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Let h(x) be a nonincreasing exponential sum of order M . For N given noisy sampled 
values hn = h(n) + en (n = 0, . . . , N − 1) with error terms en , all parameters of h(x) can be 
estimated by the known ESPRIT (Estimation of Signal Parameters via Rotational Invariance 
Techniques) method. The ESPRIT method is based on singular value decomposition (SVD) 
of the L-trajectory matrix (h�+m)

L−1,N−L
�,m=0 , where the window length L fulfills M ≤ L ≤

N − M + 1. The computational cost of the ESPRIT algorithm is dominated by the cost 
of SVD. In the case L ≈ N

2 , the ESPRIT algorithm based on complete SVD costs about 
21
8 N3 + M2(21N + 91

3 M) operations. Here we show that the ESPRIT algorithm based on 
partial SVD and fast Hankel matrix–vector multiplications has much lower cost. Especially 
for L ≈ N

2 , the ESPRIT algorithm based on partial Lanczos bidiagonalization with S steps 
requires only about 18SN log2 N + S2(20N + 30S) + M2(N + 1

3 M) operations, where M ≤
S ≤ N − L + 1. Numerical experiments demonstrate the high performance of these fast 
ESPRIT algorithms for noisy sampled data with relatively large error terms.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let M ≥ 1 be an integer, α > 0, f j ∈ [−α, 0] + i[−π, π) ( j = 1, . . . , M) be distinct complex numbers and c j ∈ C \ {0}
( j = 1, . . . , M). We consider the nonincreasing exponential sum of order M

h(x) :=
M∑

j=1

c je
f j x (x ≥ 0). (1.1)

The recovery of the complex numbers f j , the complex coefficients c j , and the order M in the exponential sum (1.1) from 
noisy sampled values hk := h(k) +ek (k = 0, . . . , N −1), where ek are small error terms, is known as parameter identification 
problem, see e.g. [21,22,11]. Recently, G. Plonka and T. Peter [23] generalized the Prony method to reconstruct M-sparse 
expansions of generalized eigenfunctions of a linear operator from O(M) suitable values in a deterministic way. This method 
includes the parameter identification problem [27,3,25], the multivariate polynomial interpolation problem [2], and sparse 
polynomial interpolation problems in various polynomial bases [7,26]. The main drawback of the Prony method is that it 
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may be unstable in some cases. A simple but powerful method is to use more sampled values in combination with stable 
numerical methods. From the numerical point of view, this problem can be solved by the matrix pencil method [17,9,25]. 
However the main disadvantage is the high computational cost of the matrix pencil method.

In this paper we assume that a convenient upper bound for the unknown order M is available. In order to improve the 
numerical stability, we sample the function (1.1) on N equidistant nodes with N ≥ 2M . Then we introduce the L-trajectory 
matrix

H L,K := (h�+m)
L−1,K−1
�,m=0 ∈C

L×K (1.2)

with the window length L ∈ {M, . . . , N − M + 1} and K := N + 1 − L. Note that L and K are upper bounds of M . An essential 
problem of the established ESPRIT method is the high computational cost of O(N3) operations for the complete SVD of 
(1.2), see [8]. Based on the unified approach in [25], we show that iterative methods, such as the partial SVD or partial 
Lanczos bidiagonalization (LBD) of (1.2), lead to much faster algorithms. More precisely, we develop an algorithm, such 
that the oversampling of the function (1.1) with N > 2M , which is very important for a good numerical stability, does not 
destroy the low computational cost. The aim in this paper is an improvement of our results in [25], such that we can 
solve the parameter identification problem from a splitting, see Section 5, which is computed by partial LBD. To this end, 
we apply the LBD algorithm developed by J. Baglama and L. Reichel [1] in combination with a fast Hankel matrix–vector 
multiplication. The idea of fast Hankel matrix–vector multiplication via fast Fourier transform (FFT) is known, see [5,19]. But 
in [5,19], it is assumed that there exists an FFT of length N = L + K − 1. Here we describe the fast Hankel matrix–vector 
multiplication without restrictions. This approach reduces the computational cost of the SVD of Hankel matrix and is known 
as fast Hankel SVD, see [5,19]. The main result in this paper is the combination of the fast Hankel SVD with the matrix 
pencil method. We simplify the matrix pencil method in [25] by the use of partial SVD resp. partial LBD and fast Hankel 
matrix–vector multiplications.

In order to present a relatively self-contained paper, we structure our work as follows: In the introductory Section 2 we 
summarize some basic results on partial SVD. We point out the main ingredients of the partial LBD and describe a fast 
Hankel matrix–vector multiplication without restrictive assumptions. In Section 3 we determine the rank of the L-trajectory 
matrix (1.2) with exact sampled data (see Lemma 3.1) and the numerical rank of the L-trajectory matrix (1.2) with noisy 
sampled data (see Lemma 3.4). Thus the order of the exponential sum (1.1) can be determined by the (numerical) rank of 
the L-trajectory matrix (1.2), if the window length L fulfills M ≤ L ≤ N − M + 1. In Sections 4 and 5, we present the main 
results, namely the SVD-based ESPRIT Algorithm 4.2 and the LBD-based ESPRIT Algorithm 5.1. In both algorithms we pass 
on the computation of a Moore–Penrose pseudoinverse (cf. [25]). The computational costs of Algorithms 4.2 and 5.1 are 
analyzed in detail. In Section 6, we apply our methods to various parameter identification problems and show that the new 
algorithms behave similar to the algorithms in [5,19]. In the numerical tests with Algorithm 5.1 we prefer the LBD algorithm 
of J. Baglama and L. Reichel [1], since this method is very robust for noisy sampled data too. Furthermore we apply the new 
algorithms to problems with large N .

In this paper we use standard notations. The linear space of all column vectors with L complex components is denoted 
by CL , where 0 is the corresponding zero vector. The standard basis of CL is denoted by {e1, e2, . . . , eL} in which e� ∈ C

L

(� = 1, . . . , L) has one as its �th component and zeros elsewhere.
The linear space of all complex L × K matrices is denoted by CL×K . Analogously, RL×K is the set of all real L × K

matrices. For a matrix AL,K ∈ C
L×K , its transpose is denoted by AT

L,K , its conjugate transpose is A∗
L,K , and its Moore–Penrose 

pseudoinverse is A†
L,K . A square matrix of size L × L is abbreviated by AL . By I L we denote the L × L identity matrix. The 

null space and the range of a matrix AL,K are denoted by N (AL,K ) and R(AL,K ), respectively. The spectral norm of AL,K
is ‖AL,K ‖2 and its Frobenius norm is ‖AL,K ‖F . Further we use the known submatrix notation. Thus AL,K (1 : L, 2 : K ) is the 
submatrix of AL,K obtained by extracting rows 1 though L and columns 2 though K . Note that the first row or column of 
AL,K can be indexed by zero.

The computational cost of an algorithm is measured in the number of arithmetical operations (such as +, −, ×, \, 
√·, 

etc.), where all operations are counted equally (see [12, p. 27]). When complex arithmetic is involved, one has to count the 
operations on complex numbers. Often the computational cost of an algorithm is reduced to the leading term, i.e., all lower 
order terms are omitted. Definitions are indicated by the symbol :=. Other notations are introduced when needed.

2. Partial singular value decompositions

Let L, K ∈ N with L ≥ K > 1 be given. We consider a matrix AL,K ∈ C
L×K with rank AL,K = R ≤ N . Then the singular 

value decomposition (SVD) of AL,K (see [10, p. 70] or [16, pp. 449–450]) reads as follows

AL,K = U L D L,K W ∗
K , (2.1)

where

U L = (u1, u2, . . . , uL) ∈C
L×L,

W K = (w1, w2, . . . , w K ) ∈C
K×K

are both unitary matrices and where D L,K = diag(σ j)
K ∈R

L×K is a diagonal matrix with ordered diagonal entries:
j=1
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σ1 ≥ . . . ≥ σR > σR+1 = . . . = σK = 0.

From (2.1) it follows immediately that the rank-R matrix AL,K can be decomposed into a sum of R rank-1 matrices:

AL,K =
R∑

j=1

σ j u j w∗
j .

The nonnegative numbers σ j ( j = 1, . . . , K ) are called the singular values of AL,K . The columns of U L and W K are called 
left and right singular vectors of AL,K which satisfy

AL,K w j = σ j u j, A∗
L,K u j = σ j w j ( j = 1, . . . , R)

and

AL,K w j = 0 ( j = R + 1, . . . , K ),

A∗
L,K u j = 0 ( j = R + 1, . . . , L).

With the submatrices

U L,R := U L(1 : L,1 : R) = (u1, u2, . . . , uR) ∈C
L×R ,

W K ,R := W K (1 : K ,1 : R) = (w1, w2, . . . , w R) ∈C
K×R ,

D R := D L,K (1 : R,1 : R) = diag(σ j)
R
j=1 ∈ R

R×R ,

we obtain the reduced SVD of AL,K = U L,R D R W ∗
K ,R . Note that both matrices U L,R and W K ,R possess orthonormal columns.

The SVD plays an important role in the study of matrix approximation problems. Here we consider a low-rank ap-
proximation of AL,K , i.e., we approximate the given matrix AL,K by another matrix X L,K ∈ C

L×K with lower rank S
(S ≤ R = rank AL,K ), i.e.

minimize ‖AL,K − X L,K ‖ subject to rank X L,K = S

with respect to a unitarily invariant norm ‖ · ‖. By the theorem of Eckart–Young–Mirsky (see [10, pp. 72–74]), a best rank-S
approximation to the given matrix AL,K ∈C

L×K with rank AL,K = R is

X L,K = A(S)
L,K :=

S∑
j=1

σ j u j w∗
j . (2.2)

The matrix decomposition (2.2) is called a rank-S partial SVD of AL,K .

Remark 2.1. When AL,K is a matrix of large size, the computation of the complete SVD (2.1) is very costly. Thus the 
Golub–Reinsch SVD algorithm requires 4L2 K + 8LK 2 + 9K 3 operations (see [10, pp. 253–254]). In the case L ≈ K , this SVD 
algorithm costs 21L3 operations. If AL is Hermitian, then its spectral decomposition reads AL = U L D L U ∗

L and costs 9L3

operations for the computation of the unitary matrix U L and the diagonal matrix D L (see [15, p. 337]). �
But in some applications, it is not necessary to compute the complete SVD of AL,K . It can be sufficient to compute a 

partial SVD of AL,K . Further it is not necessary to calculate a best rank-S approximation A(S)
L,K to high accuracy, since AL,K

may contain certain errors. Therefore it is desirable to develop less expensive methods for computing good approximations 
of A(S)

L,K .
Good low-rank approximations of AL,K can be obtained from a Lanczos bidiagonalization (LBD) of AL,K without com-

puting any SVD. First we recall the LBD of a matrix AL,K ∈ C
L×K with L ≥ K . We assume that rank AL,K = K such that 

N (AL,K ) = {0}. If the entries of AL,K contain certain errors, then this assumption is quite natural. By [10, pp. 495–496] or 
[4, pp. 303–306], one can find a matrix P L,K ∈ C

L×K with orthonormal columns and a unitary matrix Q K ∈ C
K×K such 

that

AL,K = P L,K B K Q ∗
K (2.3)

with a real, upper bidiagonal matrix

B K :=

⎛
⎜⎜⎜⎜⎜⎝

α1 β1
α2 β2

. . .
. . .

αK−1 βK−1
α

⎞
⎟⎟⎟⎟⎟⎠ ∈R

K×K .
K
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The columns p j ∈ C
L ( j = 1, . . . , K ) of P L,K are called left Lanczos vectors. The columns q j ∈ C

K ( j = 1, . . . , K ) of Q K are 
called right Lanczos vectors. From (2.3) it follows that

AL,K Q K = P L,K B K , A∗
L,K P L,K = Q K BT

K . (2.4)

Comparing the j-th columns of both sides of Eq. (2.4), we obtain the Lanczos recursions

α1 p1 = AL,K q1, α j+1 p j+1 = AL,K q j+1 − β j p j, (2.5)

β jq j+1 = A∗
L,K p j − α jq j ( j = 1, . . . , K − 1). (2.6)

The orthonormality of the Lanczos vectors requires that α1 = ‖AL,K q1‖2, α j+1 = ‖AL,K q j+1 − β j p j‖2 and β j = ‖A∗
L,K p j −

α jq j‖2 ( j = 1, . . . , K − 1). If α j > 0 ( j = 1, . . . , K ) and βk > 0 (k = 0, . . . , N − 1), then the normed left/right Lanczos vectors 
are orthogonal by construction.

Now we describe the partial Lanczos bidiagonalization of AL,K by S bidiagonalization steps, where S ≤ K .

Algorithm 2.2 (Partial LBD with full reorthogonalization).
Input: S , L, K ∈ N with L ≥ K ≥ S > 1, AL,K ∈ C

L×K with rank AL,K = K , q1 ∈ C
K initial unit vector, S number of bidiago-

nalization steps.

1. Form Q K ,1 := q1 and compute p1 := AL,K q1.
2. Calculate α1 := ‖p1‖2 and p1 := p1/α1. Form P L,1 := p1.
3. For j = 1 to S − 1 do

• q j+1 := A∗
L,K p j − α jq j .

• Reorthogonalization: q j+1 := q j+1 − Q K , j Q ∗
K , jq j+1.

• β j := ‖q j+1‖2, q j+1 := q j+1/β j , Q K , j+1 := ( Q K , j, q j+1).
• p j+1 := AL,K q j+1 − β j p j .
• Reorthogonalization: p j+1 := p j+1 − P L, j P ∗

L, j p j+1.
• α j+1 := ‖p j+1‖2, p j+1 := p j+1/α j+1, P L, j+1 := (P L, j, p j+1).

4. Compute rS := A∗
L,K pS − αS qS .

Output: Q K ,S = (q1, q2, . . . , qS ) ∈C
K×S and P L,S = (p1, p2, . . . , pS) ∈C

L×S matrices with orthonormal columns, B S ∈R
S×S

upper bidiagonal matrix with diagonal entries α j > 0 ( j = 1, . . . , S) and superdiagonal entries β j > 0 ( j = 1, . . . , S − 1), 
rS ∈ C

N residual vector.

When the computations of Algorithm 2.2 are carried out in floating point arithmetic without the both reorthogonalization 
steps, the computed Lanczos vectors q j and p j might be far from orthogonality. Therefore one has to reorthogonalize these 
vectors. Several reorthogonalization strategies for the Lanczos vectors are discussed in the literature (see [20,29,31,5]).

We are mainly interested in finding a low-rank approximation of AL,K . From the convergence theory of the LBD (see [4, 
pp. 309–310]), one knows that P L,S and Q K ,S contains good approximations of the singular vectors related to the dominant 
singular values of AL,K . Thus it is quite natural (see [5]) to use the matrix P L,S B S Q ∗

K ,S as a low-rank approximation of 
AL,K . The approximation error of P L,S B S Q ∗

K ,S with respect to AL,K is defined in the Frobenius norm by

εS := ∥∥AL,K − P L,S B S Q ∗
K ,S

∥∥
F (S = 1, . . . , K ). (2.7)

In the following lemma, we improve a result of [5] by the relation (2.8) and the computation of ε2
1 .

Lemma 2.3. The approximation error (2.7) can be recursively determined by

ε2
S+1 = ε2

S − α2
S+1 − β2

S (S = 1, . . . , K − 1)

with

ε2
1 = ‖AL,K ‖2

F − α2
1, εK = 0.

Further it holds for S = 1, . . . , K

∥∥P L,S B S Q ∗
K ,S

∥∥2
F = ‖B S‖2

F =
S−1∑
j=1

(
α2

j + β2
j

) + α2
S . (2.8)



D. Potts, M. Tasche / Applied Numerical Mathematics 88 (2015) 31–45 35
Since the proof follows similar lines as that in [5], we omit the proof.
Finally, we recollect the fast Hankel matrix–vector multiplication. As known, a cyclic convolution coincides with a circu-

lant matrix–vector product (see [30, pp. 205–207]). Using the cyclic convolution property of the discrete Fourier transform 
(see [30, pp. 207–208]) and applying fast Fourier transform (FFT), one obtains immediately a fast evaluation of a circulant 
matrix–vector product. A similar technique can be applied to a fast computation for a product of an L × K Hankel matrix 
and a vector. We describe this method without any further assumption, i.e., we don’t assume that the Hankel matrix is 
square (see [5]) or that there exists an FFT of length L + K − 1 (see [5,19]).

Let an arbitrary Hankel matrix H L,K := (h�+k)
L−1,K−1
�,k=0 ∈ C

L×K be given. Then

T L,K := H L,K J K = (hK−1+�−k)
L−1,K−1
�,k=0 ∈C

L×K

is a Toeplitz matrix. Here J K := (eK , eK−1, . . . , e1) denote the K × K counteridentity matrix, where {e1, . . . , eK } is the 
standard basis of CK . Note that a fast computation for a product of a square Toeplitz matrix and a vector can be found in 
[30, pp. 208–209]. The same technique can be used for a rectangular Hankel matrix too. Thus we can rapidly compute a 
vector y = H L,K x ∈C

L for an arbitrary vector x ∈C
K as follows:

Algorithm 2.4 (Fast Hankel matrix–vector multiplication).
Input: L, K ∈ N, x = (xk)

K−1
k=0 ∈ C

K , h� ∈ C (� = 0, . . . , L + K − 2), P ∈ N is the smallest power of 2 with P ≥ L + K − 1, i.e. 
P := 2	log2(L+K−1)
 .

1. Form the P -dimensional vectors

h̃ := (hK−1,hK , . . . ,hL+K−2, 0, . . . ,0︸ ︷︷ ︸
P−L−K+1

,h0,h1, . . . ,hK−2)
T,

x̃ := (xK−1, xK−2 . . . , x0,0, . . . ,0︸ ︷︷ ︸
P−K

)T.

2. For the P × P Fourier matrix F P := (exp(−2π i jk/P ))P−1
j,k=0, compute the vectors F P h̃ and F P x̃ by FFT of length P .

3. Evaluate the componentwise vector product p̃ := (F P h̃) ◦ (F P x̃).
4. Compute ỹ := 1

P J ′
P F P p̃ by FFT, where J ′

P := (e1, eP , . . . , e2) denotes the P × P flip matrix.
5. Form y := ỹ(0 : L − 1).

Output: y := H L,K x ∈ C
L with H L,K := (h�+k)

L−1,K−1
�,k=0 .

Remark 2.5. As known, an FFT of radix-2 length P requires 3P
2 log2 P operations. Thus in Algorithm 2.4, the three FFT op-

erations need 9P
2 log2 P operations. Since the componentwise vector product involves only P multiplications, Algorithm 2.4

requires about 9P
2 log2 P operations. By 	log2(L + K − 1)
 ≤ log2(L + K − 1) + 1, we see that P ≤ 2(L + K − 1). Therefore 

Algorithm 2.4 costs about 9(L + K −1) log2(L + K −1) operations. Since a classical matrix–vector multiplication involves 2LK
operations, Algorithm 2.4 is more efficient than a classical matrix–vector multiplication. Note that Algorithm 2.4 is valid for 
arbitrary L, K ∈N. �
Remark 2.6. Now we estimate the cost of Algorithm 2.2 with S bidiagonalization steps, where AL,K is a given Hankel matrix. 
The first step of Algorithm 2.2 requires the computation of AL,K q1. The other bidiagonalization steps need the calculations 
of A∗

L,K p j and AL,K q j+1 ( j = 1, . . . , S −1). Applying Algorithm 2.4, we need about 18S(L + K −1) log2(L + K −1) operations 
for the fast computation of these (2S − 1) Hankel matrix–vector products. Since the Gram–Schmidt orthogonalization of S
vectors of CL costs 2S2L operations (see [14, p. 369]), we can assume that the corresponding reorthogonalization steps in 
Algorithm 2.2 require 2S2(L + K ) operations. Since the other steps of Algorithm 2.2 have costs of linear order of L + K , 
Algorithm 2.2 with S bidiagonalization steps needs about 18S(L + K − 1) log2(L + K − 1) operations. �
3. Exponential sums and trajectory matrices

In the following, we apply the described low-rank approximation to a Hankel matrix. We consider the following param-
eter identification problem of signal processing: Recover the positive integer M , the distinct numbers f j ∈ [−α, 0] + i[−π, π)

with α > 0, and the complex coefficients c j 
= 0 ( j = 1, . . . , M), in the nonincreasing exponential sum of order M

h(x) :=
M∑

c je
f j x (x ≥ 0), (3.1)
j=1
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if noisy sampled data hk = h(k) + ek (k = 0, . . . , N − 1) with sufficiently large integer N (with 2M ≤ N) are given, where ek
are small error terms. Often the sequence {h0, h1, . . . , hN−1} of sampled data is called as a time series of length N . Then we 
form the L-trajectory matrix of this time series

H L,N−L+1 := (h�+m)
L−1,N−L
�,m=0 ∈C

L×(N−L+1) (3.2)

with the window length L ∈ {1, . . . , N}. Obviously, (3.2) is an L × (N − L + 1) Hankel matrix. Further we introduce the exact 
L-trajectory matrix

H (0)
L,N−L+1 := (

h(� + m)
)L−1,N−L
�,m=0 ∈C

L×(N−L+1) (3.3)

and the corresponding error matrix

E L,N−L+1 := (e�+m)
L−1,N−L
�,m=0 ∈C

L×(N−L+1)

such that

H L,N−L+1 = H (0)
L,N−L+1 + E L,N−L+1.

Note that the negative real part of f j is the damping factor and the imaginary part of f j is the angular frequency of the 
exponential e f j x . The nodes z j := e f j ( j = 1, . . . , M) are distinct values in the annulus D := {z ∈C : e−α ≤ |z| ≤ 1}.

The main step in the solution of the parameter identification problem is the determination of the order M and the com-
putation of the “frequencies” f j or alternatively of the nodes z j ( j = 1, . . . , M). Afterward one can calculate the coefficient 
vector c := (ck)

M
k=1 as least squares solution of overdetermined linear system

V N,M(z)c = (h j)
N−1
j=0 (3.4)

with the rectangular Vandermonde matrix V N,M(z) := (z j−1
k )

N,M
j,k=1 and the vector z := (zk)

M
k=1. As known, the square Vander-

monde matrix V M(z) is invertible. Note that

rank V L,M(z) = min{L, M} (L = 1, . . . , N), (3.5)

since rank V L,M(z) ≤ min{L, M} and since the submatrix (z j−1
k )

min{L,M}
j,k=1 is invertible.

By (3.1), the exact L-trajectory matrix (3.3) can be factorized in the following form

H (0)
L,N−L+1 = V L,M(z)(diag c)V N−L+1,M(z)T. (3.6)

Lemma 3.1. For each L = 1, . . . , N with N ≥ 2M, the rank of the exact L-trajectory matrix (3.3) is given by

rank H (0)
L,N−L+1 = min{L, N − L + 1, M}.

Proof. 1. Assume that M ≥ 2. For L ∈ {1, . . . , M − 1}, we know by (3.5) that rank V L,M(z) = L and rank V N−L+1,M(z) = M . 
Thus the rank of the M × (N − L + 1) matrix (diag z)V N−L+1,M(z)T is equal to M . Hence we obtain that

rank H (0)
L,N−L+1 = rank

(
V L,M(z)

(
(diag c)V N−L+1,M(z)T))

= rank V L,M(z) = L.

Note that min{L, N − L + 1, M} = L for L ∈ {1, . . . , M − 1}.
2. For L ∈ {M, . . . , N − M}, we see by (3.5) that

rank V L,M(z) = rank V N−L+1,M(z) = M.

Thus the rank of the M × (N − L + 1) matrix (diag c)V N−L+1,M(z)T is equal to M . Hence we conclude that

rank H (0)
L,N−L+1 = rank

(
V L,M(z)

(
(diag c)V N−L+1,M(z)T))

= rank V L,M(z) = M.

Note that min{L, N − L + 1, M} = M for L ∈ {M, . . . , N − M}.
3. In the case L ∈ {N − M + 1, . . . , N}, we use the property

rank H (0)
L,N−L+1 = rank

(
H (0)

L,N−L+1

)T

and the transposed factorization (3.6). By (3.5), we see that rank V N−L+1,M(z) = N − L + 1 and rank V L,M(z) = M . Thus the 
rank of the M × L matrix (diag c)V L,M(z)T is equal to M . Hence we obtain that
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Fig. 1. The rank of the L-trajectory matrix (3.3) for several window lengths L = 1, . . . , N .

rank
(

H (0)
L,N−L+1

)T = rank
(

V N−L+1,M(z)
(
(diag c)V L,M(z)T))

= rank V N−L+1,M(z) = N − L + 1.

Note that min{L, N − L + 1, M} = N − L + 1 for L ∈ {N − M + 1, . . . , N}. This completes the proof. �
Thus we have shown that for convenient window length L with M ≤ L ≤ N − M + 1, the rank of the exact L-trajectory 

matrix (3.3) coincides with the order of the exponential sum (3.1) (see Fig. 1).

Remark 3.2. The rank of an arbitrary Hankel matrix has a similar behavior, see [13, pp. 80–81]. For an L-trajectory matrix 
(3.3) of an exponential sum (3.1), we can explicitly determine the so-called characteristic degrees M and N − M + 1 (see 
[13, p. 81]) as well as the maximum rank M of the Hankel matrix (3.3). Further the proof of Lemma 3.1 is different from 
the corresponding proof in [13, pp. 80–81]. �

The nullity of the exact L-trajectory matrix (3.3) is defined by

null H (0)
L,N−L+1 := dim N

(
H (0)

L,N−L+1

)
.

Corollary 3.3. For each L = 1, . . . , N with N ≥ 2M, the nullity of the exact L-trajectory matrix (3.3) is given by

null H (0)
L,N−L+1 = max{N − 2L + 1, N − L − M + 1,0}.

Proof. Splitting the column space CN−L+1 of (3.3) into the orthogonal sum of null space N (H (0)
L,N−L+1) and the range 

R((H (0)
L,N−L+1)

∗), we obtain for the corresponding dimensions

N − L + 1 = dim N
(

H (0)
L,N−L+1

) + dimR
((

H (0)
L,N−L+1

)∗)
= null H (0)

L,N−L+1 + rank
((

H (0)
L,N−L+1

)∗)
= null H (0)

L,N−L+1 + rank H (0)
L,N−L+1

and hence

null H (0)
L,N−L+1 = N − L + 1 − rank H (0)

L,N−L+1.

Using Lemma 3.1, it follows the result. �
For a Hankel matrix (3.2) with noisy entries, we consider the numerical rank. Let σ j ( j = 1, . . . , min{L, N − L + 1}) be 

the singular values of (3.2) arranged in nonincreasing order

σ1 = ‖H L,N−L+1‖2 ≥ σ2 ≥ . . . ≥ σmin{L,N−L+1}.
Then the numerical rank of (3.2) is defined as the largest integer R such that σR ≥ εσ1 for sufficiently small tolerance ε > 0. 
Using IEEE double precision arithmetic, one can choose ε = 10−10 for given exact data. For noisy data, one has to choose 
a larger tolerance ε. Depending on the noise level, there is usually an obvious gap in the singular value distribution such 
that ε can be suitably chosen. Now we show that the numerical rank of the noisy L-trajectory matrix (3.2) has a similar 
behavior for a window length L ∈ {M, . . . , N − M + 1}.

Lemma 3.4. Assume that for a window length L with M ≤ L ≤ N − M + 1, the estimates ‖E L,N−L+1‖2 < ε‖H L,N−L+1‖2 and σM ≥
ε‖H L,N−L+1‖2 are fulfilled.

Then the numerical rank of (3.2) is equal to M and coincides with the rank of (3.3).
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Proof. By assumption, we have

σM ≥ ε‖H L,N−L+1‖2 = εσ1.

Now we show that σM+1 < εσ1. Let σ (0)
j ( j = 1, . . . , min{L, N − L + 1}) be the singular values of the exact L-trajectory 

matrix (3.3) arranged in the form

σ
(0)
1 ≥ . . . ≥ σ

(0)
M > σ

(0)
M+1 = . . . = σ

(0)

min{L,N−L+1} = 0.

By the matrix perturbation theory (see [16], p. 451) we know that∣∣σM+1 − σ
(0)
M+1

∣∣ = σM+1 ≤ ‖E L,N−L+1‖2

and hence by the assumption

σM+1 < ε‖H L,N−L+1‖2 = εσ1.

This completes the proof. �
4. ESPRIT via complete/partial SVD

Assume that M ≤ L ≤ N − M and N ≥ 2M ≥ 2. With the N sampled data hk ∈ C (k = 0, . . . , N − 1), additionally we form 
the rectangular Hankel matrices

H L,N−L(s) := H L,N−L+1(1 : L,1 + s : N − L + s) (s = 0,1). (4.1)

In the case of exactly sampled data, the Hankel matrices (4.1) are denoted by H (0)
L,N−L(s) (s = 0, 1).

Remark 4.1. The Hankel matrices H (0)
L,N−L(s) (s = 0, 1) have the same rank M for each L ∈ {M, . . . , N − M}. By Lemma 3.1 it 

follows immediately that for L = 1, . . . , N − 1

rank H (0)
L,N−L(0) = rank H (0)

L,N−L = min{L, N − L, M}.
Hence we obtain rank H (0)

L,N−L(0) = M for each L ∈ {M, . . . , N − M}. Note that the proof of Lemma 3.1 is mainly based on 
the factorization (3.6). The Hankel matrix H (0)

L,N−L(1) has also the rank M for each L ∈ {M, . . . , N − M}. This follows from 
the fact that H (0)

L,N−L(1) can be factorized in a similar form as (3.6), namely

H (0)
L,N−L(1) = V L,M(z)(diag c)(diag z)V N−L,M(z)T,

and from the proof of Lemma 3.1. �
The rectangular matrix pencil

zH (0)
L,N−L(0) − H (0)

L,N−L(1) (z ∈C) (4.2)

has the nodes z j ∈ D ( j = 1, . . . , M) as eigenvalues (see [25]), where D is the annulus introduced in Section 3. Now we 
explain some algorithms of ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique). For details see [27,
28,25]. First we assume that exact sampled data hk = h(k) (k = 0, . . . , N − 1) are given. Then we start the ESPRIT method by 
the SVD of (3.2), i.e.

H (0)
L,N−L+1 = U L D L,N−L+1W ∗

N−L+1,

where U L ∈ C
L×L and W N−L+1 ∈C

(N−L+1)×(N−L+1) are unitary matrices and where D L,N−L+1 ∈ R
L×(N−L+1) is a rectangular 

diagonal matrix. The diagonal entries of D L,N−L+1 are the singular values σ (0)
j of (3.2) arranged in nonincreasing order 

σ
(0)
1 ≥ . . . ≥ σ

(0)
M > σ

(0)
M+1 = . . . = σ

(0)

min{L,N−L+1} = 0. Thus we can determine the order M of the exponential sum (3.1) by 

the number of positive singular values σ (0)
j of (3.2). Introducing the matrices U L,M := U L(1 : L, 1 : M) and W L+1,M :=

W N−L+1(1 : N − L + 1, 1 : M) with orthonormal columns as well as the diagonal matrix D M := diag(σ
(0)
j )M

j=1, we obtain the 
partial SVD for the matrix (3.2) with exact entries, i.e.

H (0) = U L,M D M W ∗ . (4.3)
L,N−L+1 N−L+1,M
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Setting

W N−L,M(s) := W N−L+1,M(1 + s : N − L + s,1 : M) (s = 0,1), (4.4)

it follows by (4.3) and (4.1) that both Hankel matrices (4.1) can be simultaneously factorized in the form

H (0)
L,N−L(s) = U L,M D M W N−L,M(s)∗ (s = 0,1).

Since U L,M has orthonormal columns and since D M is invertible, the generalized eigenvalue problem of the matrix pencil

zW N−L,M(0)∗ − W N−L,M(1)∗ (z ∈C) (4.5)

has the same non-zero eigenvalues z j ∈ D as the matrix pencil (4.5) except for additional zero eigenvalues. Finally we 
determine the nodes z j ∈D ( j = 1, . . . , M) as eigenvalues of the M × M matrix

F SVD
M := (

W N−L,M(0)∗
)†

W N−L,M(1)∗. (4.6)

Note that one can pass on the computation of the Moore–Penrose pseudoinverse in (4.6). For this, we multiply the matrix 
pencil (4.5) with W N−L,M(0) from the right. Then we obtain the positive definite matrix

AM := W N−L,M(0)∗W N−L,M(0)

and the matrix B M := W N−L,M(1)∗W N−L,M(0). Now we solve the generalized eigenvalue problem of the square matrix 
pencil

z AM − BM (z ∈ C) (4.7)

with the QZ-Algorithm (see [10, pp. 384–385]). Then we maintain the factorizations

AM = Q M S M Z∗
M , BM = Q M T M Z∗

M ,

with unitary matrices Q M and Z M and with upper triangular matrices S M and T M . Then the eigenvalues z j of the matrix 
pencil read as follows z j = T j, j/S j, j ( j = 1, . . . , M), where S j, j and T j, j are the diagonal entries of S M and T M , respectively. 
The computation of the matrices AM and B M costs about 4(N − L)M2 operations. The QZ-Algorithm requires only 30M3

operations for the computation of the eigenvalues z j (see [10, p. 385]).
Analogously we can handle the general case of noisy data hk = h(k) + ek (k = 0, . . . , N − 1) with small error terms ek . 

For the Hankel matrix (3.2) with the singular values σ1 ≥ . . . ≥ σmin{L,N−L+1} ≥ 0, we can calculate the numerical rank M
of (3.2) by the property σM ≥ εσ1 and σM+1 < εσ1 with convenient chosen tolerance ε. Using the IEEE double precision 
arithmetic, one can choose ε = 10−10 for given exact data. In the case of noisy data, one has to choose a larger tolerance ε.

For the Hankel matrix (3.2) with noisy entries, we use the partial SVD

U L,M D M W ∗
N−L+1,M

as low-rank approximation, where the spectral norm of the error reads as follows∥∥H L,N−L+1 − U L,M D M W ∗
N−L+1,M

∥∥
2 = σM+1.

As above, we define the matrices (4.4) and (4.6). Note that

U L,M D M W N−L,M(s)∗ (s = 0,1)

is a low-rank approximation of H L,N−L(s) with the property∥∥H L,N−L(s) − U L,M D M W N−L,M(s)∗
∥∥

2 ≤ σM+1.

Thus the SVD-based ESPRIT algorithm reads as follows:

Algorithm 4.2 (ESPRIT via complete/partial SVD).
Input: L, M, N ∈ N (N � 1, max{3, M} ≤ L ≤ N − M , M is the order of (3.1)), hk = h(k) + ek ∈ C (k = 0, . . . , N − 1) noisy 
sampled values of (3.1), 0 < ε � 1 tolerance.

1. Compute the complete/partial SVD of the rectangular Hankel matrix (3.2). Determine the numerical rank M of (3.2)
such that σM ≥ εσ1 and σM+1 < εσ1 and form the matrices (4.4).

2. Calculate the matrix products

W N−L,M(0)∗W N−L,M(0), W N−L,M(1)∗W N−L,M(0)

and compute all eigenvalues z j ∈ D ( j = 1, . . . , M) of the square matrix pencil (4.7) by the QZ-Algorithm. Set f j := log z j
( j = 1, . . . , M), where log denotes the principal value of the complex logarithm.
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3. Compute the coefficients c j ∈C ( j = 1, . . . , M) as least squares solution of the overdetermined linear Vandermonde-type
system (3.4).

Output: M ∈ N, f j ∈ (−∞, 0] + i[−π, π), c j ∈ C ( j = 1, . . . , M).

Remark 4.3. The high computational cost for the SVD of (3.2) is an essential drawback of Algorithm 4.2 based on complete 
SVD. In the case L ≈ N

2 , Algorithm 4.2 with complete SVD requires 21
8 N3 + M2(21N + 91

3 M) operations. The computational 
cost of Algorithm 4.2 is mainly determined by the cost of the SVD in step 1 (cf. Remark 2.1), since step 2 requires 20N M2 +
30M3 operations and since the least squares problem in step 3 can be solved by M2(N + M

3 ) operations (see [14, p. 386]). �
Remark 4.4. Let K := N − L + 1 ∈ {M, . . . , N − M + 1} be a convenient upper bound of the unknown order M of the 
exponential sum (3.1). In step 1 of Algorithm 4.2, a reduced SVD of the L-trajectory matrix (3.2) can be efficiently realized 
by a spectral decomposition of the Hermitian matrix H∗

L,K H L,K , which can be computed by fast Algorithm 2.4 with about 
9K N log2 N operations. Compared with (4.3), we obtain the spectral decomposition

H∗
L,K H L,K = W K D2

K W ∗
K . (4.8)

By Remark 2.1, the unitary matrix W K and the diagonal matrix W K can be computed by 9K 3 operations. Consequently, 
step 1 of Algorithm 4.2 based on reduced SVD requires about 9K N log2 N + 9K 3 operations. Then step 2 costs about 
40K M2 + 30M3 operations and step 3 requires M2(N + 1

3 M) operations. Thus the computational cost of this ESPRIT Al-

gorithm 4.2 amounts 9K N log2 N + 9K 3 + (40K + N)M2 + 91
3 M3 operations. �

5. ESPRIT via partial LBD

If noisy sampled data hk = h(k) + ek ∈ C (k = 0, . . . , N − 1) are given, then the rectangular Hankel matrix H L,N−L+1 has 
full column rank in general, if L ≥ (N + 1)/2. Instead of SVD we apply partial LBD of (3.2) with S bidiagonalization steps, 
where M ≤ S ≤ N − L + 1. Then we obtain by Algorithm 2.2 that

H L,N−L+1 Q N−L+1,S = P L,S B S ,

H∗
L,N−L+1 P L,S = Q N−L+1,S BT

S + rS eT
S , (5.1)

where B S is an upper bidiagonal S × S matrix, eS := (0, . . . , 0, 1)T ∈ C
S and rS ∈ C

N−L+1 is the Sth residual vector. The 
matrices P L,S and Q N−L+1,S have orthonormal columns. Typically, the number S of bidiagonalization steps is much smaller 
than N . Then we use the matrix P L,S B S Q ∗

N−L+1,S as low-rank approximation of (3.2). Introducing the matrices

Q N−L,S(s) := Q N−L+1,S(1 + s : N − L + s,1 : M) (s = 0,1),

it follows that both Hankel matrices (4.1) have low-rank approximations of following form

P L,S B S Q N−L,S(s)∗ (s = 0,1).

Since P L,S has orthonormal columns and since B S is invertible, the generalized eigenvalue problem of the matrix pencil

z Q N−L,S(0)∗ − Q N−L,S(1)∗ (5.2)

has approximately the non-zero eigenvalues z j ∈ D ( j = 1, . . . , M) as the matrix pencil (4.2) except for additional almost 
zero eigenvalues. Finally we determine the nodes z j ∈D ( j = 1, . . . , M) as non-zero eigenvalues of the S × S matrix

F LBD
S := (

Q N−L,S(0)∗
)†

Q N−L,S(1)∗. (5.3)

Analogously to Section 4, one can pass on the computation of the Moore–Penrose pseudoinverse in (5.3). For this, 
we multiply the matrix pencil (5.2) with Q N−L,S (0) from right. Then we obtain the positive definite matrix AS :=
Q N−L,S(0)∗ Q N−L,S (0) and the matrix B S := Q N−L,S(1)∗ Q N−L,S(0). Now we solve the generalized eigenvalue problem 
of the squared matrix pencil

z AS − B S (z ∈ C)

with the QZ-Algorithm (see [10, pp. 384–385]). Then we maintain the factorizations

AS = Q S S S Z∗
S , B S = Q S T S Z∗

S ,

with unitary matrices Q S and Z S and with upper triangular matrices S S and T S . Then the eigenvalues z j ∈ D ( j =
1, . . . , M) of the matrix pencil read as follows z j = Tk,k/Sk,k for convenient k ∈ {1, . . . , S}, where Sk,k and Tk,k denote the 
diagonal entries of S S and T S , respectively. The computation of the matrices AS and B S costs about 4(N − L)S2 operations. 
The QZ-Algorithm requires only 30S3 operations for the computation of the eigenvalues z j [10, pp. 385].
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Algorithm 5.1 (ESPRIT via partial LBD).
Input: L, M, N ∈ N (N � 1, max{3, M} ≤ L ≤ N − M , M is the order of (3.1)), hk = h(k) + ek ∈ C (k = 0, . . . , N − 1) noisy 
sampled values of (3.1), S ∈ {M, . . . , N − L + 1} number of bidiagonalization steps.

1. Compute S steps of the partial LBD of the Hankel matrix (3.2), where all Hankel matrix–vector products are calculated 
by Algorithm 2.4.

2. Calculate Q N−L,S(0)∗ Q N−L,S(0) and Q N−L,S(1)∗ Q N−L,S (0) and compute all eigenvalues z j ∈ D ( j = 1, . . . , M) of the 
square matrix pencil (4.7) by the QZ-Algorithm. Set f j := log z j ( j = 1, . . . , M).

3. Compute the coefficients c j ∈C ( j = 1, . . . , M) as least squares solution of the overdetermined linear Vandermonde-type
system (3.4).

Output: M ∈ N, f j ∈ (−∞, 0] + i[−π, π), c j ∈ C ( j = 1, . . . , M).

Remark 5.2. Let S ∈ {M, . . . , N − L + 1} be a convenient upper bound for M . Then we apply Algorithm 5.1 with S bidiago-
nalization steps. The advantage of Algorithm 5.1 over Algorithm 4.2 is the lower cost with about 18N S log2 N + S2(20N +
30S) + M2(N + 1

3 M) operations, if L ≈ N
2 . The computational cost of Algorithm 5.1 is mainly determined by the cost of step 1, 

since step 2 requires 20N S2 + 30S3 operations and since the least squares problem in step 3 can be solved by M2(N + 1
3 M)

operations (see [14, p. 386]). Thus Algorithm 5.1 is very convenient for the analysis of times series {h0, h1, . . . , hN−1} with 
large length N . Numerical examples in Section 6 demonstrate the performance of Algorithm 5.1. �
6. Numerical examples

Now we illustrate the behavior of the suggested algorithms. Using IEEE standard floating point arithmetic with double 
precision, we have implemented our algorithms in Matlab. We compare Algorithm 4.2 and Algorithm 5.1 within different 
implementations. We use in Algorithm 4.2 the Matlab command “svd” in order to compute the SVD and the command 
“svds” in order to compute a partial SVD. Furthermore we use the partial LBD suggested in [1] and apply the corresponding 
Matlab program IRLBA (see http :/ /www.netlib .org /numeralgo /na26 .tgz) in combination with fast Hankel matrix–vector mul-
tiplications of Algorithm 2.4. Further we remark that we also used the Matlab program HANKELSVD written by K. Browne, 
see [5]. This algorithm uses the Lanczos bidiagonalization method with reorthogonalization and applies fast Hankel matrix–
vector multiplications in each iteration step in order to commute the splitting (5.1). The algorithm performs very well, but 
is slightly more sensitive with respect to noise. Therefore we will not report numerical results of the method [5].

Example 6.1. We consider the exponential sum of order M = 5

h(x) := 34 + 300exπ i/4 + 300e−xπ i/4 + exπ i/2 + e−xπ i/2

= 34 + 600 cos
xπ

4
+ 2 cos

xπ

2
(x ≥ 0)

and form the corresponding time series

hk := h(k) + ek = 34 + 600 cos
kπ

4
+ 2 cos

kπ

2
+ ek (k = 0, . . . , N − 1), (6.1)

where ek are random variables uniformly distributed in [−3, 3]. A similar time series was suggested in [6]. Note that 
in addition to the large differences in the magnitudes at distinct frequencies, also the noise is higher than the ampli-
tude related to the frequency π/2. We choose N = 1024 and form the L-trajectory matrix (3.2) for different window 
lengths L = 1004(−1)524. Then the number of columns of (3.2) runs from 21 to 501. We investigate the behavior of Al-
gorithms 4.2 and 5.1 for different window lengths. For each L = 1004(−1)524, we analyze 10 times series (6.1) of length 
1024 with different error terms. Using the L-trajectory matrix (3.2), we determine the exponents fk(L) and the coefficients 
ck(L) (k = 1, . . . ,5) by Algorithms 4.2 and 5.1, respectively. Then we measure the maximum frequency errors max | f1(L)|, 
max | f2(L) − iπ

4 |, max | f3 + iπ
4 |, max | f4(L) − iπ

2 |, and max | f5(L) + iπ
2 | as well as the maximum coefficient error

max
{∣∣c1(L) − 34

∣∣, ∣∣c2(L) − 300
∣∣, ∣∣c3(L) − 300

∣∣, ∣∣c4(L) − 1
∣∣, ∣∣c5(L) − 1

∣∣},
where the maxima are formed over 10 results. In Figs. 2–5 we show the maximum errors of the frequencies 0, π/2, π/4 as 
well as the maximum coefficient errors. The maximum error of the frequency −π/2 resp. −π/4 behaves as the maximum 
error of π/2 resp. π/4 and is omitted. In Fig. 2 we show the maximum errors of Algorithm 4.2 with complete SVD com-
puted by the Matlab program “svd”. Fig. 3 presents the maximum errors of Algorithm 4.2 with partial SVD computed by the 
Matlab program “svds”, which computes only the 5 largest singular values as well as the related partial SVD. Fig. 4 presents 
the maximum errors based on Remark 4.4 with partial SVD computed from (4.8). Fig. 5 shows the maximum errors of fast
Algorithm 5.1 with partial LBD computed by the Matlab program IRLBA. �

http://www.netlib.org/numeralgo/na26.tgz
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Fig. 2. Maximum errors of Algorithm 4.2 with complete SVD for Example 6.1.

Fig. 3. Maximum errors of Algorithm 4.2 with partial SVD for Example 6.1.

Fig. 4. Maximum errors of Algorithm 4.2 with partial SVD based in Remark 4.4 for Example 6.1.

Example 6.2. We consider a bivariate exponential sum of order M that is a linear combination

h(x) :=
M∑

j=1

c je
i f j ·x (

x := (x1, x2)
T ∈R

2) (6.2)

of M complex exponentials with distinct complex coefficients c j 
= 0 and distinct frequency vectors f j := ( f j,1, f j,2)
T ∈

[−π, π)2. In [24], a sparse Prony-like method was suggested. The main idea is based on a stepwise recovery of the frequen-
cies. Here we use a sampling based on a special lattices. To this end, we consider the two time series {h(1)

0 , h(1)
1 , . . . , h(1)

N−1}
and {h(2)

0 , h(2)
1 , . . . , h(2)

N−1} with

h(1)

k := h

(
k

2
,

k

2

)
=

M∑
c je

f j,1+ f j,2
2 ki,
j=1
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Fig. 5. Maximum errors of Algorithm 5.1 with partial LBD (by a program of [1]) for Example 6.1.

Table 1
Parameters of the bivariate exponential sum (6.2) of order 4.

j f j,1 f j,2 c j

1 1.1 1.0 1.0
2 1.3 −1.2 5.0
3 −1.3 1.2 4.0
4 −1.1 −1.2 2.0

Table 2
Errors and CPU times of Algorithms 4.2 and 5.1 for Example 6.2.

N L Algorithm Error Time

50 25 4.2 3.907e−02 1.000e−02
50 25 5.1 1.279e−02 2.00e−02

100 50 4.2 3.991e−03 2.00e−02
100 50 5.1 6.136e−03 3.00e−02

500 250 4.2 2.403e−04 3.10e−02
500 250 5.1 1.136e−03 3.00e−02

1000 500 4.2 2.387e−04 9.30e−01
1000 500 5.1 3.431e−04 1.30e−01

5000 2500 4.2 1.872e−05 1.32e+02
5000 2500 5.1 1.570e−05 9.00e−01

10 000 5000 4.2 4.164e−06 9.20e+02
10 000 5000 5.1 1.533e−05 7.00e−01

50 000 25 000 4.2 – –
50 000 25 000 5.1 4.014e−07 1.046e+01

100 000 50 000 4.2 – –
100 000 50 000 5.1 2.583e−07 4.288e+01

h(2)

k := h

(
k

3
,

2k

3

)
=

M∑
j=1

c je
f j,1+2 f j,2

3 ki.

Since f j,1+ f j,2
2 ∈ [−π, π) and f j,1+2 f j,2

3 ∈ [−π, π), we recover these linear combinations of the frequencies by the univariate 
ESPRIT method. Now we use the fact that the coefficients c j are distinct such that we can assign the different frequencies. 
We can pass on the requirement of distinct coefficients c j 
= 0 by sampling on additional lines, such as h(α + k/2, k/2) with 
α ∈ R. We consider the bivariate exponential sum (6.2) of order M = 4 with the following parameters given in Table 1.

If we work with exact sampling data of (6.2), then our algorithms recover all parameters from a few sampling values, 
e.g. for N = 10.

Now we study noisy sampling data of (6.2). Therefore we add uniformly distributed noise in the range [−1, 1] to each 
value of the time sequences {h(1)

0 , h(1)
1 , . . . , h(1)

N−1} and {h(2)
0 , h(2)

1 , . . . , h(2)
N−1}. We show the results in Table 2, where error 

means the maximum absolute error of the frequency vectors. Time means the elapsed CPU time in seconds, measured 
with the Matlab command “cputime”. We see the main advantage of Algorithm 5.1, namely lower cost by almost the same 
accuracy as Algorithm 4.2 with complete SVD. �
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Table 3
Errors of Algorithm 5.1 for exponential sums of large order M in Example 6.3.

M N emax( f )max
min emax(c)max

min e2( f ) e2(c)

25 29 5.280e−134.762e−12
7.256e−16 3.055e−083.016e−07

4.848e−13 1.743e−13 1.150e−08

26 29 3.180e−112.720e−10
3.693e−15 1.092e−067.614e−06

2.306e−12 8.031e−12 2.857e−07

27 29 3.035e−033.035e−02
3.603e−12 5.017e−025.017e−01

2.094e−09 6.821e−04 1.257e−02

28 210 8.107e−034.565e−02
1.007e−12 1.673e−018.396e−01

6.733e−09 2.711e−03 1.045e−01

28 211 1.109e−109.561e−10
8.251e−14 6.820e−066.056e−05

9.570e−10 1.545e−11 1.021e−06

29 211 7.950e−033.105e−02
3.942e−10 2.667e−019.227e−01

1.008e−05 2.208e−03 1.624e−01

29 212 4.412e−092.965e−08
2.109e−13 8.076e−046.930e−03

2.014e−08 3.405e−10 8.571e−05

210 212 8.496e−031.775e−02
4.823e−09 5.372e−019.679e−01

1.106e−02 2.219e−03 2.918e−01

210 213 2.305e−081.986e−07
4.308e−12 7.733e−027.202e−01

6.172e−07 1.400e−09 6.734e−03

211 213 4.791e−038.104e−03
5.396e−08 6.324e−019.282e−01

3.627e−03 1.026e−03 2.927e−01

211 214 1.877e−041.876e−03
2.374e−10 1.193e−017.945e−01

6.997e−05 9.990e−06 7.661e−03

Example 6.3. Now we consider exponential sums (3.1) of large order M with uniformly distributed exponents f j ∈ i[−π, π)

and uniformly distributed coefficients c j ∈ [0, 1) + i[0, 1). Assume that exact sampling data hk = h(k) ∈ C (k = 0, . . . , N − 1)

are given. The relative maximum error and the relative 2-error of the complex exponents are defined by

emax( f ) := max j=1,...,M | f j − f̃ j|
max j=1,...,M | f j| , e2( f )2 :=

∑M
j=1 | f j − f̃ j|2∑M

j=1 | f j|2
,

where f := ( f j)
M
j=1 and where f̃ j are the exponents computed by Algorithm 5.1. Analogously, the relative errors of the 

coefficients are explained by

emax(c) := max j=1,...,M |c j − c̃ j|
max j=1,...,M |c j| , e2(c)2 :=

∑M
j=1 |c j − c̃ j|2∑M

j=1 |c j|2
,

where c := (c j)
M
j=1 and where c̃ j are the coefficients computed by Algorithm 5.1. Table 3 contains the average results for 

10 different tests. In addition we show after the values emax( f ) and emax(c) as subscript the smallest and as superscript 
the minimum and the maximum of the 10 runs, respectively. We remark that we solve the Vandermonde-type system (3.4)
in Algorithm 5.1 by the “Backslash” command of Matlab in order to compute the errors. Clearly, a faster iterative method 
based on the nonequispaced fast Fourier transform [18] can be used too.
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