right)$ approximation error

$$
\left\|f-\tilde{S}_{I} f\left|L^{2}\left(\mathbb{T}^{10}\right)\|/\| f\right| L^{2}\left(\mathbb{T}^{10}\right)\right\|=\sqrt{\left\|f\left|L^{2}\left(\mathbb{T}^{10}\right)\left\|^{2}-\sum_{k \in I}\left|\hat{f}_{k}\right|^{2}+\sum_{k \in I}\left|\tilde{\hat{p}}_{k}-\hat{f}_{k}\right|^{2} /\right\| f\right| L^{2}\left(\mathbb{T}^{10}\right)\right\|}
$$

was computed, where $\tilde{S}_{I} f:=\sum_{\boldsymbol{k} \in I} \tilde{\hat{p}}_{\boldsymbol{k}} \mathrm{e}^{2 \pi \mathrm{i} \boldsymbol{k} \cdot \mathrm{o}}$.

3.3.1 s-sparse

One possibility is to use the sparsity input parameter $s \in \mathbb{N}$ of Algorithm 1 and 2. Consequently, the detected frequencies in each dimension increment step t are truncated and only those frequencies are used which belong to the $s \ll|\Gamma|<\infty$ largest Fourier coefficients $\tilde{\hat{p}}_{t, k_{t}}$ and $\tilde{\hat{p}}_{(1, \ldots, t), \boldsymbol{k}}$. The relative threshold parameter $\theta \in(0,1)$ should then be set to a very small value like $\theta:=10^{-12}$. Due to possible aliasing effects, see (2.6) and (2.8), it might be reasonable to use a larger value of s for the intermediate dimension increment steps $t \in\{2, \ldots, d-1\}$ than for the final truncation of the index set $I^{(1, \ldots, d)}$ in dimension increment step $t=d$.

Example 3.10. s-sparse approximate reconstruction of a function ("A1-R1L" and "A2$R 1 L ")$. We set $N=16,32,64$ and search for frequencies within the cube $\Gamma=\hat{G}_{N}^{10}$. We use $r:=5$ detection iterations and set the relative threshold parameter $\theta:=10^{-7}$. The used parameters and results are presented in Table 3.11 for Algorithm 1 and in Table 3.12 for Algorithm 2. In the column "sparsity", two parameters are found. The first one is the maximal number of frequencies belonging to the largest Fourier coefficients, which are used
for the approximate reconstruction. The second sparsity number is the maximal number $\left|I^{(1, \ldots, t)}\right|, t=1, \ldots, d-1$, of frequencies and Fourier coefficients kept during the computation. Here, the column "rel. L^{2}-error" contains the relative $L^{2}\left(\mathbb{T}^{10}\right)$ approximation error $\left\|f-\tilde{S}_{I} f\left|L^{2}\left(\mathbb{T}^{10}\right)\|/\| f\right| L^{2}\left(\mathbb{T}^{10}\right)\right\|$. The remaining columns have the same meaning as described in Section 3.1. We observe that for increasing sparsity parameter, the number of frequency candidates and samples increases while the relative $L^{2}\left(\mathbb{T}^{10}\right)$ approximation error decreases. Furthermore, it is not sufficient to only increase the used sparsity s but the refinement parameter N also needs to be increased. Using a large refinement parameter N and a small target sparsity s results in the usage of distinctly more samples, e.g., about 41 million samples for $N=16$ and sparsity $s=1000$ compared to about 156 million samples for $N=64$ in Table 3.11. The relative $L^{2}\left(\mathbb{T}^{10}\right)$ approximation errors for Algorithm 1 and 2 are almost identical.

N	sparsity	max cand	$\max M$	\#samples	rel. L^{2}-error
16	$1000 / 2000$	105468	2005179	40776032	$1.2 \mathrm{e}-02$
16	$2000 / 4000$	213345	7400212	109229485	$4.3 \mathrm{e}-03$
16	$3000 / 6000$	302610	10731031	210260190	$3.5 \mathrm{e}-03$
16	$4000 / 8000$	402468	16554352	306647729	$3.3 \mathrm{e}-03$
32	$1000 / 2000$	225875	4387563	62971360	$1.2 \mathrm{e}-02$
32	$2000 / 4000$	392795	15793929	232962422	$3.4 \mathrm{e}-03$
32	$3000 / 6000$	597155	26146120	439980245	$1.7 \mathrm{e}-03$
32	$4000 / 8000$	830375	40409497	686588714	$1.4 \mathrm{e}-03$
32	$5000 / 10000$	1021410	56177093	949349167	$1.2 \mathrm{e}-03$
64	$1000 / 2000$	483105	5541810	155887998	$1.2 \mathrm{e}-02$
64	$2000 / 4000$	913257	16775973	354498370	$3.4 \mathrm{e}-03$
64	$3000 / 6000$	1167321	28981586	591378719	$1.6 \mathrm{e}-03$
64	$4000 / 8000$	1512654	44180388	819754426	$9.8 \mathrm{e}-04$
64	$5000 / 10000$	1982214	136551319	2170526041	$7.1 \mathrm{e}-04$
64	$6000 / 12000$	2256790	199917497	2991975918	$5.6 \mathrm{e}-04$

Table 3.11: Results for function $f: \mathbb{T}^{10} \rightarrow \mathbb{R}$ from (3.1) for Algorithm 1 when considering frequencies within $\Gamma=\hat{G}_{N}^{10}$. "\#samples" means worst case number of function evaluations for 1 test run (out of the 10 runs).

Example 3.11. s-sparse approximate reconstruction of a function restricting the search space ("A1-R1L" with $\Gamma=H_{N}^{d, 1}$). In this example, we use the identical test sets and input parameters as in Example 3.10 except for the search space Γ. If we assume that the frequencies belonging to the largest Fourier coefficients lie within a hyperbolic cross $\Gamma=H_{N}^{10,1}$, i.e., if we restrict the search space for the frequencies when using Algorithm 1, then the number of frequency candidates and the total number of samples can further be reduced while obtaining almost the same relative $L^{2}\left(\mathbb{T}^{10}\right)$ approximation errors. The numerical results for this case can be found in Table 3.13. In the case $N=64$ and sparsity $s=4000$, we used only about $1 / 5$ of total samples compared with the results from Example 3.10 in Table 3.11, where we assumed that the frequencies belonging to the largest Fourier coefficients lie within the cube $\Gamma=\hat{G}_{N}^{10}$.

N	sparsity	max cand	$\max M$	\#samples	rel. L^{2}-error
16	$1000 / 2000$	104016	2275218	41440344	$1.2 \mathrm{e}-02$
16	$2000 / 4000$	200071	7103613	112486704	$4.3 \mathrm{e}-03$
16	$3000 / 6000$	293766	11447502	211976106	$4.2 \mathrm{e}-03$
16	$4000 / 8000$	359271	15939363	290592654	$3.3 \mathrm{e}-03$
32	$1000 / 2000$	217230	5867095	76456418	$1.2 \mathrm{e}-02$
32	$2000 / 4000$	375960	13411060	213581140	$3.4 \mathrm{e}-03$
32	$3000 / 6000$	609895	36135125	362485290	$1.7 \mathrm{e}-03$
32	$4000 / 8000$	776295	47140210	590538705	$1.4 \mathrm{e}-03$
32	$5000 / 10000$	922025	67627755	788170875	$1.2 \mathrm{e}-03$
64	$1000 / 2000$	426990	6017334	72186288	$1.2 \mathrm{e}-02$
64	$2000 / 4000$	766002	21572928	278124358	$3.4 \mathrm{e}-03$
64	$3000 / 6000$	1220727	72115386	698575406	$1.6 \mathrm{e}-03$
64	$4000 / 8000$	1423386	88214715	870806143	$9.8 \mathrm{e}-04$
64	$5000 / 10000$	1820190	125092203	1293939642	$7.1 \mathrm{e}-04$
64	$6000 / 12000$	2180487	164668113	1660790581	$5.6 \mathrm{e}-04$

Table 3.12: Results for function $f: \mathbb{T}^{10} \rightarrow \mathbb{R}$ from (3.1) for Algorithm 2 when considering frequencies within $\Gamma=\hat{G}_{N}^{10}$. "\#samples" means worst case number of function evaluations for 1 test run (out of the 10 runs).

N	sparsity	$\left\|H_{N}^{10, \mathbf{1}}\right\|$	max cand	$\max M$	\#samples	rel. L^{2}-error
16	$1000 / 2000$	45548649	17742	512496	7362160	$1.2 \mathrm{e}-02$
16	$2000 / 4000$	45548649	27112	1190389	15922974	$4.4 \mathrm{e}-03$
16	$3000 / 6000$	45548649	37268	1795031	22501808	$3.6 \mathrm{e}-03$
16	$4000 / 8000$	45548649	45662	2449317	31680101	$3.6 \mathrm{e}-03$
32	$1000 / 2000$	182183661	27740	1027474	14476254	$1.2 \mathrm{e}-02$
32	$2000 / 4000$	182183661	43898	2308048	33723808	$3.4 \mathrm{e}-03$
32	$3000 / 6000$	182183661	55583	3818404	47146657	$1.7 \mathrm{e}-03$
32	$4000 / 8000$	182183661	65510	5413888	65824783	$1.4 \mathrm{e}-03$
32	$5000 / 10000$	182183661	74514	7232979	86519822	$1.3 \mathrm{e}-03$
64	$1000 / 2000$	696036321	50014	1745803	28427634	$1.2 \mathrm{e}-02$
64	$2000 / 4000$	696036321	64596	3891632	64616902	$3.4 \mathrm{e}-03$
64	$3000 / 6000$	696036321	87599	6779467	101748629	$1.6 \mathrm{e}-03$
64	$4000 / 8000$	696036321	106452	10035867	157725439	$9.8 \mathrm{e}-04$
64	$5000 / 10000$	696036321	122236	15199650	186959406	$7.2 \mathrm{e}-04$
64	$6000 / 12000$	696036321	134195	17019323	225136643	$5.6 \mathrm{e}-04$

Table 3.13: Results for function $f: \mathbb{T}^{10} \rightarrow \mathbb{R}$ from (3.1) for Algorithm 1 when only considering frequencies within $\Gamma=H_{N}^{10,1}$. "\#samples" means worst case number of function evaluations for 1 test run (out of the 10 runs).

In the following example, we compare the numerical results of the algorithms presented in this paper with the ones when applying the non-incremental, single-step algorithm from [29]. We observe that the latter one has a drastically higher number of samples for similar relative $L^{2}\left(\mathbb{T}^{10}\right)$ approximation errors.

Example 3.12. s-sparse approximate reconstruction of a function using a single-step algorithm. In this example, we do not use the dimension incremental method to approximately reconstruct the largest Fourier coefficients of the function f from (3.1) but we apply the direct single-step method described in [29]. This means we have to choose frequency index sets I which contain the largest Fourier coefficients of f. Due to the tensor product structure of our function f, we used hyperbolic cross index sets $I=H_{N}^{10, \mathbf{1}}:=\left\{\boldsymbol{k} \in \mathbb{Z}^{d}: \prod_{t=1}^{10} \max \left(1,\left|k_{t}\right|\right) \leq\right.$ $N\}, N=4,8,16$, and the corresponding reconstructing rank-1 lattices for $H_{N}^{10,1}$ from $[29$, Table 6.2], We sampled the function f at the rank-1 lattice nodes and computed all approximated Fourier coefficients $\hat{\tilde{f}}_{\boldsymbol{k}}, \boldsymbol{k} \in H_{N}^{10,1}$. Then, we used sparsity $s=1000,2000,3000,4000$ many of the largest of these Fourier coefficients for the function approximation. The results are shown in Table 3.14. Comparing the number of samples and obtained relative $L^{2}\left(\mathbb{T}^{10}\right)$ approximation errors with the results of our dimension incremental method in Table 3.11 and 3.12 for $N=16$, we observe that the errors are almost the same and the numbers of samples are dramatically larger for the single-step algorithm. This means that the dimension incremental reconstruction method required distinctly less samples than the single-step algorithm while achieving similar approximation errors.

N	sparsity	$\left\|H_{N}^{10, \mathbf{1}}\right\|$	$M=$ \#samples	rel. L^{2}-error
4	1000	2421009	30780958	$3.8 \mathrm{e}-02$
4	2000	2421009	30780958	$3.8 \mathrm{e}-02$
8	1000	10819089	194144634	$1.4 \mathrm{e}-02$
8	2000	10819089	194144634	$1.1 \mathrm{e}-02$
8	3000	10819089	194144634	$1.1 \mathrm{e}-02$
16	1000	45548649	2040484044	$1.2 \mathrm{e}-02$
16	2000	45548649	2040484044	$4.3 \mathrm{e}-03$
16	3000	45548649	2040484044	$3.6 \mathrm{e}-03$
16	4000	45548649	2040484044	$3.6 \mathrm{e}-03$

Table 3.14: Results for function $f: \mathbb{T}^{10} \rightarrow \mathbb{R}$ from (3.1) for single-step algorithm from [29] when only considering frequencies within $\Gamma=H_{N}^{10,1}$.

3.3.2 threshold-based

Another variant is to use the relative threshold parameter $\theta \in(0,1)$ of Algorithm 1 and 2 for the truncation. The sparsity input parameter $s \in \mathbb{N}$ is set to $|\Gamma|$. We remark that due to the aliasing (2.6) and (2.8), smaller thresholds for the intermediate dimension increment steps $t \in\{2, \ldots, d-1\}$ should be used.

We search for frequencies within the cube $\Gamma=\hat{G}_{N}^{10}$ for various refinements $N \in \mathbb{N}$ belonging to those frequencies above a certain relative threshold and we use $r:=10$ detection iterations.

Example 3.13. Threshold-based approximate reconstruction of a function ("A1-R1L" and "A2-R1L"). The parameters and results are shown in Table 3.15 for Algorithm 1 and in Table 3.16 for Algorithm 2. For the truncation of the one-dimensional index sets $I^{(t)}$ of frequency candidates for component $t, t \in\{1, \ldots, 10\}$, the relative threshold parameter $\theta:=10^{-12}$ is used. Moreover, for the truncation of the final index set $I^{(1, \ldots, 10)}$, the relative threshold parameter $\theta \in(0,1)$ with the value from the column "threshold" is used and $\theta:=$ "threshold" $/ 10$
for all other truncations. We observe that the numbers of frequency candidates, the rank- 1 lattice sizes and the total numbers of samples are dramatically smaller compared to the results from Section 3.3 .1 while the relative $L^{2}\left(\mathbb{T}^{10}\right)$ approximation errors are about the same for similar numbers $|I|$ of Fourier coefficients $\tilde{p}_{\boldsymbol{k}}$ used for the approximation $\tilde{S}_{I} f$ of f. Moreover, the total numbers of samples are distinctly lower when using Algorithm 1 compared to Algorithm 2.

N	threshold	$\|I\|$	max cand	$\max M$	\#samples	rel. L^{2}-error
64	$1.0 \mathrm{e}-02$	491	3885	21970	254530	$1.4 \mathrm{e}-01$
64	1.0e-03	1121	27521	217494	2789050	$1.1 \mathrm{e}-02$
64	$1.0 \mathrm{e}-04$	3013	123195	903906	17836042	$1.7 \mathrm{e}-03$
64	$1.0 \mathrm{e}-05$	7163	256065	7820238	82222438	$4.7 \mathrm{e}-04$
64	$1.0 \mathrm{e}-06$	19771	1096335	66734128	439149744	$3.9 \mathrm{e}-04$
2	$1.0 \mathrm{e}-02$	439	1325	5860	72205	$1.4 \mathrm{e}-01$
4	$1.0 \mathrm{e}-03$	1039	4571	36554	494564	$2.8 \mathrm{e}-02$
8	$1.0 \mathrm{e}-04$	2651	16599	236418	3183298	$1.1 \mathrm{e}-02$
16	$1.0 \mathrm{e}-04$	2807	28611	388083	4912259	$3.5 \mathrm{e}-03$
32	$3.0 \mathrm{e}-05$	4645	82095	1327468	19226647	$1.3 \mathrm{e}-03$
64	$1.0 \mathrm{e}-05$	7163	256065	7820238	82222438	$4.7 \mathrm{e}-04$
128	$3.0 \mathrm{e}-06$	13031	849899	21505318	260000740	$1.8 \mathrm{e}-04$

Table 3.15: Results for function $f: \mathbb{T}^{10} \rightarrow \mathbb{R}$ from (3.1) for Algorithm 1 when considering frequencies within $\Gamma=\hat{G}_{N}^{10}$. "\#samples" means worst case number of function evaluations for 1 test run (out of the 10 runs).

N	threshold	$\|I\|$	max cand	$\max M$	\#samples	rel. L^{2}-error
64	$1.0 \mathrm{e}-02$	477	8041	68055	890640	$6.5 \mathrm{e}-02$
64	$1.0 \mathrm{e}-03$	1111	77015	768840	11836434	$1.0 \mathrm{e}-02$
64	$1.0 \mathrm{e}-04$	2991	251679	4599792	60717348	$1.6 \mathrm{e}-03$
64	$1.0 \mathrm{e}-05$	7371	661059	39765728	338464342	$4.7 \mathrm{e}-04$
64	$1.0 \mathrm{e}-06$	20371	3091527	312897648	1989191578	$4.0 \mathrm{e}-04$
2	$1.0 \mathrm{e}-02$	453	2375	11955	196055	$9.7 \mathrm{e}-02$
4	$1.0 \mathrm{e}-03$	1041	11511	147915	2057733	$2.8 \mathrm{e}-02$
8	$1.0 \mathrm{e}-04$	2683	55607	1183370	20299628	$9.2 \mathrm{e}-03$
16	$1.0 \mathrm{e}-04$	2799	96575	2255498	22864862	$3.4 \mathrm{e}-03$
32	$3.0 \mathrm{e}-05$	4623	297185	14475426	77830316	$1.2 \mathrm{e}-03$
64	$1.0 \mathrm{e}-05$	7369	665861	36740738	322531170	$4.7 \mathrm{e}-04$
128	$3.0 \mathrm{e}-06$	13381	2110227	166717512	1344032822	$1.7 \mathrm{e}-04$

Table 3.16: Results for function $f: \mathbb{T}^{10} \rightarrow \mathbb{R}$ from (3.1) for Algorithm 2 when considering frequencies within $\Gamma=\hat{G}_{N}^{10}$. "\#samples" means worst case number of function evaluations for 1 test run (out of the 10 runs).

Example 3.14. Threshold-based approximate reconstruction of a function restricting the search space ("A1-R1L" with $\Gamma=H_{N}^{d, 1}$). Again, if we assume that the frequencies belonging
to the largest Fourier coefficients of f lie within the hyperbolic cross, $\Gamma=H_{N}^{10,1}$, we can distinctly reduce the total number of function samples when using Algorithm 1 while obtaining similar relative $L_{2}\left(\mathbb{T}^{d}\right)$ approximation errors. We used the identical test parameters as in Example 3.13 except for the search space Γ. The numerical results for this assumption are presented in Table 3.17.

N	threshold	$\left\|H_{N}^{10,1}\right\|$	$\|I\|$	max cand	$\max M$	\#samples	rel. L^{2}-error
64	$1.0 \mathrm{e}-02$	696036321	479	3613	20033	257096	$7.1 \mathrm{e}-02$
64	$1.0 \mathrm{e}-03$	696036321	1101	10623	107837	1662533	$1.1 \mathrm{e}-02$
64	$1.0 \mathrm{e}-04$	696036321	3009	27561	617400	7740420	$1.7 \mathrm{e}-03$
64	$1.0 \mathrm{e}-05$	696036321	6923	46373	2015127	19288758	$5.1 \mathrm{e}-04$
64	$1.0 \mathrm{e}-06$	696036321	14085	66987	5408176	42893192	$4.3 \mathrm{e}-04$
2	$1.0 \mathrm{e}-02$	452709	399	869	3828	49469	$1.3 \mathrm{e}-01$
4	$1.0 \mathrm{e}-03$	2421009	927	2427	19150	267538	$3.9 \mathrm{e}-02$
8	$1.0 \mathrm{e}-04$	10819089	2301	6407	85592	1101462	$1.1 \mathrm{e}-02$
16	$1.0 \mathrm{e}-04$	45548649	2655	9881	164590	2071588	$3.6 \mathrm{e}-03$
32	$3.0 \mathrm{e}-05$	182183661	4301	20991	601490	5679603	$2.7 \mathrm{e}-03$
64	$1.0 \mathrm{e}-05$	696036321	6937	46335	2198884	20968600	$5.1 \mathrm{e}-04$
128	$3.0 \mathrm{e}-06$	$2.53 \mathrm{e}+09$	12637	104409	8400796	73500131	$1.8 \mathrm{e}-04$

Table 3.17: Results for function $f: \mathbb{T}^{10} \rightarrow \mathbb{R}$ from (3.1) for Algorithm 1 when only considering frequencies within $\Gamma=H_{N}^{10,1}$. "\#samples" means worst case number of function evaluations for 1 test run (out of the 10 runs).

3.4 Random sparse trigonometric polynomial with complex Gaussian noise

In this subsection, we test the robustness to noise of our method from Section 2.2. We construct random multivariate trigonometric polynomials p with frequencies supported within the cube $\hat{G}_{N}^{d}=[-N, N]^{d} \cap \mathbb{Z}^{d}$. In doing so, we randomly choose \mid supp $\hat{p} \mid$ many frequencies $\boldsymbol{k} \in \hat{G}_{N}^{d}$ and we set the corresponding Fourier coefficients $\hat{p}_{\boldsymbol{k}}:=\mathrm{e}^{2 \pi \mathrm{i} \varphi_{\boldsymbol{k}}} \in \mathbb{C},\left|\hat{p}_{\boldsymbol{k}}\right|=1$, $\boldsymbol{k} \in I=\operatorname{supp} \hat{p}$, where the angles $\varphi_{\boldsymbol{k}} \in[0,1)$ are chosen uniformly at random. For the reconstruction of the trigonometric polynomials p, we only assume supp $\hat{p} \subset \Gamma=\hat{G}_{N}^{d}$. We perturb the samples $p\left(\boldsymbol{x}_{j}\right)$ taken at nodes $\boldsymbol{x}_{j} \in \mathbb{T}^{d}, j=0, \ldots, M-1$, of the trigonometric polynomial p by additive complex white Gaussian noise $\eta_{j} \in \mathbb{C}$ with zero mean and standard deviation σ, i.e., we have measurements $f\left(\boldsymbol{x}_{j}\right)=p\left(\boldsymbol{x}_{j}\right)+\eta_{j}$. Then, we may approximately compute the signal-to-noise ratio (SNR) in our case by

$$
\mathrm{SNR} \approx \frac{\sum_{j=0}^{M-1}\left|p\left(\boldsymbol{x}_{j}\right)\right|^{2} / M}{\sum_{j=0}^{M-1}\left|\eta_{j}\right|^{2} / M} \approx \frac{\sum_{\boldsymbol{k} \in \operatorname{supp} \hat{p}}\left|\hat{p}_{\boldsymbol{k}}\right|^{2}}{\sigma^{2}}=\frac{|\operatorname{supp} \hat{p}|}{\sigma^{2}} .
$$

Correspondingly, we choose $\sigma:=\sqrt{|\operatorname{supp} \hat{p}|} / \sqrt{\text { SNR }}$ for a targeted SNR value. For our numerical tests in MATLAB, we generate the noise by $\eta_{j}:=\sigma / \sqrt{2} *$ (randn $+1 \mathrm{i} *$ randn), $j=0, \ldots, M-1$. The SNR is often measured using the logarithmic decibel scale (dB), where $\mathrm{SNR}_{\mathrm{dB}}=10 \log _{10} \mathrm{SNR}$ and $\mathrm{SNR}=10^{\mathrm{SNR}_{\mathrm{dB}} / 10}$, i.e., a linear $\mathrm{SNR}=10^{8}$ corresponds to a logarithmic $\mathrm{SNR}_{\mathrm{dB}}=80 \mathrm{~dB}$ and $\mathrm{SNR}=1$ corresponds to $\mathrm{SNR}_{\mathrm{dB}}=0 \mathrm{~dB}$.

$\mathrm{SNR}_{\mathrm{dB}}$	noise σ	\#detect. iter. r	\#samples	min \#freq. correct	success rate (all freq. correct)	rel. ℓ_{2}-error
80	$3.2 \mathrm{e}-03$	1	22216155	998	0.995	$4.5 \mathrm{e}-02$
70	$1.0 \mathrm{e}-02$	1	23004475	998	0.986	$4.5 \mathrm{e}-02$
60	$3.2 \mathrm{e}-02$	1	22381905	998	0.974	$5.5 \mathrm{e}-02$
50	$1.0 \mathrm{e}-01$	1	22533615	996	0.893	$7.1 \mathrm{e}-02$
40	$3.2 \mathrm{e}-01$	1	22434295	994	0.722	$8.4 \mathrm{e}-02$
30	$1.0 \mathrm{e}+00$	1	22662055	988	0.319	$1.2 \mathrm{e}-01$
20	$3.2 \mathrm{e}+00$	1	22646975	979	0.032	$1.5 \mathrm{e}-01$
10	$1.0 \mathrm{e}+01$	1	23084425	950	0.000	$2.3 \mathrm{e}-01$
0	$3.2 \mathrm{e}+01$	1	23185435	774	0.000	$5.0 \mathrm{e}-01$
80	$3.2 \mathrm{e}-03$	2	41283775	1000	1.000	$2.2 \mathrm{e}-06$
70	$1.0 \mathrm{e}-02$	2	42553485	1000	1.000	$7.4 \mathrm{e}-06$
60	$3.2 \mathrm{e}-02$	2	41799485	1000	1.000	$2.4 \mathrm{e}-05$
50	$1.0 \mathrm{e}-01$	2	49597275	1000	1.000	$7.5 \mathrm{e}-05$
40	$3.2 \mathrm{e}-01$	2	55243565	998	0.998	$4.5 \mathrm{e}-02$
30	$1.0 \mathrm{e}+00$	2	41881645	998	0.994	$5.5 \mathrm{e}-02$
20	$3.2 \mathrm{e}+00$	2	42064815	996	0.933	$7.7 \mathrm{e}-02$
10	$1.0 \mathrm{e}+01$	2	41512185	990	0.465	$1.1 \mathrm{e}-01$
0	$3.2 \mathrm{e}+01$	2	43322695	942	0.000	$2.5 \mathrm{e}-01$
40	$3.2 \mathrm{e}-01$	3	61300655	1000	1.000	$2.3 \mathrm{e}-04$
30	$1.0 \mathrm{e}+00$	3	61847825	1000	1.000	$7.1 \mathrm{e}-04$
20	$3.2 \mathrm{e}+00$	3	61477195	998	0.998	$4.5 \mathrm{e}-02$
10	$1.0 \mathrm{e}+01$	3	60542365	996	0.936	$6.4 \mathrm{e}-02$
0	$3.2 \mathrm{e}+01$	3	61832225	984	0.015	$1.4 \mathrm{e}-01$
20	$3.2 \mathrm{e}+00$	4	82104165	1000	1.000	$2.4 \mathrm{e}-03$
10	$1.0 \mathrm{e}+01$	4	80312115	998	0.997	$4.5 \mathrm{e}-02$
0	$3.2 \mathrm{e}+01$	4	81618355	994	0.442	$9.1 \mathrm{e}-02$
20	$3.2 \mathrm{e}+00$	5	101459605	1000	1.000	$2.3 \mathrm{e}-03$
10	$1.0 \mathrm{e}+01$	5	99610745	1000	1.000	$7.3 \mathrm{e}-03$
0	$3.2 \mathrm{e}+01$	5	98090005	997	0.869	$7.4 \mathrm{e}-02$

Table 3.18: Results for random sparse trigonometric polynomials with sparsity $|\operatorname{supp} \hat{p}|=$ 1000 perturbed by additive white Gaussian noise using reconstructing rank-1 lattices and Algorithm 2.

Example 3.15. Sampling along reconstructing rank-1 lattices using Algorithm 2 ("A2-R1L"), where the samples are perturbed by additive complex Gaussian noise. We choose the dimensionality $d:=10$, the refinement $N:=32$ and the sparsity $|\operatorname{supp} \hat{p}|:=1000$. We apply Algorithm 2 and we set the search space $\Gamma:=\hat{G}_{32}^{10}$, the sparsity parameter $s:=1000$ as well as the threshold parameter $\theta:=10^{-12}$. The algorithm is run setting the parameter r for the number of detection iterations to $r:=1,2,3,4,5$ and using the SNR values $\mathrm{SNR}_{\mathrm{dB}}:=80,70, \ldots, 10,0$ (which corresponds to SNR $=10^{8}, 10^{7}, \ldots, 10,1$). For each of these 45 test settings, Algorithm 2 is repeatedly run 1000 times. In each of the total 45000 test runs, new random frequencies and Fourier coefficients are drawn. The numerical results are presented in Ta-
ble 3.18. The total number of samples for each of the 1000 repetitions was computed and the maximum of these numbers for each test setting can be found in the column "\#samples". In the column "min \#freq. correct", the minimal number of correctly detected frequencies $\left|I^{(1, \ldots, 10)} \cap \operatorname{supp} \hat{p}\right|$ for the 1000 repetitions is shown, where supp \hat{p} denotes the set of true (input) frequencies of a trigonometric polynomial p and $I^{(1, \ldots, 10)}$ the frequencies returned by the detection algorithm. The column "success rate (all freq. correct)" represents the relative number of the 1000 repetitions where all frequencies were successfully detected, $I^{(1, \ldots, 10)}=\operatorname{supp} \hat{p}$. Moreover, the relative ℓ_{2}-error $\left\|\left(\tilde{\hat{p}}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in I}-\left(\hat{p}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in I}\right\|_{2} /\left\|\left(\hat{p}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in I}\right\|_{2}$ of the computed coefficients $\left(\tilde{\hat{p}}_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in I^{(1, \ldots, 10)}}$ was determined for each repetition, where $I:=\operatorname{supp} \hat{p} \cup I^{(1, \ldots, 10)}$ and $\tilde{\hat{p}}_{\boldsymbol{k}}:=0$ for $\boldsymbol{k} \in I \backslash I^{(1, \ldots, 10)}$, and the column "rel. ℓ_{2}-error" contains the maximal value of the 1000 repetitions. For test settings which are not shown in Table 3.18 all frequencies in all 1000 repetitions where correctly detected, i.e., the column "min \#freq. correct" $=1000$ and "success rate" $=1.000$. In general, we observe that for decreasing SNR values, the minimal number of correctly detected frequencies and the success rate decrease. When using $r=1$ test iterations, there were always some (of the 1000 test runs), where one or two frequencies were incorrect. However, in all test runs of all test settings, more than 77 percent of the frequencies were correctly detected, even for the case $\mathrm{SNR}_{\mathrm{dB}}=0(\mathrm{SNR}=1)$ where the signal level equals the noise level. When we increased the number of detection iterations r, the SNR level at which all frequencies in all of the 1000 test runs were correctly detected also decreased. For instance for $r=5$ detection iterations, the success rate was at 100 percent including the case $\mathrm{SNR}_{\mathrm{dB}}=\mathrm{SNR}=10$. However, we require about 5 times of the samples for $r=5$ detection iterations compared to the test settings with $r=1$.

4 Conclusion

In this paper, we presented methods for the approximate reconstruction of the largest Fourier coefficients of high-dimensional multivariate period functions, which are sparse in frequency domain, from sampling values. In doing so, it is assumed that the exact location of these Fourier coefficients is unknown and only a (possibly) very large search space $\Gamma \subset \mathbb{Z}^{d}$ containing the corresponding frequencies is given.

Our method, presented in Section 2.2, is based on sampling such a function along the nodes of rank-1 lattices and on applying one-dimensional fast Fourier transforms on the obtained sampling values. Consequently, the performed numerical computations are fast and stable. In contrast to other methods, e.g., see [18, 21], we approximately reconstruct first the (projected) Fourier coefficients and select then the corresponding frequencies which belong to the largest or non-zero Fourier coefficients. In numerical tests in Section 3.1 and 3.2, we successfully applied our method. Additionally, we successfully tested the method on a 10-dimensional function which has infinitely many Fourier coefficients in Section 3.3 and obtained approximately the largest Fourier coefficients and the corresponding frequencies. Furthermore, we successfully reconstructed the frequencies and Fourier coefficients of trigonometric polynomials from sampling values which were perturbed by white Gaussian noise in Section 3.4.

Moreover, we discussed a possibility to reduce the number of samples by applying methods from compressed sensing in Section 2.3 with sub-sampling on rank-1 lattices and generated sets. The application of these sub-sampling methods on trigonometric polynomials in Section 3.1 and 3.2 also succeeded and we compared the numerical results with the ones of the sampling on (full) rank-1 lattices. Additionally, we discussed a variant of Prony's method
in Section 2.4 with sub-sampling on rank-1 lattices and successfully tested this method in Section 3.1.

method	samples	arithmetic complexity
A1-R1L	$\mathcal{O}\left(d s^{2} N\right)$	$\mathcal{O}\left(d s^{3} N^{2}\right)$
A2-R1L	$\mathcal{O}\left(d s^{2} N\right)$	$\mathcal{O}\left(d s^{3}+d s^{2} N \log (s N)\right)$
A2- ℓ_{1}-sR1L	$\mathcal{O}\left(d s \log ^{4}(s N)+d N\right)$	$\mathcal{O}\left(d s^{3}+d R s^{2} N \log (s N)\right)$
ℓ_{1}-GS	$\mathcal{O}\left(d s \log ^{4}(s N)+d N\right)$	$\mathcal{O}\left(d R s\left(\log ^{5}(s N)+N \log (s N)\right)\right)$
prony	$\mathcal{O}(d s+d N)$	$\mathcal{O}\left(d s^{3}\right)$

Table 4.1: Sample and arithmetic complexity of the methods presented in this paper for the case $\sqrt{N} \lesssim s \lesssim N^{d}$ with sparsity s and search space $\Gamma=[-N, N]^{d} \cap \mathbb{Z}^{d}$.

method	samples	arithmetic complexity
A1-R1L	$\mathcal{O}\left(d N^{2}\right)$	$\mathcal{O}\left(d s N^{3}\right)$
A2-R1L	$\mathcal{O}\left(d N^{2}\right)$	$\mathcal{O}\left(d N^{2} \log N\right)$
A2- ℓ_{1}-sR1L	$\mathcal{O}\left(d s \log ^{4}(s N)+d N\right)$	$\mathcal{O}\left(d R N^{2} \log N\right)$
$\ell_{1}-\mathrm{GS}$	$\mathcal{O}\left(d s \log ^{4}(s N)+d N\right)$	$\mathcal{O}\left(d R s\left(\log ^{5}(s N)+N \log (s N)\right)\right)$
prony	$\mathcal{O}(d s+d N)$	$\mathcal{O}(d s N+d N \log N)$

Table 4.2: Sample and arithmetic complexity of the methods presented in this paper for the case $s \lesssim \sqrt{N}$ with sparsity s and search space $\Gamma=[-N, N]^{d} \cap \mathbb{Z}^{d}$.

Asymptotic upper bounds for the number of samples and arithmetic operations are given in Table 4.1 and 4.2 for the cases where the sparsity s is within the range $\sqrt{N} \lesssim s \lesssim N^{d}$ and $s \lesssim \sqrt{N}$, respectively. The methods "A1-R1L" and "A2-R1L" are Algorithm 1 and 2 from Section 2.2.1, respectively. "A2- ℓ_{1}-SR1L" and " ℓ_{1}-GS" mean ℓ_{1} minimization with sub-sampling on rank-1 lattice and sampling on generated sets from Section 2.3.1 and 2.3.2, respectively. "prony" is Prony's method from Section 2.4. We stress on the fact that when comparing different approaches for the sparse reconstruction from a practical point of view, one should also consider the dependence on the dimension d, since algorithms having an exponential or super-exponential dependence on d may not be applicable in practice for higher dimensions d. Moreover, also constants independent of d, which may depend on the specific implementation, can heavily influence the number of arithmetic operations and consequently the computation times. For instance, the observed computation times in Table 3.6 of the implementation of Prony's method from Section 2.4 are distinctly higher compared to the implementation of Algorithm 2 from Section 2.2.1, whereas the arithmetic complexity is not higher for Prony's method.

Acknowledgements

We thank the referees for the valuable suggestions and we thank Lutz Kämmerer for numerous valuable discussions on the presented subject. Moreover, we gratefully acknowledge support by the German Research Foundation (DFG) within the Priority Program 1324, project PO 711/10-2.

References

[1] G. Baszenski and F.-J. Delvos. A discrete Fourier transform scheme for Boolean sums of trigonometric operators. In C. K. Chui, W. Schempp, and K. Zeller, editors, Multivariate Approximation Theory IV, ISNM 90, pages $15-24$. Birkhäuser, Basel, 1989.
[2] E. J. Candès. Compressive sampling. In International Congress of Mathematicians. Vol. III, pages 1433 - 1452. Eur. Math. Soc., Zürich, 2006.
[3] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans. Inform. Theory, 51:4203-4215, 2005.
[4] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20:33-61, 1998.
[5] A. Christlieb, D. Lawlor, and Wang. A multiscale sub-linear time fourier algorithm for noisy data. Appl. Comput. Harmon. Anal., 2015. accepted.
[6] R. Cools, F. Y. Kuo, and D. Nuyens. Constructing lattice rules based on weighted degree of exactness and worst case error. Computing, 87:63-89, 2010.
[7] J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The quasi-Monte Carlo way. Acta Numer., 22:133-288, 2013.
[8] D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289-1306, 2006.
[9] S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2013.
[10] V. Gradinaru. Fourier transform on sparse grids: Code design and the time dependent Schrödinger equation. Computing, 80:1-22, 2007.
[11] V. Gradinaru. Strang splitting for the time-dependent Schrödinger equation on sparse grids. SIAM J. Numer. Anal., 46:103-123, 2007.
[12] M. Griebel and J. Hamaekers. Sparse grids for the Schrödinger equation. M2AN Math. Model. Numer. Anal., 41:215-247, 2007.
[13] M. Griebel and J. Hamaekers. Fast discrete Fourier transform on generalized sparse grids. In J. Garcke and D. Pflüger, editors, Sparse Grids and Applications - Munich 2012, volume 97 of Lect. Notes Comput. Sci. Eng., pages 75 - 107. Springer International Publishing, 2014.
[14] M. Griebel and S. Knapek. Optimized general sparse grid approximation spaces for operator equations. Math. Comp., 78:2223-2257, 2009.
[15] K. Hallatschek. Fouriertransformation auf dünnen Gittern mit hierarchischen Basen. Numer. Math., 63:83-97, 1992.
[16] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal sparse Fourier transform. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, pages $563-578$. ACM, 2012.
[17] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical algorithm for sparse Fourier transform. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1183-1194. SIAM, 2012.
[18] P. Indyk and M. Kapralov. Sample-Optimal Fourier Sampling in Any Constant Dimension - Part I. http://arxiv.org/abs/1403.5804, 2014.
[19] P. Indyk, M. Kapralov, and E. Price. (Nearly) sample-optimal sparse Fourier transform. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, pages 563 - 578 . ACM, 2014.
[20] M. A. Iwen. Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math., 10:303-338, 2010.
[21] M. A. Iwen. Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal., 34:57-82, 2013.
[22] L. Kämmerer. Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices. SIAM J. Numer. Anal., 51:2773-2796, 2013.
[23] L. Kämmerer. Reconstructing multivariate trigonometric polynomials by sampling along generated sets. In J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, editors, Monte Carlo and Quasi-Monte Carlo Methods 2012, pages 439 - 454. Springer Berlin Heidelberg, 2013.
[24] L. Kämmerer. High Dimensional Fast Fourier Transform Based on Rank-1 Lattice Sampling. Dissertation. Universitätsverlag Chemnitz, 2014.
[25] L. Kämmerer. Reconstructing multivariate trigonometric polynomials from samples along rank-1 lattices. In G. E. Fasshauer and L. L. Schumaker, editors, Approximation Theory XIV: San Antonio 2013, pages $255-271$. Springer International Publishing, 2014.
[26] L. Kämmerer and S. Kunis. On the stability of the hyperbolic cross discrete Fourier transform. Numer. Math., 117:581-600, 2011.
[27] L. Kämmerer, S. Kunis, I. Melzer, D. Potts, and T. Volkmer. Computational Methods for the Fourier Analysis of Sparse High-Dimensional Functions. In S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab, and H. Yserentant, editors, Extraction of Quantifiable Information from Complex Systems, 2014.
[28] L. Kämmerer, D. Potts, and T. Volkmer. Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank- 1 lattice with generating vector of Korobov form. J. Complexity, 2014.
[29] L. Kämmerer, D. Potts, and T. Volkmer. Approximation of multivariate functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complexity, accepted, 2015.
[30] J. Keiner, S. Kunis, and D. Potts. Using NFFT3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 - 30, 2009.
[31] S. Knapek. Approximation und Kompression mit Tensorprodukt-Multiskalenräumen. Dissertation, Universität Bonn, 2000.
[32] S. Kunis and H. Rauhut. Random sampling of sparse trigonometric polynomials II, Orthogonal matching pursuit versus basis pursuit. Found. Comput. Math., 8:737-763, 2008.
[33] F. Y. Kuo, I. H. Sloan, and H. Woźniakowski. Lattice rules for multivariate approximation in the worst case setting. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 289 - 330. Springer Berlin Heidelberg, Berlin, 2006.
[34] D. Lawlor, Y. Wang, and A. Christlieb. Adaptive sub-linear time Fourier algorithms. Adv. Adapt. Data Anal., 5(1):1350003, 25, 2013.
[35] D. Li and F. J. Hickernell. Trigonometric spectral collocation methods on lattices. In S. Y. Cheng, C.-W. Shu, and T. Tang, editors, Recent Advances in Scientific Computing and Partial Differential Equations, volume 330 of Contemp. Math., pages 121 - 132. AMS, 2003.
[36] H. Munthe-Kaas and T. Sørevik. Multidimensional pseudo-spectral methods on lattice grids. Appl. Numer. Math., 62:155-165, 2012.
[37] D. Needell and R. Vershynin. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math., 9:317-334, 2009.
[38] D. Potts and M. Tasche. Parameter estimation for multivariate exponential sums. Electron. Trans. Numer. Anal., 40:204 - 224, 2013.
[39] D. Potts and M. Tasche. Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl., 439:1024-1039, 2013.
[40] H. Rauhut. Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal., 22:16-42, 2007.
[41] H. Rauhut. On the impossibility of uniform sparse reconstruction using greedy methods. Sampl. Theory Signal Image Process., 7:197-215, 2008.
[42] H. Rauhut. Stability results for random sampling of sparse trigonometric polynomials. IEEE Trans. Inform. Theory, 54:5661 - 5670, 2008.
[43] J. Shen, T. Tang, and L.-L. Wang. Spectral Methods, volume 41 of Springer Ser. Comput. Math. Springer-Verlag Berlin Heidelberg, Berlin, 2011.
[44] I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1994.
[45] V. N. Temlyakov. Reconstruction of periodic functions of several variables from the values at the nodes of number-theoretic nets. Anal. Math., 12:287-305, 1986. In Russian.
[46] V. N. Temlyakov. Approximation of periodic functions. Computational Mathematics and Analysis Series. Nova Science Publishers Inc., Commack, NY, 1993.
[47] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse reconstruction, 2007. http://www.cs.ubc.ca/labs/scl/spgl1.
[48] E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput., 31:890-912, 2008.

[^0]: *Technische Universität Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany potts@mathematik.tu-chemnitz.de, Phone:+49-371-531-32150, Fax:+49-371-531-832150
 ${ }^{\dagger}$ Technische Universität Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany toni.volkmer@mathematik.tu-chemnitz.de, Phone:+49-371-531-39999, Fax:+49-371-531-839999

