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Let zj := efj (j = 1, . . . ,M) with fj ∈ [−ϕ, 0] + i [−π, π) and small
ϕ ≥ 0 be distinct nodes. With complex coefficients cj 6= 0, we consider an
exponential sum h(x) := c1 ef1 x+ . . . + cM efM x (x ≥ 0). Many applications
in electrical engineering, signal processing, and mathematical physics lead to
the following problem: Determine all parameters of h, if N noisy sampled
values h̃k := h(k) + ek (k = 0, . . . , N − 1) with N � 2M are given, where ek
are small error terms. This parameter identification problem is a nonlinear
inverse problem which can be efficiently solved by the ESPRIT algorithm.
In this paper, we present mainly corresponding error estimates for the nodes
zj (j = 1, . . . ,M). We show that under appropriate conditions, the results
of the ESPRIT algorithm are relatively insensitive to small perturbations on
the sampled data.
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1 Introduction

The following frequency analysis problem resp. parameter identification problem arises in
electrical engineering, signal processing, and mathematical physics (see e.g. [15]):

Recover the positive integer M , distinct numbers fj ∈ [−ϕ, 0] + i [−π, π) with small
ϕ ≥ 0, and complex coefficients cj 6= 0 (j = 1, . . . ,M) in the exponential sum of order
M

h(x) :=

M∑
j=1

cj efjx (x ≥ 0) , (1.1)
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if noisy sampled data h̃k := h(k) + ek (k = 0, . . . , N − 1) with N > 2M are given, where
ek ∈ C are small error terms with |ek| ≤ ε1 and 0 ≤ ε1 � min {|cj |; j = 1, . . . ,M}.
Note that −Re fj ∈ [0, ϕ] is the damping factor and that Im fj ∈ [−π, π) is the angular
frequency of the exponential efjx. The nodes zj := efj (j = 1, . . . ,M) are distinct values
in the annulus D := {z ∈ C : e−ϕ ≤ |z| ≤ 1}.
This frequency analysis problem can be seen as a nonlinear approximation problem to
recover the best M -term approximation of h in the∞-dimensional linear space {efx; f ∈
[−ϕ, 0] + i [−π, π), x ≥ 0}. One known method to solve the frequency analysis problem
is the Prony method (see e.g. [17]). But the main drawback of the Prony method is that
it may be unstable in some cases. By oversampling of the exponential sum (1.1), i.e.
using N sampled data of (1.1) with N � 2M , and applying stable numerical methods,
one can obtain efficient algorithms for the parameter identification [6]. A frequently
used stable method is the so-called ESPRIT method (ESPRIT = Estimation of Signal
Parameters via Rotational Invariance Techniques) [19]. If all nodes zj (j = 1, . . . ,M)
are lying on the unit circle, then an alternative to ESPRIT is the so-called MUSIC
algorithm (MUSIC = MUltiple SIgnal Classification). For a systematic numerical study
of the MUSIC algorithm see [13].

The aim of this paper is to present error estimates for the ESPRIT algorithm. We show
that under appropriate conditions, the results of the ESPRIT algorithm is relatively
insensitive to small perturbations on the sampled data. Our study is mainly based
on the research of F.S.V. Bazán [1, 3] and on perturbation theory for eigenvalues of a
nonnormal M ×M matrix. We extend these results and apply this method to the very
popular ESPRIT algorithm. We emphasize that our numerical study is restricted to a
moderate size of M .

The outline of this paper is as follows. Section 2 has preliminary character and summa-
rizes known properties (see [1]) of the rectangular Vandermonde matrix

V P,M (z) := (zk−1j )P,Mk,j=1 (1.2)

with z := (zj)
M
j=1. For well-separated nodes zj ∈ D (j = 1, . . . ,M), the rectangular

Vandermonde matrix V P,M (z) is well conditioned for sufficiently large P > M . In
Section 3, we solve the frequency analysis problem by the ESPRIT method which is
mainly based on singular value decomposition (SVD) of a rectangular Hankel matrix.
Instead of SVD, one can use a QR factorization of this rectangular Hankel matrix too
(see [17]). In Section 4, we consider the orthogonal projection onto the signal space and
the projected companion matrix. In Section 5, we present error estimates of the nodes
zj for the ESPRIT method. Finally, some numerical examples are given in Section 6.

In the following we use standard notations. By C we denote the set of all complex
numbers. The set of all positive integers is N. The linear space of all column vectors
with n complex components is denoted by Cn, where 0 is the corresponding zero vector.
By ej := (δj,k)

n
k=1 (j = 1, . . . , n) we denote the canonical basis vectors of Cn. The 2-

norm in Cn is ‖ · ‖2. The linear space of all complex m×n matrices is denoted by Cm×n,
where Om,n is the corresponding zero matrix. For a matrix Am,n ∈ Cm×n, its transpose
is AT

m,n, its conjugate–transpose is A∗m,n, and its Moore–Penrose pseudoinverse is A†m,n.
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A square m ×m matrix is abbreviated to Am. By Im we denote the m ×m identity
matrix. The spectral norm in Cm×n is denoted by ‖·‖2, and the Frobenius norm is ‖·‖F.
Further we use the known submatrix notation. Thus Am,m+1(1 : m, 2 : m + 1) is the
m ×m submatrix of Am,m+1 obtained by extracting rows 1 through m and columns 2
through m + 1. Note that the first row or column of a matrix can be indexed by zero.
Other notations are introduced when needed.

2 Rectangular Vandermonde matrices

Let M and P be given positive integers with P > M . Further let zj ∈ D (j = 1, . . . ,M)
be given distinct nodes and z := (zj)

M
j=1. Under mild assumptions, it was shown in

[1] that the P ×M Vandermonde matrix (1.2) is well conditioned for sufficiently large
P > M . Let

cond2 V P,M (z) := ‖V P,M (z)‖2 ‖V P,M (z)†‖2
be the spectral norm condition number of (1.2), where V P,M (z)† denotes the Moore–
Penrose pseudoinverse of (1.2) (see [9, p. 382]). Since V P,M (z) has full rank, we have

V P,M (z)† =
(
V P,M (z)∗ V P,M (z)

)−1
V P,M (z)∗ .

Analogously,
condF V P,M (z) := ‖V P,M (z)‖F ‖V P,M (z)†‖F

is the Frobenius norm condition number of (1.2). Since the spectral norm and the
Frobenius norm are unitarily invariant norms, we conclude that

‖V P,M (z)‖2 = ‖V P,M (z)T‖2 , ‖V P,M (z)‖F = ‖V P,M (z)T‖F .

Further we remark that
(
V P,M (z)†

)T
=
(
V P,M (z)T

)†
. Then we introduce the following

entries

α := max {|zj |; j = 1, . . . ,M} ∈ [e−ϕ, 1] , (2.1)

β := min {|zj |; j = 1, . . . ,M} ∈ [e−ϕ, 1] , (2.2)

µ :=
M∑
j=1

|zj |2 ∈ [M e−2ϕ, M ] , (2.3)

ν :=
M∏
j=1

|zj |2 ∈ [e−2Mϕ, 1] .

The separation distance of all nodes zj ∈ D (j = 1, . . . ,M) is explained by

δ := min {|zj − zk|; j, k = 1, . . . ,M, j 6= k} > 0 . (2.4)

For P > M , the spectral norm of
(
V P,M (z)T

)†
decreases monotonously with respect to

P . If |zj | = 1 for all j = 1, . . . ,M , then by [1, Theorem 1]

lim
P→∞

‖
(
V P,M (z)T

)†‖2 = 0 .
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Let qP ∈ CP with P > M be the minimum 2-norm solution of the underdetermined
linear system

V P,M (z)T qP = −
(
zPj
)M
j=1

(2.5)

such that
qP = −

(
V P,M (z)T

)† (
zPj
)M
j=1

.

Then by [1, Theorem 2], the norms ‖qP ‖2 are bounded with respect to P . If either
|zj | = 1 (j = 1, . . . ,M) or |zj | < 1 (j = 1, . . . ,M), then

lim
P→∞

‖qP ‖2 = 0 .

Let P > M ≥ 2 and let V P,M (z) be the P ×M Vandermonde matrix with distinct
nodes zj ∈ D (j = 1, . . . ,M). Then by [1, Theorem 6 and Lemma 7], the Frobenius
norm condition number of V P,M (z) can be estimated by

condF V P,M (z) ≤M
(

1 +
‖qP ‖22 +M + ν − µ− 1

(M − 1) δ2

)(M−1)/2
ΦP (α, β) (2.6)

with

ΦP (α, β) :=
(1 + α2 + α4 + . . .+ α2(P−1)

1 + β2 + β4 + . . .+ β2(P−1)

)1/2
,

where α, β, µ, ν, and δ are defined by (2.1) – (2.4).

The Vandermonde matrix V P,M (z) with P > M satisfies the inequality

M − 2 + cond2 V P,M (z) +
(
cond2 V P,M (z)

)−1 ≤ condF V P,M (z) . (2.7)

This inequality (2.7) follows directly from a corresponding result in [20] for an invertible,
square matrix. Since the rectangular Vandermonde matrix V P,M (z) possesses full rank
M , the square matrix V P,M (z)∗ V P,M (z) is positive definite. Hence its square root(
V P,M (z)∗ V P,M (z)

)1/2
is defined. The eigenvalues of

(
V P,M (z)∗ V P,M (z)

)1/2
coincide

with the singular values of V P,M (z). Thus one obtains for the spectral resp. Frobenius
norm

cond2

(
V P,M (z)∗ V P,M (z)

)1/2
= cond2 V P,M (z) ,

condF

(
V P,M (z)∗ V P,M (z)

)1/2
= condF V P,M (z) .

From (2.7) it follows that

cond2 V P,M (z) ≤ 1

2

(
condF V P,M (z)−M + 2

)
+

1

2

((
condF V P,M (z)−M + 2

)2 − 4
)1/2

.

If all nodes zj are lying on the unit circle, i.e. |zj | = 1 (j = 1, . . . ,M), then α = β =
ν = ΦP (1, 1) = 1, µ = M , and hence by (2.6)

condF V P,M (z) ≤M
(

1 +
‖qP ‖22

(M − 1) δ2

)(M−1)/2
.

In the case |zj | = 1 (j = 1, . . . ,M), better estimates for the spectral norm condition
number of V P,M (z) are possible (see [16, 13]).
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3 ESPRIT algorithm

In practice, the order M of the exponential sum (1.1) is often unknown. Assume that
L ∈ N is a convenient upper bound of M with M ≤ L ≤ dN2 e, where N is a sufficiently
large integer with N � 2M . In applications, such an upper bound L is mostly known
a priori. If this is not the case, then one can choose L = dN2 e. Suppose that N noisy

sampled data h̃k := h(k)+ek ∈ C (k = 0, . . . , N−1) of (1.1) are given, where ek ∈ C are
small error terms with |ek| ≤ ε1 and 0 ≤ ε1 � 1. Often the sequence {h̃0, h̃1, . . . , h̃N−1}
of sampled data is called as a time series of length N . Then we form the L-trajectory
matrix of this time series

H̃L,N−L+1 :=
(
h̃`+m

)L−1,N−L
`,m=0

(3.1)

with the window length L ∈ {M, . . . , dN2 e}. Obviously, (3.1) is an L × (N − L + 1)
Hankel matrix.

The nonincreasingly ordered singular values σ̃k(H̃L,N−L+1) of the L-trajectory matrix
(3.1) possess the following property:

Lemma 3.1 For fixed N � 2M , the singular values of (3.1) increase almost monoto-
nously with respect to L = M, . . . , dN2 e, i.e., they fulfil the inequalities

σ̃k(H̃L,N−L+1)
2 ≤ σ̃k(H̃L+1,N−L)2 + ‖h̃L‖22 (k = 1, . . . ,M) , (3.2)

where h̃L := (h̃k)
N−1
k=N−L.

Proof. For M ≤ L < dN2 e, we represent the Hankel matrices H̃L,N−L+1 and H̃L+1,N−L
as block matrices

H̃L,N−L+1 =
(
H̃L,N−L h̃L

)
, H̃L+1,N−L =

(
H̃L,N−L

h̃
T
N−L

)

with h̃N−L := (h̃k)
N−1
k=L . Setting B̃L := H̃L,N−L H̃

∗
L,N−L, we obtain that

ÃL := H̃L,N−L+1 H̃
∗
L,N−L+1 = B̃L + h̃L h̃

∗
L , (3.3)

which is a rank-one Hermitian perturbation of the Hermitian matrix B̃L, and

ÃL+1 := H̃L+1,N−L H̃
∗
L+1,N−L =

(
B̃L ỹL
ỹ∗L ‖h̃N−L‖22

)

with ỹL := H̃L,N−L h̃N−L. Using Cauchy’s Interlacing Theorem (see [10, p. 242]) for
the bordered Hermitian matrix ÃL+1, the corresponding nondecreasingly ordered eigen-
values of ÃL+1 and B̃L fulfil the inequalities

λ̃j(B̃L) ≤ λ̃j+1(ÃL+1) (j = 1, . . . , L) .
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By (3.3) and by Weyl’s Theorem (see [10, p. 239]), we obtain that

λ̃1(−h̃L h̃
∗
L) + λ̃j(ÃL) ≤ λ̃j(B̃L) ≤ λ̃j+1(ÃL+1) .

Since the first eigenvalue of the rank-one matrix −h̃L h̃
∗
L is equal to −‖h̃L‖22, we obtain

that

λ̃j(ÃL) ≤ λ̃j+1(ÃL+1) + ‖h̃L‖22 .

The non-zero eigenvalues of ÃL resp. ÃL+1 are the squares of the positive singular
values of H̃L,N−L+1 resp. H̃L+1,N−L. This completes the proof of (3.2).

The convenient choice of the window length L is essential for the following ESPRIT
method. By Lemma 3.1, a sufficiently large integer L ≈ dN2 e is a good choice. Then the
L-trajectory matrix (3.1) with L = dN2 e is almost square. Several numerical experiments
in [8] confirm that the optimal window length L lies in the near of dN2 e.

The main step in the solution of the frequency analysis problem is the determination
of the order M and the computation of the exponents fj or alternatively of the nodes
zj = efj ∈ D (j = 1, . . . , M). Afterwards one can calculate the coefficient vector
c := (cj)

M
j=1 ∈ CM as least squares solution of the overdetermined linear system

V N,M (z) c =
(
h̃k
)N−1
k=0

with the rectangular Vandermonde matrix (1.2), i.e., the coefficient vector c is the solu-
tion of the least squares problem

‖V N,M (z) c−
(
h̃k
)N−1
k=0
‖2 = min .

As known, the square Vandermonde matrix V M (z) is invertible and the matrix V N,M (z)
has full column rank. Additionally we introduce the rectangular Hankel matrices

H̃L,N−L(s) := H̃L,N−L+1(1 : L, 1 + s : N − L+ s) (s = 0, 1) . (3.4)

In the case of exactly sampled data h̃k = h(k) (k = 0, . . . , N − 1), the Hankel matrix
(3.1) is denoted by HL,N−L+1 and the related Hankel matrices (3.4) are denoted by
HL,N−L(s) (s = 0, 1).

Remark 3.2 The Hankel matrices HL,N−L+1 and HL,N−L(s) (s = 0, 1) have the same
rank M for each window length L ∈ {M, . . . , dN2 e} (see [17, Lemma 2.1]). Consequently,
the order M of the exponential sum (1.1) coincides with the rank of these Hankel ma-
trices.

First we assume that exactly sampled data h̃k = h(k) (k = 0, . . . , N − 1) of (1.1) are
given. We choose L ≈ dN2 e. Then the matrix pencil

zHL,N−L(0)−HL,N−L(1) (z ∈ C) (3.5)
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has the nodes zj ∈ D (j = 1, . . . ,M) as eigenvalues (see e.g. [11, 17]). We start the
ESPRIT method by the SVD of the exact L-trajectory matrix HL,N−L+1, i.e.

HL,N−L+1 = ULDL,N−L+1W
∗
N−L+1 ,

where UL ∈ CL×L and WN−L+1 ∈ C(N−L+1)×(N−L+1) are unitary matrices and where
DL,N−L+1 ∈ RL×(N−L+1) is a rectangular diagonal matrix. The diagonal entries of
DL,N−L+1 are the singular values σj of the L-trajectory matrix arranged in nonincreasing
order σ1 ≥ . . . ≥ σM > σM+1 = . . . = σL = 0. Thus we can determine the order M of
the exponential sum (1.1) by the number of positive singular values σj .

Remark 3.3 For fixed N , the size of the lowest positive singular value σM of HL,N−L+1

with M ≤ L ≤ dN2 e depends on the choice of L by Lemma 3.1. The M positive singular
values of HL,N−L+1 are the square roots of the M positive eigenvalues of

AL := HL,N−L+1H
∗
L,N−L+1 .

All the other singular values of HL,N−L+1 resp. eigenvalues of AL are zero. The trace
of AL is equal to

tr (AL) =

L−1∑
`=0

N−L+`∑
j=`

|h(j)|2

and the sum of all the principal minors of size 2 amounts

s2(AL) =
L−2∑
`=0

L−`−1∑
k=1

[(N−L+`∑
j=`

|h(j)|2
) (N−L+`∑

j=`

|h(j + k)|2
)

−
∣∣N−L+`∑

j=`

h(j)h(j + k)
∣∣2] .

In the case M = 1, i.e. h(j) = c1 z
j
1 with c1 6= 0 and 0 < |z1| ≤ 1, the only positive

eigenvalue λ1 of AL reads as follows

λ1 = tr (AL) = |c1|2
(N−L∑
j=0

|z1|2j
) ( L−1∑

`=0

|z1|2`
)
,

so that the only positive singular value σ1 of HL,N−L+1 fulfils the estimate

σ1 = |c1|

√√√√(N−L∑
j=0

|z1|2j
) ( L−1∑

`=0

|z1|2`
)
≤ |c1|

√
(N − L+ 1)L (3.6)

with equality for |z1| = 1. Thus σ1 is maximal for L = dN2 e.
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In the case M = 2, i.e. h(j) = c1 z
j
1 + c2 z

j
2 with ck 6= 0 and 0 < |zk| ≤ 1 (k = 1, 2),

there exist only two positive eigenvalues λ1, λ2 of AL, all the other eigenvalues of AL

vanish. Then λ1 and λ2 are the solutions of the quadratic equation

λ2 − λ tr (AL) + s2(AL) = 0

(see [10, p. 54]) so that

λ1,2 =
1

2
tr (AL)± 1

2

√
(tr (AL))2 − 4 s2(AL) .

Hence the two positive singular values of HL,N−L+1 are σ1,2 =
√
λ1,2.

In the case M > 1, one can estimate the positive singular values of HL,N−L+1 by Weyl’s
Theorem (see [21, p. 68]). Since

HL,N−L+1 =
M∑
k=1

(
ck z

`+m
k

)L−1,N−L
`,m=0

with ck 6= 0 and 0 < |zk| ≤ 1 (k = 1, . . . ,M), one obtains by (3.6) that

0 < σM ≤ σ1 ≤
M∑
k=1

|ck|
√

(N − L+ 1)L . (3.7)

A lower estimate of σM was presented in [4].
A good criterion for the choice of optimal window length L is to maximize the lowest
positive singular value σM of HL,N−L+1. By Lemma 3.1, (3.6) and (3.7), one can see that
L = dN2 e is a good choice (see also [4, 8] and Example 6.4). For the ESPRIT Algorithm
3.4 (i.e. the determination of the numerical rank in step 1) and the corresponding error
estimates (see Theorem 5.4), it is very important that σM is not too small.

Introducing the matrices UL,M := UM (1 : L, 1 : M) and WN−L+1,M := WN−L+1(1 :
N − L + 1, 1 : M) with orthonormal columns as well as the diagonal matrix DM :=
diag (σj)

M
j=1, we obtain the partial SVD of the matrix (3.1) with exact entries, i.e.

HL,N−L+1 = UL,M DM W ∗
N−L+1,M .

Setting

WN−L,M (s) := WN−L+1,M (1 + s : N − L+ s, 1 : M) (s = 0, 1) , (3.8)

it follows by (3.8) and (3.4) that both Hankel matrices (3.4) can be simultaneously
factorized in the form

HL,N−L(s) = UL,M DM WN−L,M (s)∗ (s = 0, 1) . (3.9)

Since UL,M has orthonormal columns and since DM is invertible, the generalized eigen-
value problem of the matrix pencil

zWN−L,M (0)∗ −WN−L,M (1)∗ (z ∈ C)
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has the same non-zero eigenvalues zj ∈ D (j = 1, . . . ,M) as the matrix pencil (3.5) except
for additional zero eigenvalues. Finally we determine the nodes zj ∈ D (j = 1, . . . ,M)
as eigenvalues of the M ×M matrix

F SVD
M := WN−L,M (1)∗

(
WN−L,M (0)∗

)†
(3.10)

Analogously, we can handle the general case of noisy data h̃k = h(k) + ek ∈ C (k =
0, . . . , N − 1) with small error terms ek ∈ C, where |ek| ≤ ε1 and 0 < ε � 1. For
the Hankel matrix (3.1) with the singular values σ̃1 ≥ . . . ≥ σ̃L ≥ 0, we can calculate
the numerical rank M of (3.1) by the property σ̃M ≥ ε σ̃1 and σ̃M+1 < ε σ̃1 with
convenient chosen tolerance ε. Using the IEEE double precision arithmetic, one can
choose ε = 10−10 for given exact data. In the case of noisy data, one has to use a larger
tolerance ε. Let

EL,N−L+1 := H̃L,N−L+1 −HL,N−L+1

be the error matrix of given data. Assuming 2 ‖EL,N−L+1‖2 � σM and choosing ε ≈
2 ‖EL,N−L+1‖2/σ̃1, we find by Weyl’s Theorem (see [21, p. 70]) that

|σ̃j − σj | ≤ ‖EL,N−L+1‖2 (j = 1, . . . , L) .

Thus one obtains that σ̃M ≥ σM − ‖EL,N−L+1‖2 � ‖EL,N−L+1‖2 ≈ ε σ̃1 and σ̃M+1 ≤
‖EL,N−L+1‖2 ≈ ε

2 σ̃1, i.e. σ̃M/σ̃1 ≥ ε and σ̃M+1/σ̃1 < ε.
For the Hankel matrix (3.1) with noisy entries, we use its SVD

H̃L,N−L+1 = ŨL D̃L,N−L+1 W̃
∗
N−L+1

and define as above the matrices ŨL,M , D̃M := diag
(
σ̃j
)M
j=1

, and W̃N−L+1,M . Then

ŨL,M D̃M W̃
∗
N−L+1,M

is a low-rank approximation of (3.1). Analogously to (3.8) and (3.10), we introduce

corresponding matrices W̃N−L,M (s) (s = 0, 1) and F̃
SVD
M . Note that

K̃L,N−L(s) := ŨL,M D̃M W̃N−L,M (s)∗ (s = 0, 1) (3.11)

is a low-rank approximation of H̃L,N−L(s). Thus the SVD-based ESPRIT algorithm
reads as follows:

Algorithm 3.4 (ESPRIT via SVD)
Input: N ∈ N (N � 2M), M unknown order of (1.1), L ≈ dN2 e window length with

M ≤ L ≤ dN2 e, h̃k = h(k) + ek ∈ C (k = 0, . . . , N − 1) noisy sampled values of (1.1),
0 < ε� 1 tolerance.

1. Compute the SVD of the rectangular Hankel matrix (3.1). Determine the numerical
rank M of (3.1) such that σ̃M ≥ ε σ̃1 and σ̃M+1 < εσ̃1. Form the matrices W̃N−L,M (s)
(s = 0, 1) as in (3.8).
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2. Calculate the M ×M matrix F̃
SVD
M as in (3.10) and compute all eigenvalues z̃j ∈ D

(j = 1, . . . ,M) of F̃
SVD
M . Set f̃j := log z̃j (j = 1, . . . ,M), where log denotes the principal

value of the complex logarithm.
3. Compute the coefficient vector c̃ := (c̃j)

M
j=1 ∈ CM as solution of the least squares

problem

‖V N,M (z̃) c̃−
(
h̃k
)N−1
k=0
‖2 = min ,

where z̃ :=
(
z̃j
)M
j=1

denotes the vector of computed nodes.

Output: M ∈ N, f̃j ∈ [−ϕ, 0] + i [−π, π), c̃j ∈ C (j = 1, . . . ,M).

Remark 3.5 One can pass on the computation of the Moore–Penrose pseudoinverse in
(3.10). Then the second step of Algorithm 3.4 reads as follows (see [17, Algorithm 3.1]):

2′. Calculate the matrix products

ÃM := W̃N−L,M (0)∗ W̃N−L,M (0) , B̃M := W̃N−L,M (1)∗ W̃N−L,M (0)

and compute all eigenvalues z̃j ∈ D (j = 1, . . . ,M) of the square matrix pencil z ÃM −
B̃M (z ∈ C) by the QZ–Algorithm (see [7, pp. 384 – 385]). Set f̃j := log z̃j (j =
1, . . . ,M).

In the second step of Algorithm 3.4, the matrix (3.10) can be replaced by the matrix

FM := XN−L,M (1)∗XN−L,M (0) , (3.12)

where

XN−L,M (s) := WN−L,M (s)
(
WN−L,M (0)∗WN−L,M (0)

)−1/2
(s = 0, 1) . (3.13)

Since WN−L,M (0)∗WN−L,M (0) is positive definite, the above matrix (3.13) is well-
defined. Obviously, we have

XN−L,M (0)∗XN−L,M (0) = IM , (3.14)

i.e., the columns of XN−L,M (0) are orthonormal. As later will be shown in Lemma 4.2,
the new matrix (3.12) has the same eigenvalues zj ∈ D (j = 1, . . . ,M) as (3.10).

4 Orthogonal projection onto the signal space

First we consider the ESPRIT method for exact sampled data h̃k = h(k) (k = 0, . . . , N−
1) of the exponential sum (1.1) of order M . We choose a convenient window length
L ≈ dN2 e such that M ≤ L ≤ dN2 e.
Analogously to (2.5), the vector qN−L := (qk)

N−L−1
k=0 ∈ CN−L is defined as the minimum

2-norm solution of the (underdetermined) linear system

V N−L,M (z)T qN−L = −(zN−Lj )Mj=1 . (4.1)
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Forming the corresponding monic polynomial qN−L of degree N − L

qN−L(z) :=
N−L−1∑
k=0

qk z
k + zN−L (z ∈ C) ,

then by (4.1) this polynomial has all nodes zj ∈ D (j = 1, . . . ,M) as roots. By (4.1) and
by the factorization

HL,N−L(0) = V L,M (z) (diag c)V N−L,M (z)T ,

the vector qN−L is also the minimum 2-norm solution of the Yule–Walker system

HL,N−L(0) qN−L = −
(
h(k)

)N−1
k=N−L .

Now we introduce the companion matrix of the monic polynomial qN−L resp. of the
vector qN−L

CN−L(qN−L) :=
(
e2 | e3 | . . . | eN−L | − qN−L

)
, (4.2)

where ej ∈ CN−L are the canonical basis vectors.

Remark 4.1 The companion matrix (4.2) has the known property

det
(
z IN−L −CN−L(qN−L)

)
= qN−L(z) (z ∈ C) ,

where IN−L denotes the identity matrix. All singular values of (4.2) can be explicitly
determined (see [12] or [10, p. 197]).

By [17, Lemma 2.2], the companion matrix (4.2) has the property

HL,N−L(0)CN−L(qN−L) = HL,N−L(1) . (4.3)

Now we show interesting relations between the M ×M matrix (3.10) resp. (3.12) and
the (N − L)× (N − L) companion matrix (4.2).

Lemma 4.2 Between the matrices (3.10), (3.12), and (4.2) there consist the following
relations

F SVD
M = WN−L,M (0)∗CN−L(qN−L)

(
WN−L,M (0)∗

)†
, (4.4)

FM = XN−L,M (0)∗CN−L(qN−L)XN−L,M (0) , (4.5)

where WN−L,M (0)∗ is the third factor in the factorization (3.9) of the Hankel matrix
HL,N−L(0) and where XN−L,M (0) is defined by (3.13). Further the matrix (3.10) is
similar to (3.12) by

F SVD
M =

(
WN−L,M (0)∗WN−L,M (0)

)1/2
FM

(
WN−L,M (0)∗WN−L,M (0)

)−1/2
(4.6)

so that both matrices have the same eigenvalues.
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Proof. 1) By (4.3) and (3.9) we obtain that

DM WN−L,M (0)∗CN−L(qN−L) = DM WN−L,M (1)∗ ,

since U∗L,M UL,M = IM . Multiplying the above equation with

D−1M = diag (σ−1j )Mj=1 ,

where σ1 ≥ . . . ≥ σM > 0 denote all positive singular values of HL,N−L+1, it follows
that

WN−L,M (0)∗CN−L(qN−L) = WN−L,M (1)∗ . (4.7)

Thus we receive by (3.10) that

WN−L,M (0)∗CN−L(qN−L)
(
WN−L,M (0)∗

)†
= WN−L,M (1)∗

(
WN−L,M (0)∗

)†
= F SVD

M . (4.8)

2) Formula (4.5) is an immediate consequence of (4.7) and (3.13), if we multiply (4.7)

by XN−L,M (0) from the right and by
(
WN−L,M (0)∗WN−L,M (0)

)−1/2
from the left.

3) Using the representations (4.4) – (4.5) as well as formula (3.13), we obtain (4.6), since(
WN−L,M (0)∗

)†
= WN−L,M (0)

(
WN−L,M (0)∗WN−L,M (0)

)−1
(cf. (4.18)). As known, similar matrices possess the same eigenvalues. This completes
the proof.

The signal space SN−L ⊂ CN−L is defined as the range of the matrix V N−L,M (z̄), where
z̄ := (z̄j)

M
j=1, i.e., the signal space SN−L is spanned by theM linearly independent vectors

(z̄kj )N−L−1k=0 (j = 1, . . . ,M). Thus the M -dimensional signal space is fully characterized
by the distinct nodes zj ∈ D (j = 1, . . . ,M). By the properties of the Moore–Penrose

pseudoinverse
(
V N−L,M (z)T

)†
it follows that

PN−L :=
(
V N−L,M (z)T

)†
V N−L,M (z)T (4.9)

is the orthogonal projection onto the signal space SN−L. Further, we remark that

V N−L,M (z)T
(
V N−L,M (z)T

)†
= IM , (4.10)

since V N−L,M (z)T has full row rank. Note that qN−L ∈ SN−L, since by (4.1) and (4.9)

PN−L qN−L = −
(
V N−L,M (z)T

)†
V N−L,M (z)T

(
V N−L,M (z)T

)† (
zN−Lj

)M
j=1

= −
(
V N−L,M (z)T

)† (
zN−Lj

)M
j=1

= qN−L .

Now we describe the properties of the projected companion matrix

PN−LCN−L(qN−L) ∈ C(N−L)×(N−L) . (4.11)

Note that in [3] the matrix FM with the representation (4.5) is called “projected com-
panion matrix”.
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Theorem 4.3 The projected companion matrix (4.11) can be represented in the follow-
ing forms

PN−LCN−L(qN−L) =
(
V N−L,M (z)T

)†
(diag z)V N−L,M (z)T (4.12)

=
(
WN−L,M (0)∗

)†
WN−L,M (1)∗ (4.13)

= XN−L,M (0)XN−L,M (1)∗ . (4.14)

The signal space SN−L coincides with the range of HL,N−L(0)∗ and also with the range
of WN−L,M (0). The columns of XN−L,M (0) form an orthonormal basis of the M -
dimensional signal space SN−L. Moreover, the signal space SN−L is an invariant sub-
space for XN−L,M (0). Further, CN−L(qN−L)∗ maps the signal space SN−L into itself.
The orthogonal projection PN−L onto SN−L can be represented as follows

PN−L =
(
WN−L,M (0)∗

)†
WN−L,M (0)∗ = XN−L,M (0)XN−L,M (0)∗ . (4.15)

The nonvanishing eigenvalues of the projected companion matrix (4.11) coincide with
the eigenvalues of (3.10) resp. (3.12).

Proof. 1) By (4.1) and (4.2) we obtain that

V N−L,M (z)TCN−L(qN−L) = (diag z)V N−L,M (z)T . (4.16)

Note that (4.16) shows a close relationship between the Vandermonde matrix V N−L,M (z)
and the companion matrix CN−L(qN−L). From (4.16) it follows immediately that

CN−L(qN−L)∗ V N−L,M (z̄) = V N−L,M (z̄) (diag z̄) ,

i.e., CN−L(qN−L)∗ maps the signal space SN−L into itself. Multiplying (4.16) with(
V N−L,M (z)T

)†
, we receive the factorization (4.12) of the projected companion matrix

(4.11).
2) Using the factorization

HL,N−L(0) = V L,M (z) (diag c)V N−L,M (z)T ,

we obtain that
HL,N−L(0)∗ = V N−L,M (z̄) (diag c̄)V L,M (z)∗ .

Consequently, SN−L coincides with the range of HL,N−L(0)∗. By (3.9) for s = 0 it
follows that

HL,N−L(0)∗ = WN−L,M (0)DM U∗L,M .

Hence SN−L coincides with the range of WN−L,M (0) too. Further(
WN−L,M (0)∗

)†
WN−L,M (0)∗

is the orthogonal projection onto the range of
(
WN−L,M (0)∗

)†
which coincides with the

range of WN−L,M (0). Since the range of WN−L,M (0) is equal to the signal space SN−L,
we conclude that

PN−L =
(
WN−L,M (0)∗

)†
WN−L,M (0)∗ . (4.17)
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Multiplying (4.7) with
(
WN−L,M (0)∗

)†
from the left, by (4.17) we receive the factoriza-

tion (4.13) of the projected companion matrix (4.11). Formula (4.14) follows immediately
from (4.13) and (3.13), since the Moore–Penrose pseudoinverse of the full rank matrix
WN−L,M (0)∗ reads as follows

(
WN−L,M (0)∗

)†
= WN−L,M (0)

(
WN−L,M (0)∗WN−L,M (0)

)−1
(4.18)

and since the inverse square root of the positive definite matrix WN−L,M (0)∗WN−L,M (0)
is well defined.

By the properties of the Moore–Penrose pseudoinverse
(
WN−L,M (0)∗

)†
, the matrix(

WN−L,M (0)∗
)†

WN−L,M (0)∗ is the orthogonal projection onto the range of WN−L,M (0)
which coincides with the signal space SN−L. Hence we conclude that

PN−L =
(
WN−L,M (0)∗

)†
WN−L,M (0)∗ .

Using (4.18) and (3.13), we obtain (4.15).

3) By the property (3.14), the M columns of XN−L,M (0) are orthonormal and are
contained in the M -dimensional signal space SN−L, because SN−L coincides with the
range of WN−L,M (0). Hence the M columns of XN−L,M (0) form an orthonormal basis
of SN−L. Using (3.12) and (4.14), we obtain the relation

PN−LCN−L(qN−L)XN−L,M (0) = XN−L,M (0)FM .

From this it follows that the signal space SN−L is an invariant subspace for XN−L,M (0).

4) By simple calculations, one can see that the nonvanishing eigenvalues of the projected
companion matrix (4.11) coincide with the eigenvalues of (3.10) resp. (3.12). Let (z,y)
with z 6= 0 and y ∈ CN−L (y 6= 0) be a right eigenpair of (4.11), i.e.

PN−LCN−L(qN−L)y = z y .

Hence zPN−Ly = zy and thus PN−Ly = y by z 6= 0. For x := XN−L,M (0)∗y we
obtain XN−L,M (0)x = PN−L y = y by (4.15) so that x 6= 0. Further by (3.14) and
(4.5) it follows that

XN−L,M (0)∗PN−LCN−L(qN−L)y = XN−L,M (0)∗CN−L(qN−L)y

= XN−L,M (0)∗CN−L(qN−L)XN−L,M (0)x

= FM x = z x ,

i.e., (z, XN−L,M (0)∗y) is a right eigenpair of (3.12). Analogously, one can show that
each eigenvalue of (3.12) is an eigenvalue of (4.11) too. By Lemma 4.2, the eigenvalues
of (3.12) coincide with the eigenvalues of (3.10). This completes the proof.
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Remark 4.4 The singular values of the matrix FM can be characterized by [1, Theorem
4]. Assume that 2 ≤M ≤ L ≤ dN2 e. Let pN−L := PN−L e1 be the first column of PN−L.
Then the singular values of the matrix (3.12) are ω2 = . . . = ωM−1 = 1 and

ω1 =
1√
2

(
2 + ‖qN−L‖22 − ‖pN−L‖22 +

√
(‖qN−L‖22 + ‖pN−L‖22)2 − 4 |q0|2

)1/2
,

ωM =
1√
2

(
2 + ‖qN−L‖22 − ‖pN−L‖22 −

√
(‖qN−L‖22 + ‖pN−L‖22)2 − 4 |q0|2

)1/2
,

where q0 is the first component of qN−L. Further, the spectral resp. Frobenius norm of
the matrix (3.12) is equal to

‖FM‖2 = ω1 , ‖FM‖F =
√
M + ‖qN−L‖22 − ‖pN−L‖22 . (4.19)

5 Error estimates of the nodes

From the matrix perturbation theory, the following results on the perturbation of eigen-
values are known. Let AP ∈ CP×P be a square nonnormal matrix with the eigenvalues
yk ∈ C (k = 1, . . . , P ) and let ÃP ∈ CP×P be a perturbation of AP . If yj be a simple
eigenvalue of AP with right resp. left eigenvectors uj resp. vj , then there exists a unique
eigenvalue ỹj of ÃP (see e.g. [22, pp. 183 – 184]) such that

ỹj = yj +
v∗j (ÃP −AP )uj

v∗j uj
+O(‖ÃP −AP ‖22)

Note that the right and left eigenvectors of a simple eigenvalue yj cannot be orthogonal,
i.e. v∗j uj 6= 0. If the left and right eigenvectors of an eigenvalue of AP are nearly
orthogonal, then AP must be near one with multiple eigenvalue (see [23]). For sufficiently
small spectral norm ‖ÃP −AP ‖2, we obtain the first–order estimate

|ỹj − yj | ≤
|v∗j (ÃP −AP )uj |

|v∗j uj |
≤ ‖vj‖2 ‖uj‖2

|v∗j uj |
‖ÃP −AP ‖2 . (5.1)

Thus the quantity

κj(AP ) :=
‖vj‖2 ‖uj‖2
|v∗j uj |

≥ 1

measures the sensitivity of the eigenvalue yj to perturbations on AP , see also [5]. There-
fore this number is called the condition number of the eigenvalue yj . By definition we
have κj(AP ) = κj(A

∗
P ). By [20], the condition number of a simple eigenvalue yj of AP

can be estimated by

κj(AP ) ≤
(

1 +
‖AP ‖2F −

∑P
k=1 |yk|2

(P − 1) d2j

)(P−1)/2
. (5.2)
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where dj := min{|yj − yk|; k = 1, . . . , P, k 6= j} denotes the separation distance for the
eigenvalue yj . Note that

∆(AP ) :=

√√√√‖AP ‖2F −
P∑
k=1

|yk|2

is the so-called departure from normality of AP (see [20]). If ∆(AP ) = 0, then AP is
normal.

Now we apply these results for the perturbation of eigenvalues concerning the projected
companion matrix (4.11) and the M ×M matrix (3.12).

Theorem 5.1 Let M, L, N ∈ N with M ≤ L ≤ dN2 e be given. Then the projected
companion matrix (4.11) has zj ∈ D (j = 1, . . . ,M) as simple eigenvalues. Further, the
matrix (4.11) has 0 as an eigenvalue with algebraic multiplicity N − L−M . Moreover,

(zj ,
(
V N−L,M (z)T

)†
ej) (j = 1, . . . ,M) is a right eigenpair and (zj ,V N−L,M (z̄) ej) (j =

1, . . . ,M) is a left eigenpair of (4.11), where ej ∈ CM is the jth canonical basis vector.
The condition number of the eigenvalue zj of the matrix (4.11) fulfills

κj(PN−LCN−L(qN−L)) = ‖
(
V N−L,M (z)T

)†
ej‖2 ‖V N−L,M (z̄) ej‖2 . (5.3)

Corresponding to each eigenvalue zj ∈ D (j = 1, . . . ,M) of PN−LCN−L(qN−L), there
exists a unique eigenvalue z̃j of P̃N−LCN−L(q̃N−L) so that

|zj − z̃j | ≤ κj(PN−LCN−L(qN−L))
(
‖PN−L − P̃N−L‖2 + ‖qN−L − q̃N−L‖2

)
. (5.4)

Here q̃N−L ∈ CN−L denotes the minimum 2-norm solution of the linear system

K̃L,N−L(0) q̃N−L = −
(
h̃k
)N−1
k=N−L ,

where K̃L,N−L(0) is the low-rank approximation (3.11) of H̃L,N−L(0).

Proof. 1) By the representation (4.12) of the projected companion matrix (4.11) and the

property (4.10) it follows immediately that
(
V N−L,M (z)T

)†
ej resp.

(
V N−L,M (z)T

)∗
ej =

V N−L,M (z̄) ej is a right resp. left eigenvector of (4.11) with respect to the eigenvalue
zj . By (4.10), these eigenvectors possess the property((

V N−L,M (z)T
)∗

ej

)∗ (
V N−L,M (z)T

)†
ej = eTj ej = 1 .

Then the condition number of the projected companion matrix (4.11) with respect to
the eigenvalue zj ∈ D is given by (5.3).
By assumption, it holds N − L > M . Since V N−L,M (z) has full rank, we see that by
(4.12) the null space of PN−LCN−L(qN−L) coincides with the null space of V N−L,M (z)T.
Hence the null space of V N−L,M (z)T has the dimension N −L−M . This means that 0

16



is an eigenvalue with algebraic multiplicity N − L−M and that zj ∈ D (j = 1, . . . ,M)
are simple eigenvalues of (4.11).

2) Let z̃j (j = 1, . . . ,M) denote an eigenvalue of (4.11) that is the closest to zj ∈ D. Our
goal is to estimate the error |z̃j − zj | (j = 1, . . . ,M). Let PN−L resp. P̃N−L denote the
orthogonal projector onto the corresponding signal space SN−L resp. S̃N−L. Setting

AN−L := PN−LCN−L(qN−L)− P̃N−LCN−L(q̃N−L) ,

by (5.1) the following first–order estimate holds

|z̃j − zj | ≤ κj(PN−LCN−L(qN−L)) ‖AN−L‖2

for j = 1, . . . ,M . Using the special structure of the companion matrix (4.2), one can
see that

AN−LA
∗
N−L = (PN−L − P̃N−L) (PN−L − P̃N−L)∗ + (qN−L − q̃N−L) (qN−L − q̃N−L)∗

− (pN−L − p̃N−L) (pN−L − p̃N−L)∗ ,

where pN−L and p̃N−L are the first columns of PN−L resp. P̃N−L. Then for each unit
vector x ∈ CN−L we receive that

x∗AN−LA
∗
N−L x = ‖A∗N−Lx‖22

= ‖(PN−L − P̃N−L)∗x‖22 + |x∗ (qN−L − q̃N−L)|2

− |x∗ (pN−L − p̃N−L)|2

≤ ‖PN−L − P̃N−L‖22 + ‖qN−L − q̃N−L‖22 .

Thus it follows that for all unit vectors x ∈ CN−L

‖A∗N−Lx‖2 ≤ ‖PN−L − P̃N−L‖2 + ‖qN−L − q̃N−L‖2

and hence

‖AN−L‖2 ≤ ‖PN−L − P̃N−L‖2 + ‖qN−L − q̃N−L‖2 .

Thus we obtain the above estimate of |z̃j − zj |. This completes the proof.

In the next theorem, we show that κj(PN−LCN−L(qN−L)) = κj(FM ). The matrix
FM is computed from exactly sampled data h(k) (k = 0, . . . , N − 1). Analogously, the
matrix F̃M is obtained from noisy sampled data h̃k (k = 0, . . . , N − 1). Thus F̃M has
a similar form as FM , namely

F̃M = X̃N−L,M (1)∗ X̃N−L,M (0) .
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Theorem 5.2 The matrix (3.12) has only zj ∈ D (j = 1, . . . ,M) as simple eigenval-

ues. Further, (zj ,XN−L,M (0)∗
(
V N−L,M (z)T

)†
ej) (j = 1, . . . ,M) is a right eigenpair

and (zj ,XN−L,M (0)† V N−L,M (z̄) ej) (j = 1, . . . ,M) is a left eigenpair of (3.12). The
condition number of the eigenvalue zj of the matrix (3.12) fulfils

κj(FM ) = ‖XN−L,M (0)∗
(
V N−L,M (z)T

)†
ej‖2 ‖XN−L,M (0)† V N−L,M (z̄) ej‖2

= κj(PN−LCN−L(qN−L)) (5.5)

≤
(

1 +
M + ‖qN−L‖22 − ‖pN−L‖22 − µ

(M − 1) δ2j

)(M−1)/2
(5.6)

with the first column pN−L of PN−L, with µ defined by (2.3), and with δj := min{|zj −
zk|; k = 1, . . . ,M, k 6= j}.

Proof. Using (4.5) and (4.12), we obtain the matrix factorizations

FM = XN−L,M (0)∗CN−L(qN−L)XN−L,M (0)

= XN−L,M (0)∗PN−LCN−L(qN−L)XN−L,M (0)

= XN−L,M (0)∗
(
V N−L,M (z)T

)†
(diag z)V N−L,M (z)TXN−L,M (0) .

Consequently, XN−L,M (0)∗
(
V N−L,M (z)T

)†
ej resp. XN−L,M (0)† V N−L,M (z̄) ej is a

right resp. left eigenvector of (3.12) with respect to zj . Since these eigenvectors possess
the property

eTj V N−L,M (z)T
(
XN−L,M (0)XN−L,M (0)∗

(
V N−L,M (z)T

)†
ej

= eTj V N−L,M (z)TPN−L
(
V N−L,M (z)T

)†
ej = eTj V N−L,M (z)T

(
V N−L,M (z)T

)†
ej

= eTj ej = 1 ,

the condition number of the simple eigenvalue zj of the matrix (3.12) is given by

κj(FM ) = ‖XN−L,M (0)∗
(
V N−L,M (z)T

)†
ej‖2 ‖XN−L,M (0)∗ V N−L,M (z̄) ej‖2

From (5.2) it follows the estimate (5.6). Since both
(
V N−L,M (z)T

)†
ej and

V N−L,M (z̄) ej belong to the signal space SN−L and since the columns of XN−L,M (0)
form an orthonormal basis of SN−L, it is clear that

‖XN−L,M (0)∗
(
V N−L,M (z)T

)†
ej‖2 = ‖

(
V N−L,M (z)T

)†
ej‖2 ,

‖XN−L,M (0)∗ V N−L,M (z̄) ej‖2 = ‖V N−L,M (z̄) ej‖2 .

Thus we receive (5.5). From (5.2) and (4.19) it follows immediately the nice upper bound
(5.6) of κj(FM ). Using (5.1), we obtain the above estimate of |zj − z̃j |. Similarly to
(5.6), a corresponding estimate was also presented in [3, Proposition 3]. This completes
the proof.
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Remark 5.3 The matrix (3.12) is not Hermitian in general. By balancing one can often
improve the accuracy of the computed eigenvalues of (3.12). Balancing is a convenient
diagonal scaling of (3.12), i.e., a diagonal matrix ∆M is computed in O(M2) operations,
so that the jth column and the jth row of ∆−1M FM ∆M for each j = 1, . . . ,M have
almost the same 1-norm. Since the diagonal entries of ∆M are chosen as powers of 2,
the balanced matrix ∆−1M FM ∆M can be calculated without roundoff (see [14]).

By construction, the columns of the matrices XN−L,M (0) and X̃N−L,M (0) form or-
thonormal bases for the M -dimensional signal spaces SN−L and S̃N−L, respectively. As-
sume that UM DM V ∗M is the singular value decomposition of XN−L,M (0)∗ X̃N−L,M (0),
where UM and V M are unitary matrices and DM is a diagonal matrix with the diagonal
entries dj (j = 1, . . . ,M) arranged in nonincreasing order 1 ≥ d1 ≥ . . . ≥ dM ≥ 0. Then

θj := arccos dM−j+1 (j = 1, . . . ,M)

are the canonical angles between SN−L and S̃N−L (see [22, p. 43 and p. 45]). We remark
that

π

2
≥ θ1 ≥ . . . ≥ θM ≥ 0

such that θ1 is the largest canonical angle between SN−L and S̃N−L.
Note that ‖PN−L − P̃N−L‖2 is the distance between the M -dimensional signal spaces
SN−L and S̃N−L (cf. [7, p. 76]). Since PN−L (PN−L−P̃N−L) = PN−L (IN−L−P̃N−L),
we see immediately that

‖PN−L − P̃N−L‖2 ≤ ‖PN−L‖2 ‖IN−L − P̃N−L‖2 ≤ 1 .

As known (see [22, pp. 43 – 44]), the largest singular value of PN−L − P̃N−L is equal
to sin θ1. Hence the distance between SN−L and S̃N−L amounts to

‖PN−L − P̃N−L‖2 = sin θ1 .

Now we estimate ‖PN−L − P̃N−L‖2 = sin θ1, where PN−L is the orthogonal projection
onto the signal space SN−L which coincides with the range of HL,N−L(0)∗ by Theorem
4.3. After the construction (see step 1 of Algorithm 3.4), P̃N−L is the orthogonal pro-
jection onto the signal space S̃N−L which is the range of K̃L,N−L(0)∗, where K̃L,N−L(0)
defined by (3.11) is the rank-M approximation of the given noisy matrix H̃L,N−L(0).
Thus the error matrix of low-rank approximation can be estimated by

‖H̃L,N−L(0)− K̃L,N−L(0)‖2 ≤ σ̃M+1 < ε σ̃1 , (5.7)

where σ̃1 is the largest singular value of (3.1) and ε > 0 is a convenient chosen tolerance.
Let

EL,N−L = H̃L,N−L(0)−HL,N−L(0) = (e`+m)L−1,N−L−1`,m=0

be the error matrix of given data. Using the maximum column resp. row sum norm of
EL,N−L, we obtain by |ek| ≤ ε1 (k = 0, . . . , N − 1) that

‖EL,N−L‖2 ≤
√
‖EL,N−L‖1 ‖EL,N−L‖∞ ≤

√
L (N − L) ε1 ≤

N

2
ε1 .
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Theorem 5.4 Let N ∈ N (N � 1) be given. Assume that the order M of the exponen-
tial sum (1.1) fulfills 2M � N and that the coefficients cj of (1.1) satisfy the condition
|cj | ≥ ρ > 0 (j = 1, . . . ,M). Let σM be the lowest positive singular value of HL,N−L+1

with L ≈ dN2 e (M ≤ L ≤ dN2 e).
If 2 ‖EL,N−L‖2 � σM , then the spectral norm ‖PN−L − P̃N−L‖2 = sin θ1 can be esti-
mated by

‖PN−L − P̃N−L‖2 ≤
2

σM
‖EL,N−L‖2 . (5.8)

Further, it holds

‖HL,N−L(0)†‖2 =
1

σM
≤ 1

ρ
‖V L,M (z)†‖22 ,

where

‖V L,M (z)†‖22 ≤


M (1−β2)
1−β2L

(
1 +

M+‖qL‖22−‖pL‖22−µ
(M−1) δ2

)M−1
if β < 1 ,

M
L

(
1 +

‖qL‖22−‖pL‖22
(M−1) δ2

)M−1
if β = 1

with the first column pL of P L. Note that β, µ, and δ are defined by (2.2), (2.3) resp.
(2.4).

Proof. 1) For the orthogonal projections PN−L and P̃N−L we obtain that

‖PN−L − P̃N−L‖2 = ‖PN−L (PN−L − P̃N−L)‖2 = ‖PN−L − PN−L P̃N−L‖2
= ‖PN−L (IN−L − P̃N−L)‖2 .

Since PN−L is the orthogonal projection onto the range of HL,N−L(0)∗, this projection
has the form PN−L = HL,N−L(0)†HL,N−L(0). Analogously, the orthogonal projection
P̃N−L onto the range of K̃L,N−L(0)∗ is given by P̃N−L = K̃L,N−L(0)† K̃L,N−L(0).
Then it follows that

PN−L (IN−L − P̃N−L) = HL,N−L(0)†HL,N−L(0) (IN−L − P̃N−L) ,

where

HL,N−L(0) = K̃L,N−L(0) + (H̃L,N−L(0)− K̃L,N−L(0))−EL,N−L .

Since K̃L,N−L(0) = K̃L,N−L(0) P̃N−L and since IN−L− P̃N−L is an orthogonal projec-
tion too, we obtain by ‖HL,N−L(0)†‖2 = 1

σM
that

‖PN−L − P̃N−L‖2 ≤
1

σM

(
‖H̃L,N−L(0)− K̃L,N−L(0)‖2 + ‖EL,N−L‖2

)
.

From (5.7) and σ̃M+1 ≤ ‖EL,N−L‖2 by Weyl’s Theorem (see [21, p. 70]), it follows the
inequality (5.8).
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2) The exact Hankel matrix HL,N−L(0) has the rank M and can be factorized into the
following product of full rank matrices

HL,N−L(0) = V L,M (z) (diag c)V N−L,M (z)T .

Thus the Moore–Penrose pseudoinverse of HL,N−L(0) has the form

HL,N−L(0)† =
(
V N−L,M (z)T

)†
(diag c)−1 V L,M (z)† .

Hence its norm can be estimated as follows

‖HL,N−L(0)†‖2 ≤
1

ρ
‖
(
V N−L,M (z)T

)†‖2 ‖V L,M (z)†‖2 ≤
1

ρ
‖
(
V L,M (z)T

)†‖22 ,
since for M ≤ L ≤ N − L it holds by [1, Theorem 1]

‖
(
V N−L,M (z)T

)†‖2 ≤ ‖(V L,M (z)T
)†‖2 = ‖V L,M (z)†‖2 .

3) Finally, we estimate ‖
(
V L,M (z)T

)†‖22 for L ≥M . We start with

‖
(
V L,M (z)T

)†‖22 ≤ ‖
(
V L,M (z)T

)†‖2F =
M∑
j=1

‖
(
V L,M (z)T

)†
ej‖22

=

M∑
j=1

‖
(
V L,M (z)T

)†
ej‖22 ‖V L,M (z̄) ej‖22

‖V L,M (z̄) ej‖22

As shown in the proof of Theorem 5.2, we know that

‖
(
V L,M (z)T

)†
ej‖22 ‖V L,M (z̄) ej‖22 ≤

(
1 +

M + ‖qL‖22 − ‖pL‖22 − µ
(M − 1) δ2

)M−1
with δ = min {|zj − zk|; j, k = 1, . . . ,M, j 6= k}. Finally we use the estimate

‖V L,M (z̄) ej‖22 =

L−1∑
k=0

|zj |2k ≥
L−1∑
k=0

β2k .

This completes the proof.

We summarize: If the error bound ε1 in Algorithm 3.4 are very small for sufficiently
large integer N (N � 2M) so that 2 ‖EL,N−L‖2 � σM for a window length L ≈ dN2 e
(M ≤ L ≤ dN2 e), if all nodes zj (j = 1, . . . ,M) are lying near to the unit circle with β < 1
(see (2.2)) but not extremely close to each other, and if all coefficients cj (j = 1, . . . ,M)
fulfill |cj | ≥ ρ > 0, then for each node zj (j = 1, . . . ,M) there exists a unique node z̃j
such that

|zj − z̃j | ≤
(

1 +
M + ‖qN−L‖22 − ‖pN−L‖22 − µ

(M − 1) δ2j

)(M−1)/2
×
(

sin θ1 + ‖qN−L − q̃N−L‖2
)
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where µ and δj are defined by (2.3) and in Theorem 5.2, and where

sin θ1 ≤
2

σM
‖EL,N−L‖2 .

If the nodes zj ∈ D (j = 1, . . . ,M) are computed with low errors, then the nonvanishing
coefficients cj ∈ C (j = 1, . . . ,M) can be determined as solution c = (cj)

M
j=1 of the least

squares problem
‖V N,M (z) c− h‖2 = min

with the vector h =
(
h(k)

)N−1
k=0

of exact data and N > 2M (see Algorithm 3.4). Note

that V N,M (z) has full rank. Let h̃ = (h̃k)
N−1
k=0 be the vector of noisy data and let

z̃ = (z̃j)
M
j=1 be the vector of computed nodes z̃j ∈ D with z̃j ≈ zj . Let c̃ = (c̃j)

M
j=1 be

the solution of the least squares problem

‖V N,M (z̃) c̃− h̃‖2 = min .

For large N � 2M , the Vandermonde matrix V N,M (z̃) has full rank and is well condi-
tioned with respect to the spectral norm. Assume that ε2 > 0 fulfils the inequalities

‖V N,M (z)− V N,M (z̃)‖2 ≤ ε2 ‖V N,M (z)‖2 , ‖h− h̃‖2 ≤ ε2 ‖h‖2 ,
ε2 cond2 V N,M (z) < 1 .

By the perturbation theory of the least squares problem one obtains the normwise esti-
mate (see [9, p. 382 and pp. 400 – 402])

‖c− c̃‖2
‖c‖2

≤
ε2 cond2 V N,M (z)

1− ε2 cond2 V N,M (z)

×
[
2 + (cond2 V N,M (z) + 1)

‖V N,M (z) c− h‖2
‖V N,M (z)‖2 ‖c‖2

]
.

Consequently, the sensitivity of the least squares problem can be measured by the spec-
tral norm condition number cond2 V N,M (z) when ‖V N,M (z) c−h‖2 is small and by the

square
(
cond2 V N,M (z)

)2
otherwise.

6 Numerical examples

Finally we illustrate the results by some numerical experiments. All computations are
performed in MATLAB with IEEE double–precision arithmetic.

First we summarize the corresponding assumptions of our study:
(A1) The number N of noisy sampled data h̃k = h(k) + ek (k = 0, . . . , N − 1) satisfies
the condition N � 2M . In other words, we use oversampling of the exponential sum
(1.1). The order M of the exponential sum (1.1) is only of moderate size.
(A2) The coefficients cj ∈ C (j = 1, . . . ,M) of the exponential sum (1.1) fulfill the
condition |cj | ≥ ρ > 0, where ρ is not too small.
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(A3) The distinct nodes zj = efj ∈ D (j = 1, . . . ,M) are lying in the near of the unit
circle.

(A4) The error terms ek (k = 0, . . . , N − 1) are relatively small so that |ek| ≤ ε1 with
0 < ε1 � ρ and 2 ‖EL,N−L‖2 � σM , where σM is the lowest positive singular value of the
L-trajectory matrix HL,N−L+1 with the window length L ≈ dN2 e, where M ≤ L ≤ dN2 e.

We start with the estimate from Theorem 5.1 and show that the estimates (5.4) are
sharp for some parameters, but also useless in other cases. To this end we compute
κj(PN−LCN−L(qN−L)) and the estimate by the RHS of (5.6) as well as the values
‖PN−L − P̃N−L‖2 and ‖qN−L − q̃N−L‖2.

Example 6.1 We choose M equispaced nodes zj = exp(2πij/M) (j = 1, . . . ,M) on the
unit circle and set the coefficients cj = 1 (j = 1, . . . ,M). We form the exponential sum
(1.1) so that

h(k) =
M∑
j=1

zkj (k = 0, . . . , N − 1) . (6.1)

We use noisy sampled data h̃k := h(k) + ek ∈ C (k = 0, . . . , N − 1) of (1.1), where
ek ∈ [−10−s, 10−s] + i [−10−s, 10−s] (s = 4, 6, 8) are uniformly random error terms.
The corresponding results are shown in Table 6.1, where we have chosen L = N −L+ 1.
We observe that κj(FM ) = 1 and furthermore that the RHS of (5.6) is also one, i.e. the
estimate is sharp. The condition number κj(F

SV D
M ) is only slightly larger.

Further examples are given in [17, Examples 4.1 – 4.2] and [18, Example 6.1].

M N − L s max |zj − z̃j | ‖PN−L − P̃N−L‖2 ‖qN−L − q̃N−L‖2
10 10 4 4.733e-06 2.023e-15 3.340e-05

10 20 4 2.029e-06 1.014e-05 1.453e-05

10 30 4 1.305e-06 1.066e-05 1.039e-05

10 10 6 4.002e-08 5.793e-15 2.764e-07

10 20 6 1.587e-08 7.933e-08 1.336e-07

10 30 6 1.259e-08 1.028e-07 9.445e-08

10 100 6 1.623e-09 4.663e-08 2.177e-08

50 100 6 2.803e-09 7.009e-08 6.918e-08

50 100 8 2.562e-11 6.406e-10 7.030e-10

50 200 8 1.081e-11 6.042e-10 3.315e-10

Table 6.1: Maximum errors of the nodes and the related estimates for noisy sampled
data in Example 6.1.
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Example 6.2 Now we choose M nodes on an Archimedean spiral given in the form

zj =

√
j +M

2M
exp

8πi
√
j +M

5
(j = 1, . . . ,M)

and the coefficients cj = 1 (j = 1, . . . ,M). The exact data of (1.1) are denoted by (6.1).
As in Example 6.1, we use noisy sampled data h̃k := h(k) + ek ∈ C (k = 0, . . . , N − 1)
of (1.1), where ek ∈ [−10−s, 10−s] + i [−10−s, 10−s] (s = 4, 6, 8) are uniformly random
error terms. In Table 6.2, we present maximum errors of the nodes, where we have
chosen L = N−L+1. The condition numbers κj(FM ) and κj(F

SV D
M ) of the eigenvalues

are very similar.

M N − L s max |zj − z̃j | maxκj RHS of (5.6) ‖PN−L − P̃N−L‖2 ‖qN−L − q̃N−L‖2
10 10 6 9.746e-07 2.143e+00 3.330e+01 4.145e-15 2.869e-06

10 20 6 6.977e-07 1.749e+00 1.112e+01 1.879e-06 1.044e-06

10 30 6 4.991e-07 1.731e+00 9.864e+00 1.486e-06 1.905e-06

10 100 6 9.097e-07 1.718e+00 9.206e+00 2.703e-06 1.584e-06

30 100 6 2.415e-04 3.658e+01 1.036e+14 3.445e-04 3.385e-04

30 100 4 5.758e-04 3.658e+01 1.028e+14 2.476e-03 2.968e-04

Table 6.2: Maximum errors of the nodes and the related estimates for noisy sampled
data in Example 6.2, where maxκj denotes the maximal condition number of
κj(FM ).

The Examples 6.1 – 6.2 show that our estimates for |zj − z̃j | (j = 1, . . . ,M) based on
Theorem 5.1 are very precise. The estimations of the condition numbers are sharp and
cannot be improved in some cases. However we observe also that the estimates of the
condition numbers of the eigenvalues based on RHS of (5.6) are useless for higher order
M .

In the following Example 6.3 we show that the orthogonal projection onto the signal
space is essential for good error estimates for the ESPRIT Algorithm 3.4. Applying
(5.1) to the matrices FM and F̃M , we obtain the first-order error estimate

|zj − z̃j | ≤ κj(FM ) ‖FM − F̃M‖2 (6.2)

for j = 1, . . . ,M . In Example 6.3, one can see that the norm ‖FM − F̃M‖2 is not small
also for large N − L. In other words, one cannot explain the good error behavior of the
ESPRIT Algorithm 3.4 by the estimate (6.2). If we replace (3.12) by (3.10), then the
same statement is true.

Example 6.3 As in Example 6.1, we choose the M equispaced nodes zj = exp(2πij/M)
(j = 1, . . . ,M) on the unit circle and the coefficients cj = 1 (j = 1, . . . ,M). The
corresponding results are shown in Table 6.3. If we use (3.10) instead of (3.12), then we
obtain similar results.
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M N − L s max |zj − z̃j | maxκj(FM ) ‖FM − F̃M‖2
10 20 4 2.145e-06 1.007e+00 2.014e+00

10 30 4 1.354e-06 1.004e+00 2.069e+00

10 100 4 2.317e-07 1.000e+00 1.999e+00

50 100 4 2.719e-07 1.002e+00 2.161e+00

50 100 8 2.772e-11 1.002e+00 2.101e+00

Table 6.3: Maximum errors of the nodes and the related estimates for noisy sampled
data in Example 6.3.

Example 6.4 Finally we use the same parameters of a nuclear magnetic resonance
(NMR) signal as in [2, Table 1], i.e., M = 5 with the nodes z1 = 0.6342 − 0.7463 i,
z2 = 0.8858−0.4067 i, z3 = 0.9663−0.1661 i, z4 = 0.9642+0.2174 i, z5 = 0.8811+0.2729 i
and the coefficients c1 = 5.8921 + 1.5788 i, c2 = 9.5627 + 2.5623 i, c3 = 5.7956 + 1.5529 i,
c4 = 2.7046+0.7247 i, c5 = 16.4207+4.3999 i. For N = 160, the left Figure 6.1 shows the
5 positive singular values of the exact Hankel matrix HL,160−L+1 for different window
lengths L = 5, . . . , 80. As expected (see Lemma 3.1 and Remark 3.3), the positive
singular values of HL,160−L+1 increase for increasing window length L = 5, . . . , 80. Thus
L = N/2 is an optimal window length, where in practical applications it may be enough
to choose L = 2M or L = 4M . Note that the computational cost of the ESPRIT
Algorithm 3.4 may be better for L = 2M or L = 4M . For exactly sampled data,
the right Figure 6.1 shows the errors |zj − z̃j | between the given nodes zj and the
reconstructed nodes z̃j for j = 1, . . . , 5. Note that both axes of ordinates in Figures 6.1
and 6.2 have a logarithmic scale. In Figure 6.2 we show the corresponding results for
noisy sampled data h̃k = h(k) + ek (k = 0, . . . , 159), where Re ek and Im ek zero-mean
Gaussian random numbers with standard deviation 1.
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