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1 Introduction

Let h be a finite sum of nonincreasing exponentials

h(x) =
M∑
j=1

cj efjx (x ∈ R) (1.1)

with complex coefficients cj 6= 0 and complex exponents fj ∈ F, where the rectangle F
is defined by

F := {f ∈ C; −α ≤ Re f ≤ 0, −π < Im f ≤ π}

with α ≥ 0. Then all values zj := efj belong to the circular ring D := {z ∈ C; e−α ≤
|z| ≤ 1}. Assume that all values zj (j = 1, . . . ,M) are pairwise different. In the case
Re fj < 0 (j = 1, . . . ,M), the function h is a sum of decaying exponentials.
We consider the following nonlinear approximation problem: For given sampled data
h(k) (k = 0, . . . , 2N) with N ≥ M , determine the positive integer M , the exponents
fj ∈ F and the coefficients cj ∈ C \ {0} (j = 1, . . . ,M) such that

h(k) =
M∑
j=1

cj efjk (k = 0, . . . , 2N) . (1.2)

By our assumption N ≥M , the overmodeling factor (2N + 1)/M is larger than 2. Here
2N+1 is the number of sampled data and M is the number of exponential terms. Further
let L be an a priori known upper bound of M . The above approximation problem is a
nonlinear inverse problem which can be simplified by original ideas of G.R. de Prony (see
Section 2). But the classical Prony method is notorious for its sensitivity to noise such
that numerous modifications were attempted to improve its numerical behavior. The
main drawback of the Prony method is the property of the exact rectangular Hankel
matrix H =

(
h(k + l)

)2N−L,L
k,l=0

that 0 is a singular value (see Lemma 2.1 or step 1 of
Algorithm 2.3). But in practice, only noisy data are given such that this property is
not fulfilled. This paper is an extension of recent results [11] on parameter estimation of
exponential sums. Our results are based on the paper [2] of G. Beylkin and L. Monzón.
The nonlinear approximation problem of finding the exponents and coefficients can be
split into two problems. To obtain the exponents, we solve a singular value problem
of the rectangular Hankel matrix H and find the exponents via roots of a convenient
polynomial of degree L. To obtain the coefficients, we use the computed exponents and
solve an overdetermined linear Vandermonde–type system. In contrast to [2], we present
an approximate Prony method (APM) by means of matrix perturbation theory such that
we can describe the properties and the numerical behavior of the APM in detail. The
first part of APM recovers all exponents. The second part computes all coefficients by
an overdetermined linear Vandermonde–type system in a stable way.
In applications, perturbed values h̃k ∈ R of the exact sampled data h(k) are only known
with the property

h̃k = h(k) + ek , |ek| ≤ ε1 (k = 0, . . . , 2N),
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where the error terms ek are bounded by certain accuracy ε1 > 0. Also if the sampled
values h(k) are accurately determined, then we still have a small roundoff error due to the
use of floating point arithmetic. Furthermore we assume that |cj | � ε1 (j = 1, . . . ,M).
The special case |zj | = 1 (j = 1, . . . ,M) was recently analyzed by the authors [11].

This paper is organized as follows. In Section 2, we sketch the classical Prony method.
Then in Section 3, we present four algorithms of APM. Using matrix perturbation theory,
we discuss the properties of small singular values and related right/left singular vectors
of a rectangular Hankel matrix formed by given noisy data. We emphasize that the
Algorithm 2.3 is only of theoretical interest. Using Lemma 2.1 and matrix perturbation
theory, we can show the existence of small singular values of the perturbed rectangular
Hankel matrix H̃ =

(
h̃k+l

)2N−L,L
k,l=0

in Section 3. Finally, some numerical examples are
presented in Section 4.

2 Classical Prony method

The classical Prony method works with exact sampled data. Following an idea of G.
R. de Prony from 1795 (see e.g. [8, pp. 303–310]), we regard the sampled data h(k)
(k = 0, . . . , 2N) as solution of a homogeneous linear difference equation with constant
coefficients. If

h(k) =
M∑
j=1

cj
(
efj
)k =

M∑
j=1

cj z
k
j

is a solution of certain homogeneous linear difference equation with constant coefficients,
then zj (j = 1, . . . , M) must be zeros of the corresponding characteristic polynomial.
Thus

P0(z) =
M∏
j=1

(z − zj) =
M∑
l=0

pl z
l (z ∈ C) (2.1)

with pM = 1 is the monic characteristic polynomial of minimal degree. With these
complex coefficients pk (k = 0, . . . ,M) and complex unknowns xl , we compose the
homogeneous linear difference equation

M∑
l=0

xl+m pl = 0 (m = 0, 1, . . .), (2.2)

which obviously has P0 as characteristic polynomial. Consequently, (2.2) has the complex
general solution

xk =
M∑
j=1

cj z
k
j (k = 0, 1, . . .)

with arbitrary coefficients cj ∈ C (j = 1, . . . ,M). Then we determine cj (j = 1, . . . ,M)
in such a way that xk ≈ h(k) (k = 0, . . . , 2N). To this end, we compute the least squares
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solution of the overdetermined linear Vandermonde–type system

M∑
j=1

cj z
k
j = h(k) (k = 0, . . . , 2N).

Let L ∈ N be a convenient upper bound of M , i.e., M ≤ L ≤ N . In applications, such
an upper bound L is mostly known a priori. If this is not the case, then one can choose
L = N .
The idea of G.R. de Prony is based on the separation of the unknown exponents fj from
the unknown coefficients cj by means of a homogeneous linear difference equation (2.2).
With the 2N + 1 sampled data h(k) ∈ C we form the rectangular Hankel matrix

H :=
(
h(l +m)

)2N−L,L
l,m=0

∈ C(2N−L+1)×(L+1) . (2.3)

Using the coefficients pk (k = 0, . . . ,M) of (2.1), we construct the vector p := (pk)Lk=0,
where pM+1 = . . . = pL := 0. By S :=

(
δk−l−1

)L
k,l=0

we denote the forward shift matrix,
where δk is the Kronecker symbol.

Lemma 2.1 Let L, M, N ∈ N with M ≤ L ≤ N be given. Furthermore let h(k) ∈ C be
given by (1.2) with cj ∈ C \ {0} and pairwise distinct zj ∈ D (j = 1, . . . ,M).
Then the rectangular Hankel matrix (2.3) has the singular value 0, where

ker H = span {p,Sp, . . . ,SL−Mp}

and
dim (ker H) = L−M + 1 .

Proof. 1. From
M∑
l=0

h(l +m) pl = 0 (m = 0, . . . , 2N −M)

it follows that
H
(
Sjp

)
= o (j = 0, . . . , L−M) ,

where o denotes the zero vector. By pM = 1 we see immediately that the vectors Sjp
(j = 0, . . . , L−M) are linearly independent and located in the kernel ker H.
2. Now we prove that ker H is contained in the span of the vectors Sjp (j = 0, . . . , L−M).
Let u = (ul)Ll=0 ∈ CL+1 be an arbitrary right singular vector of H related to the singular
value 0 and let P be the polynomial

P (z) :=
L∑
l=0

ul z
l (z ∈ C) .
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Using (1.2), we receive

0 =
L∑
l=0

h(l +m)ul =
L∑
l=0

ul

( M∑
j=1

cj z
l+m
j

)

=
M∑
j=1

cj z
m
j P (zj) (m = 0, . . . , 2N − L)

and hence (
zmj
)2N−M,M

m=0,j=1

(
cj P (zj)

)M
j=1

= o .

Since zj ∈ D are pairwise different by assumption,
(
zmj
)M−1,M

m=0,j=1
is a regular Vandermonde

matrix such that by cj 6= 0 we obtain P (zj) = 0 (j = 1, . . . ,M). Thus it follows that
P (z) = P0(z)P1(z) with a certain polynomial

P1(z) =
L−M∑
k=0

βk z
k (βk ∈ C) .

But this means for the coefficients of P , P0, and P1 that

u = β0 p + β1 Sp + . . .+ βL−M SL−Mp .

Hence it follows that the vectors Sjp (j = 0, . . . , L−M) compose a basis of ker H and
we obtain dim(ker H) = L−M + 1. This completes the proof.

The Prony method is based on following

Lemma 2.2 Let L, M, N ∈ N with M ≤ L ≤ N be given. Let (1.2) be exact sampled
data with cj ∈ C \ {0} and pairwise distinct zj ∈ D.
Then following assertions are equivalent:
(i) The polynomial

P (z) =
L∑
k=0

uk z
k (z ∈ C) (2.4)

with complex coefficients uk (k = 0, . . . , L) has M different zeros zj (j = 1, . . . ,M).
(ii) 0 is a singular value of the complex rectangular Hankel matrix (2.3) with a right
singular vector u := (ul)Ll=0 ∈ CL+1.

Proof. 1. Assume that P (zj) = 0 (j = 1, . . . ,M). We compute the sums

L∑
l=0

h(l +m)ul (m = 0, . . . , 2N − L)

by using (1.2) and obtain for m = 0, . . . , 2N − L
L∑
l=0

h(l +m)ul =
L∑
l=0

ul

( M∑
j=1

cj z
l+m
j

)
=

M∑
j=1

cj z
m
j P (zj) = 0 .
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Therefore we get Hu = o.
2. Assume that u is a right singular vector of H related to the singular value 0. Following
the same lines as in step 2 of the proof of Lemma 2.1, we can see that P (zj) = 0
(j = 1, . . . ,M).

Now we formulate Lemma 2.2 as

Algorithm 2.3 (Classical Prony Method)

Input: L, N ∈ N (N � 1, 3 ≤ L ≤ N , L is upper bound of the number of exponentials),
h(k) ∈ C (k = 0, . . . , 2N), 0 < ε� 1.

1. Compute a right singular vector u = (ul)Ll=0 corresponding to the singular value 0 of
the exact rectangular Hankel matrix (2.3).
2. Form the corresponding polynomial (2.4) and evaluate all zeros zj ∈ D (j = 1, . . . , M̃).
Note that L ≥ M̃ .
3. Compute cj ∈ C (j = 1, . . . , M̃) as least squares solution of the overdetermined linear
Vandermonde–type system

M̃∑
j=1

cj z
k
j = h(k) (k = 0, . . . , 2N). (2.5)

4. Cancel all that pairs (zl, cl) (l ∈ {1, . . . , M̃}) with |cl| ≤ ε and denote the remaining
set by {(zj , cj) : j = 1, . . . ,M} with M ≤ M̃ . Form fj := log zj (j = 1, . . . ,M), where
log is the principal value of the complex logarithm.

Output: M ∈ N, cj ∈ C, fj ∈ F (j = 1, . . . ,M).

We emphasize that the Algorithm 2.3 is only of theoretical interest. Now we can better
explain the new approximate Prony method in Section 3.

Remark 2.4 We can determine all roots of the polynomial (2.4) with uL = 1 by com-
puting the eigenvalues of the companion matrix

U :=


0 0 . . . 0 −u0

1 0 . . . 0 −u1

0 1 . . . 0 −u2
...

...
...

...
0 0 . . . 1 −uL−1

 ∈ CL×L.

This follows immediately from the fact P (z) = det (z I−U).
Note that we consider a rectangular Hankel matrix (2.3) with only L columns in order
to determine the zeros of a polynomial (2.4) with relatively low degree L (see step 2 of
Algorithm 2.3).

Remark 2.5 Let N > M . If one knows M or a good upper bound of M , then one can
use the following least squares Prony method (see e.g. [4]). Since the leading coefficient
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pM of the characteristic polynomial P0 is equal to 1, (2.2) gives rise to the overdetermined
linear system

M−1∑
l=0

h(l +m) pl = −h(M +m) pM = −h(M +m) (m = 0, . . . , 2N −M) , (2.6)

which can be solved by a least squares method. See also the relation to the classic
Yule–Walker system [3].

3 Approximate Prony method

In contrast to [2], we present a new approximate Prony method by means of perturbation
theory for the singular value decomposition of a rectangular Hankel matrix. In praxis,
only perturbed values h̃k := h(k) + ek ∈ C (k = 0, . . . , 2N) of the exact sampled data
h(k) of an exponential sum (1.1) are known. Here we assume that |ek| ≤ ε1 with certain
accuracy ε1 > 0 such that the error Hankel matrix

E :=
(
ek+l

)2N−L,L
k,l=0

∈ C(2N−L+1)×(L+1)

has a small spectral norm by

‖E‖2 ≤
√
‖E‖1 ‖E‖∞ ≤

√
(L+ 1) (2N − L+ 1) ε1 ≤ (N + 1) ε1 . (3.1)

Then the perturbed rectangular Hankel matrix can be represented by

H̃ :=
(
h̃k+l

)2N−L,L
k,l=0

= H + E ∈ C(2N−L+1)×(L+1) . (3.2)

By the singular value decomposition of the complex rectangular matrix H̃ (see [6, pp.
414–415]), there exist two unitary matrices Ṽ ∈ C(2N−L+1)×(2N−L+1), Ũ ∈ C(L+1)×(L+1)

and a rectangular diagonal matrix D̃ =
(
σ̃k δj−k

)2N−L,L
j,k=0

with σ̃0 ≥ σ̃1 ≥ . . . ≥ σ̃L ≥ 0
such that

H̃ = Ṽ D̃ ŨH . (3.3)

By (3.3), the orthonormal columns ṽk ∈ C2N−L+1 (k = 0, . . . , 2N − L) of Ṽ and ũk ∈
CL+1 (k = 0, . . . , L) of Ũ fulfill the conditions

H̃ ũk = σ̃k ṽk, H̃H ṽk = σ̃k ũk (k = 0, . . . , L), (3.4)

i.e., ũk is a right singular vector and ṽk is a left singular vector of H̃ related to the
singular value σ̃k ≥ 0 (see [6, p. 415]).
Note that σ ≥ 0 is a singular value of the exact rectangular Hankel matrix H if and
only if σ2 is an eigenvalue of the Hermitian and positive semidefinite matrix HH H (see
[6, p. 414]). All eigenvalues of HH H are nonnegative. Let σ0 ≥ σ1 ≥ . . . ≥ σL ≥ 0 be
the ordered singular values of the exact Hankel matrix H. Note that ker H = ker HH H,
since obviously ker H ⊆ ker HH H and since from u ∈ ker HH H it follows that

0 = (HH Hu, u) = ‖Hu‖2 ,
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i.e., u ∈ ker H. Then by Lemma 2.1, we know that

dim (ker HH H) = L−M + 1,

and hence σM−1 > 0 and σk = 0 (k = M, . . . , L). Then the basic perturbation bound
for the singular values reads as follows (see [6, p. 419])

|σ̃k − σk| ≤ ‖E‖2 (k = 0, . . . , L) .

Thus L−M + 1 singular values of H̃ are contained in [0, ‖E‖2], if the positive singular
value σM−1 of H is larger than 2 ‖E‖2. In the following we use this property and
evaluate a small singular value σ̃ (0 ≤ σ̃ ≤ ‖E‖2) and a corresponding singular vector of
the matrix H̃.

The classical Prony method is known to perform poorly when noisy data are given.
Therefore numerous modifications were attempted to improve the numerical behavior
of the classical Prony method. Recently, a very interesting approach is described by G.
Beylkin and L. Monzón [2]. Here we generalize a result of [2] to a perturbed rectangular
Hankel matrix:

Theorem 3.1 (cf. [2, 11]) Let σ̃ ∈ (0, ε2] (0 < ε2 � 1) be a small singular value of the
perturbed rectangular Hankel matrix (3.2) with a right singular vector ũ =

(
ũk
)L
k=0
∈

CL+1 and a left singular vector ṽ =
(
ṽk
)2N−L
k=0

∈ C2N−L+1. Assume that the polynomial

P̃ (z) =
L∑
k=0

ũk z
k (z ∈ C) (3.5)

has L pairwise distinct zeros z̃n ∈ C (n = 1, . . . , L). Further let K > 2N .
Then there exists a unique vector (an)Ln=1 ∈ CL such that

h̃k =
L∑
n=1

an z̃
k
n + σ̃ dk (k = 0, . . . , 2N) ,

where the vector
(
dk
)K−1

k=0
∈ CK is defined by

dk :=
1
K

K−1∑
l=0

d̂l e2πikl/K (k = 0, . . . , K − 1)

with

d̂l :=

{
v̂l/¯̂ul if ûl 6= 0,

1 if ûl = 0,

where

ûl :=
K−1∑
k=0

¯̃uk e−2πikl/K (l = 0, . . . , K − 1) ,

v̂l :=
K−1∑
k=0

ṽk e−2πikl/K (l = 0, . . . , K − 1)
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with the complex conjugate ¯̃uk of ũk. The vector (an)Ln=1 can be computed as solution of
the linear Vandermonde system

L∑
n=1

an z̃
k
n = h̃k − σ̃ dk (k = 0, . . . , L− 1).

Furthermore, if
|v̂l| ≤ γ |ûl| (l = 0, . . . ,K − 1)

for certain constant γ > 0, then

K−1∑
k=0

|dk|2 ≤ γ2 , |h(k)−
L∑
n=1

an z̃
k
n| ≤ ε1 + γ ε2 (k = 0, . . . , 2N) .

For shortness, the proof is omitted here (see [11]).

Remark 3.2 This Theorem 3.1 yields a different representation for each K > 2N even
though z̃n and σ̃ remain the same. If K is chosen as power of 2, then the entries ûl, v̂l
and dk (l, k = 0, . . . ,K − 1) can be computed by fast Fourier transforms. Note that the

least squares solution
(
b̃n
)L
n=1

of the overdetermined linear system

L∑
n=1

b̃n z̃
k
n = h̃k (k = 0, . . . , 2N) (3.6)

has an error with Euclidean norm less than γ ε2, since

2N∑
k=0

|h̃k −
L∑
n=1

b̃n z̃
k
n|2 ≤

2N∑
k=0

|h̃k −
L∑
n=1

an z̃
k
n|2

=
2N∑
k=0

|σ̃ dk|2 ≤ σ̃2
L−1∑
k=0

|dk|2 ≤ (γ ε2)2.

Thus a first algorithm of the APM reads as follows:

Algorithm 3.3 (APM 1)

Input: L, N ∈ N (3 ≤ L ≤ N , L is upper bound of the number of exponentials), h̃k ∈ C
(k = 0, . . . , 2N) , accuracies ε1, ε2 > 0.

1. Compute a small singular value σ̃ ∈ (0, ε2] and a corresponding singular vector

ũ =
(
ũl
)L
l=0
∈ CL+1 of the perturbed rectangular Hankel matrix (3.2).

2. Determine all zeros z̃n ∈ C (n = 1, . . . , L) of the corresponding polynomial (3.5).
Assume that all zeros of (3.5) are simple.
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3. Determine the least squares solution
(
b̃n
)L
n=1

∈ CL of the overdetermined linear
Vandermonde–type system

L∑
n=1

b̃n z̃
k
n = h̃k (k = 0, . . . , 2N) .

4. Denote by (zj , bj) (j = 1, . . . ,M) all the pairs (z̃k, b̃k) (k = 1, . . . , L) with the
properties w̃k ∈ D and |b̃k| ≥ ε1. Set fj = log zj ∈ F (j = 1, . . . ,M).

Output: M ∈ N, bj ∈ C, fj ∈ F (j = 1, . . . ,M).

Similarly as in [2], we are not interested in exact representations of the sampled values

h̃k =
L∑
n=1

b̃n z̃
k
n (k = 0, . . . , 2N)

but rather in approximate representations

∣∣h̃k − M∑
j=1

bj z
k
j

∣∣ ≤ ε (k = 0, . . . , 2N)

for very small accuracy ε > 0 and minimal number M of nontrivial summands.

Now we present a second APM by means of matrix perturbation theory. First we
introduce the rectangular Vandermonde–type matrix

V :=
(
zkj
)2N−L,M
k=0,j=1

∈ C(2N−L+1)×M . (3.7)

Note that in the special case |zj | = 1 (j = 1, . . . ,M), V is a nonequispaced Fourier matrix
(see [10]). We discuss the properties of V. Especially, we show that V is left–invertible
and estimate the spectral norm of its left inverse.

Theorem 3.4 Let L, M, N ∈ N with M ≤ L ≤ N be given. Let h be an exponential
sum (1.1) with cj ∈ C \ {0} and pairwise different zj = efj ∈ D (j = 1, . . . ,M). Assume
that the perturbed Hankel matrix (3.2) has σ̃ ∈ (0, ε2] (0 < ε2 ≤ ‖E‖2) as singular
value with the corresponding right/left singular vectors ũ = (ũn)Ln=0 ∈ CL+1 and ṽ =
(ṽn)2N−Ln=0 ∈ C2N−L+1, respectively. Let

P̃ (z) :=
L∑
k=0

ũk z
k (z ∈ C)

be the polynomial related to ũ.
Then the rectangular Vandermonde–type matrix (3.7) has a left inverse L = (VHV)−1VH.
Further the values P̃ (zj) (j = 1, . . . ,M) fulfill the estimate

M∑
j=1

|cj |2|P̃ (zj)|2 ≤ (ε2 + ‖E‖2)2 ‖L‖22 .
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Proof. 1. By assumption we have H̃ ũ = σ̃ ṽ, i.e.,

L∑
l=0

h̃l+m ũl = σ̃ ṽm (m = 0, . . . , 2N − L) .

Using (1.2) and h̃k = h(k) + ek (k = 0, . . . , 2N), we receive the 2N − L+ 1 equations

M∑
j=1

cj P̃ (zj) zkj = σ̃ ṽk −
L∑
l=0

el+k ũl (k = 0, . . . , 2N − L). (3.8)

2. Using the matrix–vector notation of (3.8) with the rectangular Vandermonde–type
matrix V, we obtain

V
(
cj P̃ (zj)

)M
j=1

= σ̃ ṽ −E ũ.

By N ≥ L ≥M the matrix V has full rank M , since the quadratic submatrix
(
zkj
)M−1,M

k=0,j=1

of order M is a regular Vandermonde matrix. Hence VHV is Hermitian and positive
definite. Thus the matrix V has a left inverse L = (VHV)−1VH such that(

cj P̃ (zkj )
)M
j=1

= σ̃L ṽ − LE ũ .

Then by ‖ũ‖ = ‖ṽ‖ = 1 it follows that

M∑
j=1

|cj |2 |P̃ (zj)|2 ≤ (σ̃ + ‖E‖2)2 ‖L‖22 ≤ (ε2 + ‖E‖2)2 ‖L‖22 .

This completes the proof.

In [1], the condition number of the rectangular Vandermonde–type matrix V is esti-
mated. It is shown that this matrix is well conditioned, provided the nodes zj are close
to the unit circle but not extremely close to each other and provided N is large enough.
Now we formulate an analog of the Rayleigh–Ritz Theorem (see [6, pp. 176–178]) for
singular values of the symmetric Hankel matrix H:

Lemma 3.5 Let L, M, N ∈ N with M ≤ L ≤ N be given. Assume that the ordered
singular values of the exact rectangular Hankel matrix H ∈ C(2N−L+1)×(L+1) are σ0 ≥
. . . ≥ σM−1 > 0 and σM = . . . = σL = 0. Then for all x ∈ CL+1 with x ⊥ ker H

σM−1 ‖x‖ ≤ ‖Hx‖ ≤ σ0 ‖x‖ .

Proof. 1. By the assumptions, σ2
k (k = 0, . . . , L) are the eigenvalues of the Hermitian

matrix HH H. As usual, we denote the ordered eigenvalues of HH H by λ0 = . . . =
λL−M = 0, 0 < λL−M+1 ≤ . . . ≤ λL such that σ2

M−1 = λL−M+1. Here we have used
Lemma 2.1 and ker HH H = ker H. Now we apply the spectral theorem for the Hermitian
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matrix HH H (see [6, p. 171]). Then there exists a unitary matrix U ∈ C(L+1)×(L+1)

(see [6, pp. 204–205]) such that

HH H = U
(
diag (λk)Lk=0

)
UH . (3.9)

Let uk ∈ CL+1 (k = 0, . . . , L) be the k-th column vector of U. Then by (3.9) we receive
that

HH Huk = λk uk (k = 0, . . . , L) .

From λ0 = . . . = λL−M = 0 it follows that uk ∈ ker HH H = ker H (k = 0, . . . , L −M)
which form an orthonormal basis of ker H.
2. For arbitrary x ∈ CL+1, we obtain by (3.9) that

‖Hx‖2 = xH HH Hx = xH U
(
diag (λk)Lk=0

)
UH x =

L∑
k=L−M+1

λk |(uk, x)|2 . (3.10)

The condition x ⊥ ker H is equivalent to (uk, x) = 0 (k = 0, . . . , L −M). Thus for all
x ∈ CL+1 with x ⊥ ker H we obtain that

‖x‖2 = ‖Ux‖2 =
L∑

k=L−M+1

|(uk, x)|2 . (3.11)

Thus from (3.10) and (3.11) it follows that for all x ∈ CL+1 with x ⊥ ker H

λL−M+1 ‖x‖2 ≤ ‖Hx‖2 ≤ λL ‖x‖2 .

This completes the proof.

Lemma 3.6 If the assumptions of Theorem 3.4 are fulfilled with sufficiently small ac-
curacies ε1, ε2 > 0 and if σM−1 > 0 is the smallest singular value 6= 0 of H, then

‖ũ−P ũ‖ ≤ ε2 + (N + 1) ε1
σM−1

, (3.12)

where P is the orthogonal projector of CL+1 onto ker H. Furthermore the polynomial
(3.5) has zeros close to zj ∈ D (j = 1, . . . ,M), where

M∑
j=1

|P̃ (zj)|2 ≤ (2N − L+ 1)M
(
ε2 + (N + 1)ε1

σM−1

)2

.

Proof. 1. Let ũ be a right singular vector of H̃ with respect to the singular value
σ̃ ∈ [0, ε2]. Using Lemma 3.5, we receive for all u ∈ CL+1 with u ⊥ ker H that

σM−1 ‖u‖ ≤ ‖Hu‖

12



i.e., the following estimate

σM−1 ‖ũ− u‖ ≤ ‖H(ũ− u)‖

is valid for all u ∈ CL+1 with ũ − u ⊥ ker H. Especially for u = P ũ, we see that
ũ−P ũ ⊥ ker H and hence by (3.1)

σM−1 ‖ũ−P ũ‖ ≤ ‖Hũ‖ = ‖(H̃−E) ũ‖ = ‖σ̃ ũ−E ũ‖
≤ σ̃ + ‖E‖2 ≤ ε2 + (N + 1) ε1

such that (3.12) follows.
2. Thereby u = P ũ is a right singular vector of H with respect to the singular value 0.
Thus the corresponding polynomial P has the values zj ∈ D (j = 1, . . . ,M) as zeros by
Lemma 2.1. By (3.12), the coefficients of P differ only a little from the coefficients of
P̃ with respect to ũ. Consequently, the zeros of P̃ lie nearby the zeros of P , i.e., P̃ has
zeros close to zj (j = 1, . . . ,M) (see [6, pp. 539–540]).
By ‖VH‖22 ≤

∑2N−L
k=0

∑M
j=1 |zkj |2 ≤ (2N − L+ 1)M and (3.12), we obtain the estimate

M∑
j=1

|P̃ (zj)|2 =
M∑
j=1

|P (zj)− P̃ (zj)|2 = ‖VH(u− ũ)‖2

≤ ‖VH‖22 ‖u− ũ‖2 ≤ (2N − L+ 1)M
(
ε2 + (N + 1)ε1

σM−1

)2

.

This completes the proof.

For noisy data we can not assume that a reconstruction yields zj ∈ D. Therefore we
introduce the disk D̃(r) := {z ∈ C : |z| ≤ r} with radius r. Now we can formulate a
second algorithm of the APM.

Algorithm 3.7 (APM 2)

Input: L, N ∈ N (3 ≤ L ≤ N , L is upper bound of the number of exponentials),
h̃k = h(k) + ek ∈ C (k = 0, . . . , 2N) with |ek| ≤ ε1, accuracy bounds ε1, ε2, radius r.

1. Compute a right singular vector ũ = (ũk)Lk=0 corresponding to a singular value
σ̃ ∈ (0, ε2] of the perturbed rectangular Hankel matrix (3.2).
2. Form the corresponding polynomial (3.5) and evaluate all zeros z̃j ∈ D̃(r) (j =
1, . . . , M̃). Note that L ≥ M̃ .
3. Compute c̃j ∈ C (j = 1, . . . , M̃) as least squares solution of the overdetermined linear
Vandermonde–type system

M̃∑
j=1

c̃j z̃
k
j = h̃k (k = 0, . . . , 2N) . (3.13)
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4. Delete all the z̃l (l ∈ {1, . . . , M̃}) with |c̃l| ≤ ε1 and denote the remaining set by
{zj : j = 1, . . . ,M} with M ≤ M̃ .
5. Repeat step 3 and solve the overdetermined linear Vandermonde–type system

M∑
j=1

cj z
k
j = h̃k (k = 0, . . . , 2N)

with respect to the new set {zj : j = 1, . . . ,M} again. Set fj := log zj ∈ F (j =
1, . . . ,M).

Output: M ∈ N, cj ∈ C, fj ∈ F (j = 1, . . . ,M).

There exist a variety of algorithms to recover the complex exponents fj like ESPRIT
[12, 13]. Now we replace the steps 1 and 2 of Algorithm 3.7 by the ESPRIT method [7,
p. 493]. Note that the following method needs a further parameter P as an estimation
for upper bound of the number of exponentials. We choose this parameter P = L− 1

Algorithm 3.8 (APM via ESPRIT)

Input: L, N, P ∈ N (3 ≤ L ≤ N , P is upper bound of the number of exponentials with
P + 1 ≤ L), h̃k = h(k) + ek ∈ C (k = 0, . . . , 2N) with |ek| ≤ ε1, accuracy bounds ε1,
radius r.

1. Compute the singular value decomposition of the perturbed rectangular Hankel matrix
(3.2) with a diagonal matrix S ∈ R(2N−L+1)×(L+1) with nonnegative diagonal elements in

decreasing order, and unitary matrices L ∈ C(2N−L+1)×(2N−L+1) and U :=
(
uk,l
)L
k,l=0

∈
C(L+1)×(L+1) such that H̃ = LSUH.
2. For U1 := (uk,l)

L−1,P
k,l=0 , U2 := (uk+1,l)

L−1,P
k,l=0 compute the matrix P := U†1U2 ∈

C(P+1)×(P+1), where U†1 := (UH
1 U1)−1UH

1 is the Moore–Penrose pseudoinverse of U1.
Compute all the eigenvalues z̃j ∈ D̃(r) (j = 1, . . . , M̃) of the matrix P. Note that
M̃ ≤ P + 1.
3. Continue with steps 3− 6 of Algorithm 3.7.

Output: M ∈ N, cj ∈ C, fj ∈ F (j = 1, . . . ,M).

Further we can replace the steps 1 and 2 of Algorithm 3.7 by solving the overdetermined
linear Hankel system (2.6) such that we dispense with the computation of singular val-
ues and right/left singular vectors of the perturbed rectangular Hankel matrix (3.2).
This approach is justified by the Lemmas 3.5 and 3.6. We denote this modification of
Algorithm 3.7 as least squares Prony method (LSPM).

Algorithm 3.9 (LSPM)

Input: L, N ∈ N (3 ≤ L ≤ N , L is upper bound of the number of exponentials),
h̃k = h(k) + ek ∈ C (k = 0, . . . , 2N) with |ek| ≤ ε1, accuracy bounds ε1, radius r.
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1. Solve the overdetermined linear Hankel system

L−1∑
l=0

h(l +m) pl = −h(L+m) (m = 0, . . . , 2N − L) .

2. Compute all the zeros z̃j ∈ D̃(r) (j = 1, . . . , M̃) of the polynomial

zL +
L−1∑
k=0

pk z
k .

Note that M̃ ≤ L.
3. Continue with the steps 3− 6 of Algorithm 3.7.

Output: M ∈ N, cj ∈ C, fj ∈ F (j = 1, . . . ,M).

Note that Algorithm 3.8 requires more arithmetical operations than Algorithm 3.7. The
Algorithm 3.9 is the cheapest method.

4 Numerical examples

Now we illustrate the behavior of the suggested Algorithms 3.7 – 3.9. We have imple-
mented our algorithms in MATLAB with IEEE double precision arithmetic. The relative
error of the complex exponents is given by

e(f) :=
max

j=1,...,M
|fj − f̃j |

max
j=1,...,M

|fj |
,

where f̃j are the exponents computed by our algorithms. Analogously, the relative error
of the coefficients is defined by

e(c) :=
max

j=1,...,M
|cj − c̃j |

max
j=1,...,M

|cj |
,

where c̃j are the coefficients computed by our algorithms. Further we determine the
relative error of the exponential sum by

e(h) :=
max |h(x)− h̃(x)|

max |h(x)|
,

where the maximum is built from 10000 equidistant points of [0, 2N ], and where

h̃(x) :=
M∑
j=1

c̃j ef̃jx
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is the exponential sum recovered by our algorithms. For increasing number of sampled
data, we obtain a very precise parameter estimation. With other words, N acts as
regularization parameter of this inverse problem. Algorithm 2.3 can not be applied,
since 0 is not a singular value of the perturbed rectangular Hankel matrix (3.2).

Example 4.1 We simulate a typical damped five–peak NMR signal [9]. The signal is
given in the form (1.1) with M = 5, the complex coefficients

(c1, c2, c3, c4, c5) = e15i (6.1, 9.9, 6.0, 2.8, 17)

and the complex exponents
f1

f2

f3

f4

f5

 =
1

50000


−208− 2πi · 1379
−256− 2πi · 685
−197− 2πi · 271
−117 + 2πi · 353
−808 + 2πi · 478

 .

We sample this exponential sum (1.1) at the equidistant nodes x = k (k = 0, . . . , 2N).
Then we apply our algorithms for exact sampled data hk = h(k), i.e., ek = 0 (k =
0, . . . , 2N). Thus the accuracy ε1 can be chosen as the unit roundoff ε1 = 2−53 ≈
1.11 × 10−16 (see [5, p. 45]) and furthermore we choose the accuracies ε2 = 10−5, the
radiuses r = 1.1 for L = 5 and r = 1 is L = 100. We consider noisy sampled data
h̃k = h(k) + 10−s ek (k = 0, . . . , 2N), where (ek)2Nk=0 is a vector with samples from
a normal distribution with mean 1 and standard deviation 2. The third column of
the tables contains the signal–to–noise ratio SNR := 10 log10 (‖(h(k))2Nk=0‖ / ‖(ek)2Nk=0‖),
where ∞ indicates that no noise is added. Note that SNR ≈ 66 for s = 6 and SNR ≈ 96
for s = 9. We repeat each experiment 100 times and present the averages of the errors
in Table 4.1. It is remarkable that we obtain very precise results even in the case, where
the unknown number M = 5 is estimated by L = 100. Furthermore we find out that the
cheapest Algorithm 3.9 yields precise results too.

Example 4.2 This example is often used in testing system identification algorithms
(see [1]). We choose M = 6, cj = 1 (j = 1, . . . , 6), and

z1
z2
z3
z4
z5
z6

 =



0.9856− 0.1628i
0.9856 + 0.1628i
0.8976− 0.4305i
0.8976 + 0.4305i
0.8127− 0.5690i
0.8127 + 0.5690i

 .

The results of Algorithms 3.7 – 3.9 are presented in Table 4.2. Note that this example
was chosen in [1] in order to justify the relative small upper bounds for the condition
number of the rectangular Vandermonde–type matrix V. The upper bound depends on
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N L SNR e(f) e(c) e(h)

Algorithm 3.7
6 5 ∞ 7.67e-05 5.44e-05 2.48e-14

250 5 ∞ 1.96e-09 1.52e-08 7.38e-09
250 5 95.7 3.98e-06 1.70e-05 7.34e-06
250 5 65.7 3.82e-03 1.55e-02 7.20e-03
250 100 ∞ 9.61e-15 2.73e-13 1.71e-13
250 100 95.7 7.30e-11 5.94e-10 1.71e-10
250 100 65.7 7.74e-08 5.28e-07 1.61e-07

Algorithm 3.8
6 5 ∞ 7.67e-05 5.44e-05 1.98e-14

250 5 ∞ 1.25e-09 7.64e-09 3.64e-09
250 5 95.7 3.49e-06 1.60e-05 6.56e-06
250 5 65.7 3.79e-03 1.55e-02 7.02e-03
250 100 ∞ 1.52e-14 3.07e-13 7.15e-14
250 100 95.7 7.64e-11 6.80e-10 2.23e-10
250 100 65.7 7.92e-08 6.87e-07 1.82e-07

Algorithm 3.9
6 5 ∞ 8.40e-05 6.16e-05 2.05e-14

250 5 ∞ 1.96e-09 1.40e-08 6.86e-09
250 5 95.7 4.00e-06 1.83e-05 7.52e-06
250 5 65.7 4.10e-01 2.71e-01 1.28e-01
250 100 ∞ 8.57e-15 1.72e-13 9.01e-14
250 100 95.7 2.82e-11 2.42e-10 6.79e-11
250 100 65.7 2.63e-08 2.23e-07 6.54e-08

Table 4.1: Results of Example 4.1.

the separation of the nodes zj in the unit disk, the departure from normality, minj |zj |,
and maxj |zj |. We choose the accuracies ε1 = 10−10, ε2 = 10−5 and the radius r = 1.5.

Example 4.3 We choose 30 equidistant nodes on each circle with radius 0.7, 0.8, and
0.9. Using random coefficients cj ∈ [0, 1] (j = 0, . . . , 89), we sample the exponential
sum (1.1) at the equidistant nodes x = k (k = 0, . . . , 2N) without noise. We choose the
accuracies ε1 = 10−4, ε2 = 10−20 and the radius r = 1. Applying the Algorithms 3.7 –
3.9, we present the results in Table 4.3. Here a dash means that we could not found the
values zj . A typical example is presented in Figure 4.1. The given 90 nodes are shown as
circles. In Figure 4.1 (left) we show the values z̃j after step 2 of Algorithm 3.8 with the
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N L SNR e(f) e(c) e(h)

Algorithm 3.7
7 6 ∞ 9.78e-12 3.24e-11 5.74e-15
7 6 90.9 1.11e-04 3.48e-04 1.52e-09
7 6 60.7 9.15e-02 5.50e-01 1.63e-06

Algorithm 3.8
7 6 ∞ 1.01e-11 3.51e-11 5.92e-15
7 6 90.8 1.22e-04 3.83e-04 1.57e-09
7 6 60.9 8.85e-02 4.52e-01 1.50e-06

Algorithm 3.9
7 6 ∞ 1.00e-11 3.74e-11 2.00e-14
7 6 90.9 1.08e-04 3.39e-04 1.55e-09
7 6 60.8 9.68e-02 6.13e-01 1.53e-06

Table 4.2: Results for h from Example 4.2.

parameters N = 500 and L = 400 as points. Since the Vandermonde–type system (3.13)
is very ill–conditioned we cannot separate the 90 correct values. The ill–conditioning of
(3.13) is due to the small distance of the points z̃j (see [1]). In Figure 4.1 (right) we show
the values z̃j after step 2 of Algorithm 3.9 with the parameters N = 500 and L = 200
as points. The given values are indicated as small circles. We cannot recover the values
zj , because we do not find a point in all small circles. Since in the following steps of
the algorithm we delete only the additional points, there is no possibility to solve the
problem correctly. This is a consequence of the ill–conditioning of the Hankel system
in step 1 of Algorithm 3.9. Fortunately our suggested Algorithm 3.7 works, since we
separate the true values zj from the additional values by using the advance information
zj ∈ D̃(r).
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