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Recently, norm equivalences between spherical polynomials and their sample
values at scattered sites have been proved. These so-called Marcinkiewicz-
Zygmund inequalities involve a parameter that characterizes the density of
the sampling set and they are applicable to all polynomials whose degree
does not exceed an upper bound that is determined by the density param-
eter. We show that if one is satisfied by norm equivalences that hold with
prescribed probability only, then the upper bound for the degree of the ad-
missible polynomials can be enlarged significantly and that then, moreover,
there exist fixed sampling sets which work for polynomials of all degrees.

1 Introduction

Let f(x) =
∑N

k=−N f̂ke
ikx be a trigonometric polynomial of degree N , denote by f the

vector

f =
(
f

(
2πj

2N + 1

))2N

j=0

,

define the weight W = (wj)2Nj=1 by wj = 2π/(2N + 1), and put

‖f‖2W ,2 :=
2N∑
j=0

2π
2N + 1

∣∣∣∣f ( 2πj
2N + 1

)∣∣∣∣2 , ‖f‖22 :=
∫ 2π

0
|f(ξ)|2dξ.

Parseval’s equality implies that ‖f‖22 = 2π
∑N

k=−N |f̂k|2, and since the Fourier matrix

U = (2N+1)−1/2
(
e2πijk/(2N+1)

)2N
j,k=0

is unitary, it follows that ‖f‖2W ,2 = 2π
∑N

k=−N |f̂k|2.
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We therefore arrive at the equality ‖f‖W ,2 = ‖f‖2. This well known observation is the
origin of so-called Marcinkiewicz-Zygmund inequalities, which state that, under certain
assumptions,

(1− ε)‖f‖p ≤ ‖f‖W ,p ≤ (1 + ε)‖f‖p. (1)

Here ‖ · ‖p is the Lp norm, ‖ · ‖W ,p denotes a weighted `p norm, f is given on some
manifold, and f is the vector of samples of f at certain points, the sampling nodes, on
the manifold. We remark that inequality (1) gives bounds on the sampling operator
and its inverse, which is of importance in connection with the stable reconstruction of
polynomials from their samples and the design of quadrature rules.

In the case of trigonometric polynomials, Marcinkiewicz-Zygmund inequalities for eq-
uispaced samples were established in [17, 16]. However, measurements are typically
taken nonuniformly and, moreover, there do not exist equidistributed sampling sets of
sufficiently high cardinality on the unit spheres Sd for d ≥ 2. This motivates the increas-
ing interest in norm equivalences for less regular sampling sets. At least since [7], one
knows sharp versions of L2 norm equivalences for trigonometric polynomials under the
assumption that the sampling set contains no holes larger than the inverse polynomial
degree. Large sieve estimates give upper bounds for nonequispaced sampled trigonomet-
ric polynomials, see e.g. [13, 6], and results for randomly chosen sampling nodes were
obtained in [1, 18, 8, 5].

The passage from trigonometric polynomials living on the unit circle S1 or the torus
S1 × . . . × S1 to spherical harmonics on the unit sphere Sd is not trivial. In recent
years, L∞ and general Lp Marcinkiewicz-Zygmund inequalities on spheres were proved
in [9] and [14, 4, 5], respectively. The L2(S2) case was studied in more detail and tested
numerically in [10].

The Marcinkiewicz-Zygmund inequalities cited above guarantee (1) for all spherical
harmonics of degree at most N on the unit sphere Sd provided N satisfies N ≤ ε/(RBd)
where R is a partition norm associated with the sampling set and Bd is a constant
depending only on d. Known estimates deliver quite large values for Bd, which results
in a severe limitation for N . The purpose of this paper is to reveal that for given R one
can extend the admissible polynomial degrees spectacularly if one admits to have (1) for
p = 2 and with a certain prescribed probability only. To be more precise, we assume
that the coefficients in the linear combinations of the spherical harmonics of degree at
most N on Sd are taken at random from the uniform distribution on a ball of appropriate
dimension. Under this assumption we show in Section 3 that if ε ∈ (0, 1) and η ∈ (0, 1)
are given, then we can find a %0 > 0 such that if R < %0 then

P
[
(1− ε)‖f‖2 ≤ ‖f‖W ,2 ≤ (1 + ε)‖f‖2

]
≥ 1− η (2)

whenever N ≤ 1/R. Moreover, in Section 4 we prove that there exist fixed sampling
sets and weights such that (2) is true for every N ≥ 0.
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2 Preliminaries

2.1 Sampling data

Let d ≥ 1 and Sd := {ξ ∈ Rd+1 : |ξ|2 = 1}, where | · | is the usual Euclidean norm.
Throughout what follows we assume that we are given a finite set R := {R1, . . . , RM}
of closed and nonoverlapping regions Rj of Sd such that ∪Mj=1Rj = Sd and a finite
set X := {ξ1, . . . , ξM} of points ξj such that ξj is in the interior of Rj . Of course,
nonoverlapping means that Ri and Rj have no common inner points for i 6= j. We refer
to the points ξ1, . . . , ξM as the sampling nodes and to (R,X ) as a sampling pair. Note
that we require that each Rj contains exactly one sampling node. We denote by µd the
usual measure on Sd, define wj := µd(Rj), and call W := {w1, . . . , wM} the weight.
Clearly,

∑
j wj = µd(Sd). The partition norm R = ‖R‖ is defined as

R := max
j

diamRj := max
j

max
ξ,η∈Rj

d(ξ,η),

where d(ξ,η) := arccos(ξ · η) is the geodesic distance between ξ and η. The separation
distance q of the set X is

q := min
j 6=`

d(ξj , ξ`).

Note that the partition norm, the separation distance, and the frequently used so-called
mesh norm ‖X‖ := maxξ minj d(ξ, ξj) are related by q ≤ ‖X‖ ≤ R ≤ 2‖X‖. Obviously,
there is a constant C2 depending only on d such that

wj ≤ C2R
d, (3)

which after summing up implies that µd(Sd) ≤ C2MRd. The M spherical disks Dj :=
{ξ ∈ Sd : d(ξ, ξj) ≤ q/2} do not overlap and there is a constant C1 depending only on d
such that µd(Dj) ≥ C1q

d. The last inequality and (3) imply that

C1Mqd ≤ µd(Sd) ≤ C2MRd. (4)

Finally notice that µd(Sd) = 2π(d+1)/2/Γ((d+ 1)/2).
If only the sampling nodes ξ1, . . . , ξM are given, there are a variety of ways to construct

a partition R as above such that each ξj belongs to exactly one Rj . Often one takes the
so-called Voronoi partition, which is determined by

Rj = {ξ ∈ Sd : d(ξ, ξj) ≤ min
`
d(ξ, ξ`)}.

For f ∈ C(Sd), we denote by f the vector (f(ξj))Mj=1. The Lp norm of f is given by

‖f‖pp :=
∫

Sd

|f(ξ)|pdµd(ξ) (1 ≤ p <∞), ‖f‖∞ := max
ξ∈Sd
|f(ξ)|

and the `pW norm of a vector g = (gj)Mj=1 ∈ CM is defined by

‖g‖pW ,p :=
M∑
j=1

wj |gj |p (1 ≤ p <∞), ‖g‖W ,∞ := max
j
|gj |.
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2.2 Spherical harmonics

We refer to [15, 20] for a thorough introduction to spherical harmonics and here confine
ourselves to the following. We denote the spherical harmonics of degree at most N on Sd

by {Y d
k }
Nd(N)
k=1 . These span a subspace Πd

N of L2(Sd, dµd) and are an orthonormal basis
in this subspace. The dimension of Πd

N is

Nd(N) =
(2N + d)Γ(N + d)
Γ(d+ 1)Γ(N + 1)

∼ 2
Γ(d+ 1)

Nd, (5)

where xN ∼ yN means that xN/yN → 1 as N →∞. The N1(N) = 2N+1 spherical har-
monics of degree at most N are just the trigonometric polynomials {(1/

√
2π)eikx}Nk=−N .

Notice that

N2(N) = (N + 1)2, N3(N) =
1
6

(N + 1)(N + 2)(2N + 3).

A finer decomposition of Πd
N is as follows. Let Hd

κ be the spherical harmonics whose de-
gree is exactly κ. We label the spherical harmonics in Hd

κ by {Y d
κ,i}
Hd(κ)
i=1 . The dimension

of Hd
κ is known to be

Hd(κ) =
(2κ+ d− 1)Γ(κ+ d− 1)

Γ(d)Γ(κ+ 1)
≤ Hdκ

d−1 (6)

with some constant Hd ∈ (0,∞) depending only on d. Finally, let C
(d−1)/2
κ : [−1, 1]→ R

be the (κ, d−1
2 )th Gegenbauer polynomial determined by the normalization C

(d−1)/2
κ (1) =

1. Herglotz’ famous addition theorem says that

Hd(κ)∑
i=1

Y d
κ,i(ξ)Y d

κ,i(η) =
Hd(κ)
µd(Sd)

C(d−1)/2
κ (ξ · η) (7)

for all ξ,η ∈ Sd. Taking into account that
∑N

κ=0Hd(κ) = Nd(N), we obtain in particular
that

Nd(N)∑
k=1

|Y d
k (ξ)|2 =

N∑
κ=0

Hd(κ)∑
i=1

|Y d
κ,i(ξ)|2 =

Nd(N)
µd(Sd)

(8)

for all ξ ∈ Sd. We will also make use of the following estimate, which can be found in
[19, Theorem 2.9]: if 0 < ϕ < π, then∣∣∣C(d−1)/2

κ (cosϕ)
∣∣∣ ≤ Gdκ−(d−1)/2| sinϕ|−(d−1)/2, (9)

where Gd ∈ (0,∞) depends only on d.
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2.3 Two deterministic inequalities

The following results are from [4]. If NR ≤ 1, then

‖f‖W ,1 ≤ (1 +BdNR)‖f‖1 (10)

for all f ∈ Πd
N where Bd is a constant that depends only on d and is bounded by

Bd ≤ (2
√

3)d(5d+ 1). Moreover, if NR ≤ ε/Bd with ε ∈ (0, 1), then

(1− ε)‖f‖p ≤ ‖f‖W ,p ≤ (1 + ε)‖f‖p (11)

for all 1 ≤ p ≤ ∞ and all f ∈ Πd
N .

2.4 Probability

We denote by P(X) the probability of an event X. Let Ck be equipped with the `2 norm,
‖x‖22 =

∑k
j=1 |xj |2, and let Bk := {x ∈ Ck : ‖x‖22 = 1}. The spectral and Frobenius

norm of a matrix A ∈ Cm×n will be denoted by ‖A‖2 and ‖A‖F, respectively. We start
with the following result.

Lemma 2.1. If A ∈ Cm×n and x is drawn randomly from the uniform distribution on
Bn, then the expectation and variance of the random variable ‖Ax‖22/‖x‖22 are

E

(
‖Ax‖22
‖x‖22

)
=
‖A‖2F
n

, σ2

(
‖Ax‖22
‖x‖22

)
=

2
n+ 2

(
‖AA∗‖2F

n
−
(
‖A‖2F
n

)2
)
. (12)

Proof. This was essentially established in [2]. There square matrices A ∈ Cn×n were
considered and it was shown that the expectation and variance are

s21 + . . .+ s2n
n

and
2

n+ 2

(
s41 + . . .+ s4n

n
−
(
s21 + . . .+ s2n

n

)2
)
, (13)

respectively, where s1, . . . , sn are the singular values of A. For rectangular matrices,
A ∈ Cm×n, (13) becomes

s21 + . . .+ s2k
n

and
2

n+ 2

(
s41 + . . .+ s4k

n
−
(
s21 + . . .+ s2k

n

)2
)
, (14)

and was already used in [3]. Here k = min(m,n) and s1, . . . , sk are the singular values of
A. Note that if m < n, then (14) follows from the square case by considering the square
matrix (A>0)> ∈ Cn×n, while if m > n, then (14) can be derived from the square case
by writing A = U(B>0)>V > with B ∈ Cn×n and unitary matrices U and V in Cm×m.
If we denote by λ1, . . . , λm the eigenvalues of AA∗, then

s21 + . . .+ s2k = ‖A‖2F, s41 + . . .+ s4k = λ2
1 + . . .+ λ2

m = ‖AA∗‖2F,

which gives (12). �

In what follows we will employ the following consequence of Lemma 2.1.
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Corollary 2.2. Let A ∈ Cm×n and suppose ‖A‖2F = n. If x is taken at random from
the uniform distribution on Bn, then

P
(

1− ε ≤ ‖Ax‖2
‖x‖2

≤ 1 + ε

)
≥ 1−

2‖AA∗‖2F
n2ε2(2− ε)2

(15)

for every ε ∈ (0, 1).

Proof. Put δ = ε(2− ε). Lemma 2.1 and Chebyshev’s inequality imply that

P
(

1− δ ≤ ‖Ax‖
2
2

‖x‖22
≤ 1 + δ

)
≥ 1− 1

δ2
σ2

(
‖Ax‖22
‖x‖22

)
≥ 1− 1

δ2
2
n

(
‖AA∗‖2F

n
− 1
)
≥ 1−

2‖AA∗‖2F
n2δ2

. (16)

Since 1− δ = (1− ε)2 and 1 + δ ≤ (1 + ε)2, it follows that

P
(

1− ε ≤ ‖Ax‖2
‖x‖2

≤ 1 + ε

)
≥ P

(
1− δ ≤ ‖Ax‖

2
2

‖x‖22
≤ 1 + δ

)
,

which together with (16) yields (15). �

To convey to the reader a feeling of what the use of (15) is, let A be an n× n matrix
with ‖A‖2 ≤ γ and ‖A‖2F = n. Since

‖AA∗‖2F ≤ ‖A‖2F‖A∗‖22 = n ‖A‖22 ≤ nγ2, (17)

estimate (15) gives

P
(

1− ε ≤ ‖Ax‖2
‖x‖2

≤ 1 + ε

)
≥ 1− 2γ2

nε2
(18)

for each ε ∈ (0, 1). To make things a little more tricky, one can replace the (2 − ε)2 in
(15) by 1 to get

P
(

1− ε ≤ ‖Ax‖2
‖x‖2

≤ 1 + ε

)
≥ 1−

2‖AA∗‖2F
n2ε2

(19)

and then choose ε = 1/ 3
√
n to conclude that

P
(

1− 1
3
√
n
≤ ‖Ax‖2
‖x‖2

≤ 1 +
1
3
√
n

)
≥ 1− 2γ2

3
√
n
. (20)

Consequently, although deterministically we cannot say more than ‖Ax‖2 ≤ γ‖x‖2, in
fact the values of ‖Ax‖2 are concentrated tightly close to ‖x‖2 with a probability that
converges to 1 as the matrix dimension goes to infinity. If A is the Fourier matrix,
which is unitary, then (18) and (20) are trivial because ‖Ax‖2 = ‖x‖2 for all x. We
will see that the matrices emerging in nonuniform sampling problems still enjoy the
properties that ‖A‖2 has controllable upper bounds and that ‖A‖2F = n. Thus, for these
matrices we have estimates like (18) or (20), which, of course, are useful in connection
with Marcinkiewicz-Zygmund inequalities.
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3 Sampling pairs for polynomials of high degree

In what follows we always assume that the coefficient vector (f̂k)
Nd(N)
k=1 of the spherical

polynomial

f =
Nd(N)∑
k=1

f̂kY
d
k ∈ Πd

N

is taken at random from the uniform distribution on the ball BNd(N). The constants Bd
are those of Subsection 2.3.

Theorem 3.1. If NR ≤ 1 then

P
(

1− ε ≤
‖f‖W ,2

‖f‖2
≤ 1 + ε

)
≥ 1− 2(1 +BdNR)

Nd(N)ε2(2− ε)2

for each ε ∈ (0, 1).

Proof. Equip Πd
N and CM with the Lp and `pW norms, respectively, consider the operator

B : Πd
N → CM , f 7→ f := (f(ξ1), . . . , f(ξM )),

and denote by ‖B‖p its norm. Since obviously ‖f‖W ,∞ ≤ ‖f‖∞, we see that ‖B‖∞ ≤ 1.
From (10) we infer that ‖B‖1 ≤ 1 + BdNR. The Riesz-Thorin interpolation theorem
therefore implies that

‖B‖2 ≤ ‖B‖1/21 ‖B‖
1/2
∞ ≤

√
1 +BdNR.

Consequently,
‖f‖W ,2 ≤

√
1 +BdNR ‖f‖2 (21)

for all f ∈ Πd
N . Now provide Πd

N and CM with the usual (unweighted) L2 and `2 norms,
respectively, and consider the operator

A : Πd
N → CM , f 7→ (

√
w1f(ξ1), . . . ,

√
wMf(ξM )).

From (21) we see that ‖A‖2 ≤
√

1 +BdNR and the addition theorem (8) yields

‖A‖2F =
Nd(N)∑
k=1

‖AY d
k ‖22 =

Nd(N)∑
k=1

M∑
j=1

wj |Y d
k (ξj)|2

=
M∑
j=1

wj

Nd(N)∑
k=1

|Y d
k (ξj)|2 =

M∑
j=1

wj
Nd(N)
µd(Sd)

= Nd(N). (22)

Thus, using Corollary 2.2 and taking into account that ‖f‖W ,2 = ‖Af‖2, we obtain that

P
(

1− ε ≤
‖f‖W ,2

‖f‖2
≤ 1 + ε

)
≥ 1−

2 ‖AA∗‖2F
Nd(N)2ε2(2− ε)2

. (23)

Estimating as in (17) we get ‖AA∗‖2F ≤ Nd(N)(1 + BdNR). Inserting this into the
right-hand side of (23), we arrive at the asserted inequality. �

The following corollary tells us in two different ways that the ratio ‖f‖W ,2/‖f‖2 is
tightly concentrated around 1 with a probability that converges to 1 as N goes to infinity.

7



Corollary 3.2. Let NR ≤ 1. If 0 < α < d/2, then

aN :=
2(1 +BdNR)N2α

Nd(N)
∼ Γ(d+ 1)(1 +BdNR)

Nd−2α

and

P
(

1− 1
Nα
≤
‖f‖W ,2

‖f‖2
≤ 1 +

1
Nα

)
≥ 1− aN .

If 0 < β < d, then

bN :=

√
2Nβ(1 +BdNR)

Nd(N)
∼
√

Γ(d+ 1)(1 + bdNR)
N (d−β)/2

and

P
(

1− bN ≤
‖f‖W ,2

‖f‖2
≤ 1 + bN

)
≥ 1− 1

Nβ
.

Proof. Use Theorem 3.1 with (2 − ε)2 replaced by 1 (such as in (19)) with ε = 1/Nα

and ε = bN , respectively, and take into account the asymptotic formula (5). �

Here is another striking consequence of Theorem 3.1.

Corollary 3.3. Let ε ∈ (0, 1) and η ∈ (0, 1). If

R ≤ ε

Bd

(
Γ(d+ 1)(1 + ε)
ηε2(2− ε)2

)−1/d

(24)

then

1− ε ≤
‖f‖W ,2

‖f‖2
≤ 1 + ε (25)

for N ≤ ε/(BdR) and

P
(

1− ε ≤
‖f‖W ,2

‖f‖2
≤ 1 + ε

)
≥ 1− η (26)

for every N ≤ 1/R.

Proof. From (11) we deduce that the deterministic inequality (25) is true whenever
BdNR ≤ ε. We are therefore left with proving (26) for ε/(BdR) < N ≤ 1/R. Theo-
rem 3.1 tells us that (26) is certainly satisfied if NR ≤ 1 and

2(1 +BdNR)
Nd(N)ε2(2− ε)2

≤ η. (27)

By formula (5),

Nd(N) =
2N + d

Γ(d+ 1)
(N + d− 1) . . . (N + 1) ≥ 2Nd

Γ(d+ 1)
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and hence (27) holds if
Γ(d+ 1)(1 +BdNR)

Ndε2(2− ε)2
≤ η,

or equivalently,
Nd − a(1 +BdNR) ≥ 0 (28)

with a := Γ(d + 1)/(ηε2(2 − ε)2). Consider the function F (x) = xd − a(1 + BdRx).
Our assumption (24) implies that F (ε/(BdR)) ≥ 0. The function F (x) is monotonously
increasing if dxd−1 ≥ aBdR. Consequently, we get (28) for all N ≥ ε/(BdR) provided
we can show that d(ε/(BdR))d−1 ≥ aBdR, which is in turn equivalent to the inequality
aBd

dR
d ≤ dεd−1. But (24) gives aBd

dR
d ≤ εd/(1 + ε), and since 1/(1 + ε) ≤ d/ε, we

arrive at the desired inequality aBd
dR

d ≤ dεd−1. Thus, (28) holds for all N ≥ ε/(BdR).
It follows that in order to guarantee (26) we need nothing but the remaining inequality
NR ≤ 1. �.

4 Universal sampling pairs

We abbreviate Nd(N) to n. Given a sampling pair (R,X ) = (R1, . . . , RM ; ξ1, . . . , ξM ),
we denote by A the M × n matrix

A =


√
w1 Y

d
1 (ξ1) . . .

√
w1 Y

d
n (ξ1)

...
...√

wM Y d
1 (ξM ) . . .

√
wM Y d

n (ξM )

 .

Clearly, if f(ξ) =
∑n

k=1 f̂kY
d
k (ξ) and x denotes the column (f̂k)nk=1, then

‖x‖22 = ‖f‖22,

‖Ax‖22 =
M∑
j=1

wj

∣∣∣∣∣
n∑
k=1

f̂kY
d
k (ξj)

∣∣∣∣∣
2

=
M∑
j=1

wj |f(ξj)|2 = ‖f‖2W ,2.

We know from (22) that ‖A‖2F = n. Thus, Corollary 2.2 gives

P
(

1− ε ≤
‖f‖W ,2

‖f‖2
≤ 1 + ε

)
≥ 1−

2‖AA∗‖2F
n2ε2(2− ε)2

. (29)

We begin with S1.

Theorem 4.1. Let d = 1. Given ε ∈ (0, 1), η ∈ (0, 1), and L ∈ (1,∞), there exists a
positive number %0 = %0(ε, η, L) such that

P
(

1− ε ≤
‖f‖W ,2

‖f‖2
≤ 1 + ε

)
≥ 1− η (30)

for every polynomial degree N ≥ 0 if only the uniformity condition R/q < L and the
density condition R < %0 are satisfied.
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Proof. If d = 1, then n = 2N + 1, S1 may be identified with the complex unit circle, and
A may accordingly be replaced by

A =


√
w1

√
w1 ξ1 . . .

√
w1 ξ

2N
1

...
...

...√
wM

√
wM ξM . . .

√
wMξ

2N
M

 .

We have |(AA∗)jj | = wj(2N + 1) and hence (3) shows that
M∑
j=1

|(AA∗)jj |2 = (2N + 1)2
M∑
j=1

w2
j ≤ C2

2MR2(2N + 1)2. (31)

For j 6= `, we may again use (3) to get

|(AA∗)j`| =
√
wjw`

∣∣∣∣∣
2N∑
k=0

ξkj ξ
k
`

∣∣∣∣∣ =
√
wjw`

∣∣∣∣∣1− (ξjξ`)2N+1

1− ξjξ`

∣∣∣∣∣ ≤ 2C2R
1

|ξj − ξ`|
.

Thus, if j is fixed, then∑
6̀=j
|(AA∗)j`|2 ≤ 4C2

2R
2
∑
`6=j

1
|ξj − ξ`|2

≤ 4C2
2R

2 · 2
(

1
q2

+
1

(2q)2
+

1
(3q)2

+ . . .

)
≤ C3

R2

q2
.

Consequently,
M∑
j=1

∑
6̀=j
|(AA∗)j`|2 ≤ C3

MR2

q2
. (32)

From (31) and (32) we obtain that

2‖AA∗‖2F
(2N + 1)2ε2(2− ε)2

≤ 2C2
2MR2

ε2(2− ε)2
+

2C3MR2

4N2q2ε2(2− ε)2
. (33)

If RN ≤ ε/B1, then 1− ε ≤ ‖f‖W ,2/‖f‖2 ≤ 1 + ε deterministically. So let RN > ε/B1.
In that case the right-hand side of (33) is at most

2C2
2MR2

ε2(2− ε)2
+

2C3B
2
1MR4

4q2ε4(2− ε)2
. (34)

The first term in (34) equals
2C2

2

ε2(2− ε)2
Mq

R

q
R.

Since Mq ≤ 2π/C1 due to (4) and R/q < L by assumption, it follows that the first term
in (34) is smaller than η/2 if only R does not exceed some sufficiently small positive
number %1 that depends only on ε, η, L. As

MR4

q2
= Mq

(
R

q

)3

R,

we see analogously that the second term in (34) becomes smaller than η/2 provided
R < %2. Therefore (29) implies that (30) is true for R < %0 := min(%1, %2). �
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Theorem 4.2. Let d ≥ 2, ε ∈ (0, 1), η ∈ (0, 1), L ∈ (1,∞), and suppose the set X
has partition norm R and separation distance q. Then there exists a positive number
%0 = %0(d, ε, η, L) > 0 such that

P
(

1− ε ≤
‖f‖W ,2

‖f‖2
≤ 1 + ε

)
≥ 1− η (35)

for every polynomial degree N ≥ 0 whenever the uniformity condition R/q < L and the
density condition R < %0 hold.

Proof. From (8) we infer that

|(AA∗)jj | = wj

n∑
k=1

|Y d
k (ξj)|2 = wj

n

µd(Sd)
.

Thus, (3) gives

M∑
j=1

|(AA∗)jj |2 ≤
n2

µd(Sd)2
M∑
j=1

w2
j ≤ C2

2MR2d n2

µd(Sd)2
. (36)

Now fix j and let ` 6= j. From (7) we obtain that

|(AA∗)j`| =
√
wjw`

∣∣∣∣∣∣
N∑
κ=0

Hd(κ)∑
i=1

Y d
κ,i(ξj)Y d

κ,i(ξ`)

∣∣∣∣∣∣
=
√
wjw`

∣∣∣∣∣
N∑
κ=0

Hd(κ)
µd(Sd)

C(d−1)/2
κ (ξj · ξ`)

∣∣∣∣∣ .
By virtue of the inequalities (6), (9), and (3) we get

|(AA∗)j`| ≤ C4R
d
N∑
κ=0

κd−1κ−(d−1)/2| sinϕj`|−(d−1)/2

≤ C5R
dN (d+1)/2| sinϕj`|−(d−1)/2,

where ϕj` ∈ (0, π] is determined by ξj · ξ` = cosϕj`. Due to symmetry, we only consider
the northern hemisphere ϕj` ∈ (0, π/2] for which we denote Ij = {` ∈ N : 1 ≤ ` ≤M, q ≤
ϕj` ≤ π/2}. The southern hemisphere can be treated analogously, except for the south
pole region itself. For this region, however, we may use estimate (36). In the northern
hemisphere we have

M∑
j=1

∑
`∈Ij

|(AA∗)j`|2 ≤ C6R
2dNd+1

M∑
j=1

∑
`∈Ij

| sinϕj`|−(d−1). (37)

For 1 ≤ m ≤ π/(2q), put

Sm = {ξ ∈ Sd : (m− 1)q < d(ξ, ξj) ≤ mq};

11



in the notation Sm we suppress the dependence on the number j, which was fixed at the
very beginning. We denote by Mm the number of sampling nodes ξ` that belong to Sm.
These numbers have been estimated in [11] by Mm ≤ C7m

d−1. Since (m− 1)q < ϕj` ≤
mq for ξ` ∈ Sm, we obtain that

∑
`∈Ij

| sinϕj`|−(d−1) ≤ C8

dπ/(2q)e∑
m=1

md−1

(mq)d−1
≤ C9q

−d.

Inserting this in (37) we get

M∑
j=1

∑
`∈Ij

|(AA∗)j`|2 ≤ C10MR2dNd+1q−d. (38)

We now take (36) for the point at the north pole and for the south pole region (which
contains at most one point) and (38) for the remaining matrix entries. Addition of these
estimates gives

2‖AA∗‖2F
n2ε2(2− ε)2

≤ C11MR2d

ε2(2− ε)2
+

C12MR2d

Nd−1qdε2(2− ε)2
. (39)

The first term on the right of (39) does not exceed η/2 if R < %1 = %1(d, ε, η, L) because

MR2d = Mqd
(
R

q

)d
Rd <

µd(Sd)
C1

LdRd

by (4) and by our assumption. If NR ≤ ε/Bd, then 1− ε ≤ ‖f‖W ,2/‖f‖2 ≤ 1 + ε is true
deterministically by (11). So let NR > ε/Bd. Then by (4) and by assumption

MR2d

Nd−1qd
<
Bd−1
d

εd−1

R3d−1M

qd
=
Bd−1
d

εd−1
Mqd

(
R

q

)3d−1

qd−1 ≤
Bd−1
d

εd−1

µd(Sd)
C1

L3d−1Rd−1.

Thus, the second term on the right of (39) is smaller than η/2 for all R < %2 =
%2(d, ε, η, L). Using (29) we arrive at the conclusion that (35) is true whenever R <
%0 := min(%1, %2). �

Remark 4.3. The partition norm R is completely determined by R alone, while the
separation distance q depends on X only. Let

D(ξj , δ) := {ξ ∈ Sd : d(ξ, ξj) ≤ δ}, rj = 2 sup{δ > 0 : D(ξj , δ) ⊂ Rj},

and put r = minj rj . Thus, r is the largest number such that each Rj contains a spherical
disk of diameter r centered at ξj . The advantage of r is that it can be determined by
sole knowledge of the pairs (Rj , ξj), whereas q is a quantity that depends on the location
of ξj and ξ` for different j and `. Theorems 4.1 and 4.2 remain literally true with q
replaced by r. �
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Remark 4.4. If ` > 0 is small, one can partition Sd into O(`d) small regions which
are close to d-dimensional cubes of side-length `. Choose the sampling nodes near the
centers of these cube-type regions. Then R ∼

√
d `, q ∼ `, r ∼ ` as ` → 0. This shows

that sampling pairs as required in Theorems 4.1 and 4.2 do really exist if only L >
√
d.

�

Remark 4.5. The following deterministic Marcinkiewicz-Zygmund inequality for trigono-
metric polynomials f(ξ) =

∑
k∈[−N,N ]d∩Zd f̂ke2πikξ on the torus Td is taken from [7, 1]:

(2− eπdNR)‖f‖2 ≤ ‖f‖W ,2 ≤ eπdNR‖f‖2,

where R = maxj maxξ,η∈Rj
‖ξ − η‖∞ for some partition {Rj ⊂ Td}. Consequently, for

NR ≤ log(1 + ε)/(πd) we have

(1− ε)‖f‖2 ≤ ‖f‖W ,2 ≤ (1 + ε)‖f‖2.

All the probabilistic results established here have analogues on the torus. The proba-
bilistic Marcinkiewicz-Zygmund inequality as given in Theorem 3.1 follows from [3, The-
orem 7.1]. In order to show the result of Theorem 4.2 for the torus we have to estimate
the Frobenius norm ‖AA∗‖2F where A is the weighted nonequispaced Fourier matrix
A =

(√
wje2πikξj

)
j=1,...,M,k∈[−N,N ]d∩Zd . It is easily checked that ‖A‖2F = (2N + 1)d and

that the off-diagonal decay is governed by

|(AA∗)j,`| =
√
wjw`

∣∣∣∣∣∣
∑

k∈[−N,N ]d∩Zd

e2πik(ξj−ξ`)

∣∣∣∣∣∣ ≤
{
wj (2N + 1)d for j = `,
√
wjw`

(2N+1)d−1

2‖ξj−ξ`‖∞
for j 6= `.

Let q = minj 6=` ‖ξj − ξ`‖∞ denote the separation distance of the sampling set. Using
the packing argument from [12, Theorem 4.6], we obtain

2‖AA∗‖2F
(2N + 1)2dε2(2− ε)2

≤ C13MR2d

ε2(2− ε)2
+

C14MR2dψ(q)
N2qdε2(2− ε)2

where ψ(q) = log(1/q) for d = 2 and ψ(q) = 1 for d ≥ 3. AssumingNR > log(1+ε)/(πd),
we can now proceed as in the proof of Theorem 4.2.

5 Examples

Example 5.1. We consider the two dimensional unit sphere S2: Choosing ε = 1/2,
taking the polynomial degree N = 13, and noting that B2 ≤ 132 we see that if R ≤
1/(2 · 13 · 132) ≈ 2.91 · 10−4, then (11) holds, that is, for all f ∈ Π2

13 we have

1
2
‖f‖2 ≤ ‖f‖W ,2 ≤

3
2
‖f‖2.

13



On the other hand, we have NR ≤ 1 for N ≤ 3432 and thus Theorem 3.1 yields for
randomly chosen f ∈ Π2

3432 the inequality

P
(

1
2
‖f‖2 ≤ ‖f‖W ,2 ≤

3
2
‖f‖2

)
≥ 0.99995.

Asking for the deterministic result for the degrees N ≤ 3432 would force us to have
R′ ≤ 1/(2 · 3432 · 132) ≈ 1.10 · 10−6.

Now, let (θ, ϕ) with 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π be the spherical coordinates on S2. The
2m meridians given by ϕ = πk/m (k = 0, . . . , 2m−1) and the m−1 parallels of latitude
specified by θ = πk/m (k = 1, . . . ,m−1) divide S2 into 2m2 regions. Let R be the set of
these 2m2 regions and choose exactly one sampling node arbitrarily in each one. Since
the regions near the equator look approximately like squares, we have R ≈ π

√
2/m.

To make things better visible, we pass from S2 to the surface of the earth, which is
assumed to be a sphere of radius 6370 km. Then the sampling nodes that guarantee
the deterministic result for N ≤ 13 or the probabilistic result for N ≤ 3432 are at an
average distance of π

m · 6370 km ≈ R√
2
· 6370 km ≈ 1.3 km near the equator, whereas

the deterministic result for N ≤ 3432 would force an average equatorial distance of
π
m′ · 6370 km ≈ R′√

2
· 6370 km ≈ 5.0 m.

Example 5.2. Divide S3 into small regions that are close to cubes of side-length `
and take exactly one sampling node in each of these regions. This time R ≈

√
3 ` and

M`3 ≈ ω3 = 2π2. Let ε = 1/2 and N = 8. Since B3 ≤ 666, the starting estimate required
in (11) is R ≤ 1/(2 · 8 · 666) ≈ 9.4 · 10−5, which is true for M ≈ 2π2/`3 ≈ 1.2 · 1014

sampling nodes. With ε = 1/2 we have Theorem 3.1 for N ≤ 1/R ≈ 10656 and a
probability larger than 1− 10−8. The deterministic result for N ≤ 10656 would demand
R′ ≤ 1/(2 · 10656 · 666) ≈ 7.0 · 10−8.

Assuming that our universe is rS3 with r = 18 · 109 light-years, we obtain rR/
√

3 ≈
975000 light-years and rR′/

√
3 ≈ 732 light-years for the average distances between the

sampling nodes. Note that the diameter of our home galaxy is about 100000 light-years.
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