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Abstract—We describe a fast method for the evaluation of an
arbitrary high-dimensional multivariate algebraic polynomial in
Chebyshev form at the nodes of an arbitrary rank-1 Chebyshev
lattice. Our main focus is on conditions on rank-1 Chebyshev
lattices allowing for the exact reconstruction of such polynomials
from samples along such lattices. We present an algorithm
for constructing suitable rank-1 Chebyshev lattices based on a
component-by-component approach. Moreover, we give a method
for the fast and exact reconstruction.

I. INTRODUCTION

We denote the Chebyshev polynomials of the first kind by
Ty : [-1,1] — [-1,1], Tk(z) := cos(k arccoszx), k € Ny.
Note that for each k¥ € Ny, T} is an algebraic polynomial
of degree deg(Ty) = k restricted to the domain [—1,1].
Moreover, we define the multivariate Chebyshev polynomials
Ty : [-1,1]% = [=1,1], Tw(®) := [T/_, Tk, () for d € N,
x:=(1,...,7q)" €[-1,1]¢ and k := (ky,...,kq) " € N&.

Let IT; := span {Tk(o): k € I}, where I C N¢, d € N, is
a non-negative index set of finite cardinality, |/| < co. Then,
each multivariate polynomial p € II; can be written as

d
p@) =Y prTe(@) = pr [[Te. (@), PR, (1)

kel kel t=1

where * € [—-1,1]%. We remark that if the index set
I =1 := {k € Nd: |[k|1 < n}, n € Ny, is the ¢;-
ball, then II; is the space of all algebraic polynomials of
(total) degree < m in d variables restricted to the domain
[~1,1]%. Moreover, polynomials with hyperbolic cross index
sets [ = Hd := {k e N¢: Hle max(1,|k|) < n}, where
n,d € N, have already been used for approximations in
sparse high-dimensional spectral Galerkin methods, cf. [1,
Section 8.5].

In this paper, for a given arbitrary index set I C N¢ of
finite cardinality, we present a method for the fast evaluation
of a polynomial p from (1) at the nodes x; := cos(4;7z),
j=0,..., M, of a d-dimensional rank-1 Chebyshev lattice

CL(z, M) := {@; := cos (%IT(Z) 1 j=0,...,M}
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with the generating vector z € N¢ and the size parameter
M € Ny, where the cosine is applied component-wise. For a
more general definition of d-dimensional rank-k Chebyshev
lattices, we refer to [2]. Moreover, we discuss conditions
on a rank-1 Chebyshev lattice CL(z, M) such that the fast
and exact reconstruction of all coefficients p, k € I, from
sampling values p(x;) taken at the corresponding nodes x;,
j = 0,...,M, is possible. Both, for the fast evaluation
and reconstruction, we only apply a single one-dimensional
discrete cosine transform of type I (DCT-I) and addition-
ally compute simple index transforms, see also [3]. Note
that for the special case I = I%, constructions of rank-1
Chebyshev lattices suitable for the exact reconstruction were
already discussed in [2], [4] and the references therein. Here,
we present an algorithm based on component-by-component
(CBC) construction for arbitrary index sets I C N¢ using ideas
from [5]-[7].

We remark that our considerations for the reconstruction of
the coefficients pg, k € I, of a polynomial p from (1) with
known index set I C N¢ in this paper establish a basis for the
reconstruction of a polynomial p with unknown index set [
using a method similar to the one presented in [8].

The remaining parts of this paper are organized as follows:
In Secion II, we give prerequisites for the subsequent sections.
We discuss the fast evaluation and reconstruction in Sec-
tion III. In Section IV, we point out relations of our results to
existing work. Afterwards, in Section V, we present computed
rank-1 Chebyshev lattices suitable for reconstruction. Finally,
in Section VI, we summarize the results of this paper.

II. PREREQUISITES
A. One-dimensional DCT-1

First, we recall results for the fast reconstruction of a
one-dimensional (algebraic) polynomial p. We are able to
reconstruct the coefficients py, ..., P, € R of a polynomial p
from (1) with [ := I} from sampling values p(z;) at the
Chebyshev nodes z; := cos(jm/n), j =0, ..., n. For this, we
apply a one-dimensional DCT-I to the sampling values p(x;)

n n

and we obtain ay := Y7 (e7)?p(z;) cos(jkm/n) =



12| = 45
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Fig. 1. Index sets I3, M(I2), M1(IZ), M2(12) (from left to right).

> wen Pr Yi—o(€})? cos(jk'm/n) cos(jkm/n) for k € I,
et :=1/v2forl € {0,n} and el :==1forl € {1,...,n—1},
since Ty (x;) = T} (cos (jm/n)) = cos (jkm/n). The follow-
ing orthogonality relation follows straightforward

2 - ) jkm Jk'm
Zeper > (em?eos (58 P20 =6, koK € I
—EkeR Z(sj) cos( ) cos { ki kK €I,

(2)
where Jj, ;- is Kronecker’s delta, see e.g. [9, Section 2.4]. This
yields the coefficients py = % ay for k € I}L. Note that
the DCT-I can be computed by means of a fast algorithm in
O(nlogn) arithmetic operations.

B. Index sets and tensor-products of cosines

Let I C N§ be an arbitrary index set of finite cardinality.
For the description of the approach for the fast evaluation and
reconstruction, we define the extended symmetric index set

M(I) = {h e Z¢: (|hl,....|ha))T € I},

which contains all frequencies k € I and versions of these
frequencies k mirrored at all coordinate axes. Moreover, we
define the index sets

My(I):={h e M(I): hy >0}, s€{1,...,d},

which contain all frequencies k € I and versions of these
frequencies mirrored at all coordinate axes except the s-th. For
instance, in the case d = 2 and n = &, the index set 182 as well
as the corresponding extended symmetric index set M (1) and
mirrored index sets M (I3), My (I2) are depicted in Fig. 1.

Next, we remark that for y;,yo € R, we have
cos(y1) cos(y2) = & (cos(y1 + y2) + cos(y1 — y2)). Using in-
duction on the dimension d € N and due to cos(z) = cos(—z)
for all z € R, we obtain for y := (y1,...,y4)' € R

d
[T costu) =

1
= Z 2 cos(m-y), )

meM({1})

1
Z a1 €08 (m-y) 3)

meM,({1})

where 1:= (1,...,1)T e N and m -y := Zle MYy

III. FAST EVALUATION AND RECONSTRUCTION OF
MULTIVARIATE POLYNOMIALS FROM II; ALONG RANK-1
CHEBYSHEV LATTICES USING DCT-I

A. Fast evaluation at the nodes of rank-1 Chebyshev lattices

Briefly, we describe a simple method for the fast evaluation
of a polynomial p from (1) with arbitrary index set I C N¢

0 — 0 =
—1 —1
—1 0 1 —1 0 1
(@ z:= (8,97, b) z:= (8,97, (¢) z:=(1,16)T,
M =172, M := 73, M := 76,
|CL(z, M)| = 45. |CL(z, M)| = 74. |CL(z, M)| = 77.

Fig. 2. Rank-1 Chebyshev lattices CL(z, M).

at the nodes x; := Cos(%wz), j = 0,...,M, of an
arbitrary d-dimensional rank-1 Chebyshev lattice CL(z, M).
Examples for two-dimensional rank-1 Chebyshev lattices are
shown in Fig. 2. We remark that not all (M + 1) nodes x;,
j=0,..., M, have to be distinct, i.e., |[CL(z, M)| € {1,...,
M + 1}, see e.g. Fig. 2a. Due to (3), we have

ples) =D 50t

kel

3 cos<]\]47r(m®k:)-z>,

meM,({1})

j=0,...,M, for any s € {1,...,d} and for each polyno-
mial p from (1), where m ® k := (miky,...,mgkq)". For
M € N and [ € Z, we define the even-mod relation

I mod (2M), lmod (2M) < M,

lemod M :=
2M — (I mod (2M)) else.

For each | € Ii,, we consider the frequencies k € I
and m € M ({1}), such that [ = (m © k) - zemod M.
Since we have cos(jim/M) = cos (ﬁw (mok)-z) for
j=0,...,M in the case | = (m ©® k) - zemod M, we obtain
p(x;) = Zi\io (eM)? by cos(jlm /M) with the coefficients

i Pk

by = Z Z 241 (M2
mEMq({l}) !

(m@Ok)-z emod M=l

for 1 € I, (5)

Therefore, for any s € {1,...,d}, we build the index
set M,(I) and we compute the coefficients b; by (5) for
l € I,. Then, we apply a one-dimensional DCT-I to these
coefficients b; and this yields the function values p(x;) for
j = 0,...,M. In total, we require O(M log M + d2%|I|)
arithmetic operations.

B. Fast and exact reconstruction

In this section, we consider the fast reconstruction of a poly-
nomial p from (1) with arbitrary index set I C N¢, |I| < oo.
Our approach is based on applying a one-dimensional DCT-I
to the sampling values p(x;) at the nodes x; := cos(jrz/M),
j=0,..., M, of arank-1 Chebyshev lattice CL(z, M) fulfill-
ing a certain property. Concretely, we compute the coefficients

M

ar =Y (eM)? p(x;) cos <ZJ\§W> (6)
=0
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(a) H and CL ((1,9)T,29). (b) HZ and CL ((1,17)T, 82).

Fig. 3. Examples for hyperbolic cross index sets I = H2 and corresponding
rank-1 Chebyshev lattices CL(z, M) fulfilling condition (7).
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(@ I (I|=17), CL((1,8)T,77).  (b) I ([I|=37), CL ((1,27)7,249).

Fig. 4. Examples for arbitrarily chosen index sets I C Ng and corresponding
rank-1 Chebyshev lattices CL(z, M) fulfilling condition (7).

for [ € I3,. Due to (4), this means a; =
5 M

p % > z(ay)Z cos (ﬁw(m@k) - z) COS(%W)

eI meM({1}) j=0
for I € I},. We consider the indices [ := k - zemod M for
k € I. Since we have {m © k: m € M({1})} = M({k})
for k € I and due to the orthogonality condition (2), we are
able to exactly reconstruct all the coefficients pg, k € I, of
the polynomial p from (1) using the computed coefficients
aj, l := k- zemod M for k € I, from (6) if and only if

k-zemod M # h - zemod M
forall k € I and h € M(I), k # (|h1],.. ., |ha]) . (D)

Examples for two-dimensional hyperbolic cross index sets
I = H} and I = HZ with corresponding rank-1 Chebyshev
lattices CL(z, M) fulfilling condition (7) are depicted in Fig. 3
as well as two-dimensional examples for index sets I with less
structure with corresponding CL(z, M) in Fig. 4. Moreover,
the rank-1 Chebyshev lattices CL(z, M) in Fig. 2 fulfill
condition (7) for the ¢1-ball index set I = I3 in Fig. 1.

Due to the symmetry of the emod operator, we can reduce
the number of tests in condition (7) by a factor of (about) two.

Lemma III.1. For M € Ny and | € Z, we have lemod M =
(=1) emod M.

Proof. Considering the two different cases in the definition of
the emod operator, the assertion follows straight forward. [

Lemma IIL.2. For a given arbitrary index set I C N¢ of finite
cardinality, |I| < oo, let I C 7% be an arbitrary index set with
the property M(I) = I U {—h: h € I}. Then, condition (7)
is equivalent to

k-zemod M # h - zemod M
forallk eI and hel, k# (|h,...,|ha)".

Proof. Due to (—h) -z = —(h - 2z) for h € Z¢, we obtain
(—h)-zemod M = h - zemod M for h € Z¢  (8)

Input: index set Linput C N¢, parameter s € {1,...,d}.
1: Determine suitable initial size parameter Mg;,yt, Se€ €.g.
Remark IV.4.
2: fort:=1,...,d do
3: for z; :=0,..., Mgar do
if condition (9) is valid for

I:= {(kla sy kt)—r: ke Iinput}’
z:=(21,...,2)", M := M, then
5 break
6: end if
7:  end for
8: end for
9: for M = ‘Iinput| — ].7 ey Mstart do

10:  if condition (9) is valid for I := Iinpus,

z:=(21,...,24) ", M then
11: break
12:  end if
13: end for

Output: generating vector z € N¢ and size parameter
M € Ny fulfilling condition (7) for index set I := Ijypys.

Fig. 5. Algorithm for construction of rank-1 Chebyshev lattice CL(z, M)
suitable for reconstruction of multivariate polynomials (1) supported on the
index set I := Iinput.

from Lemma III.1 and the assertion follows. O

Corollary IIL.3. For any s € {1,...,d}, condition (7) is
equivalent to

k-zemod M # h - zemod M
forall k € I and h € M(I), k # (|h1,...,|ha))". (9)

If condition (7) or (9) is fulfilled, we can reconstruct the
coefficients pg, k € I, in the following way. We apply a
DCT-I to the sampling values p(xz;) = p(cos(jmz/M)), j =
0,...,M, which yields the coefficients a;, [ € I}/I, in (6).
Then, we obtain the coefficients of the polynomial p by

A_2d(8{v[)2 dl
Pe= "0 im e M,({1}): (m o k) - zemod M = 1}]

with [ := k-zemod M for all k € I and any s € {1,...,d}.
Using a fast algorithm for the DCT-I, this computation can be
performed in O(M log M + d 2?|I|) arithmetic operations.

Again, we stress the fact that the index set I C N¢,
|I| < oo, may be arbitrarily chosen. Upper bounds on the
size parameter M for the existence of a rank-1 Chebyshev
lattice CL(z, M) fulfilling condition (7) are discussed in
Section IV-B. A method for the construction of a suitable
generating vector z € Ng is described in the following
subsection.

C. Construction of suitable rank-1 Chebyshev lattices

In Fig. 5, we present an algorithm for the construction
of a rank-1 Chebyshev lattice CL(z, M) which allows for
the exact reconstruction of the coefficients pg, k € I, of a
polynomial p from (1) based on samples taken at the nodes of



CL(z, M), where I C N&, |I| < oo, is an arbitrary index set.
Our algorithm is based on [7, Algorithm 1 and 2] and uses a
CBC search for the generating vector z € Ng.

IV. RELATIONS TO EXISTING WORK

A. Padua points and higher-dimensional rank-s Chebyshev
lattices

In [10], special sampling points were discussed in
the two-dimensional case, so-called Padua points. For
a parameter n € N, these are the nodes x; :=
(cos(jm/(n+ 1)), cos(jm/n)) | = cos(jmz/M), j =
0,...,M, of the rank-1 Chebyshev lattice A,, := CL(z, M),
where the generating vector z := (n,n + 1) and the size
parameter M := n(n + 1). As discussed in [10, Section 2],
the Padua point set .4,, only consists of (";2) = ”—22 +3n+1
distinct points, whereas M = nZ +n.

Lemma IV.1. Let the index set I = I2 := {k € N2: k1 +ky <
n}, n € No, be the {1-ball. Then, condition (7) is fulfilled and
we can exactly reconstruct the coefficients pg, k € I, of a
polynomial p from (1) from sampling values at the nodes of
the Padua point set A,, using (6).

Proof. The assertion follows from the Lagrange interpolation
formula [11, (7c)]. Alternatively, condition (9) from Corol-
lary III.3 can be verified. O

In [4], an extensive search for higher-rank Chebyshev lat-
tices allowing for the reconstruction of polynomials p from (1)
with ¢;-ball index sets I := I¢ was performed and numerical
results for the cases d = 3,4,5 were presented.

B. Reconstructing rank-1 lattices of multivariate trigonomet-
ric polynomials

In the following, we briefly show the relation to reconstruct-
ing rank-1 lattices of multivariate trigonometric polynomials
from [7].

Theorem IV.2. Let I C Ng be an arbitrary index set of
finite cardinality, |I| < co. Moreover, let A(z, M) := {y; :=

Fzmod1l:j =0,...,M — 1} be a reconstructing rank-1

lattice with generating vector z € Ng and even rank-1 lattice
size M € 2N for the extended symmetric index set M(I), i.e.,

h-z# h'-z (mod M) for all h,h' € M(I), h # h'. (10)

Then, the rank-1 Chebyshev lattice CL(z, %) fulfills condition
(7), i.e., we are able to exactly reconstruct the coefficients of a
polynomial from (1) using samples at the nodes of CL(z, %)

Proof. We consider the values

2

M h-z mod M7 h-z mod M < M,
h-zemod — =< . 2
M — (h-zmod M) else,

for h € M(I). Due to property (10), all values h - z mod M
are distinct for b € M(I) and we obtain for each [ € Ijl\z /2
that one of the following three cases may occur: Either

1. exactly two distinct frequencies h, h’ € M(I) exist such
that h - zemod% =h'. zemod% =1, or

2. exactly one frequency h € M(I) exists such that
h~zemod% =1, or

3. such a frequency does not exist for [.

In the first case, h/ = —h follows, since for each h &

M(I)\{0}, also the frequency —h € M(I)\{0} and we have

(8) with M := %, ie., (—h)-zemod % = h-zemod % =1

The second case can only occur for h = 0, since otherwise

the (non-zero) frequency —h € M(I) \ {0}, —h # h, and

this would yield (—h)-zemod &I = h-zemod & which cor-

responds to the first case. In total, we obtain h - z emod % #*

B - zemod X for all h,h' € M(I), (|hil,...,|ha)T #

(|h4l, ..., |n4]) T, implying condition (7). O

Remark IV.3. Condition (7) and (10) with M = 2M are
not equivalent in general. For instance, the generating vector
z:=(8,9)" and size parameter M := 72 from Fig. 2a fulfill
condition (7) for I = 182 but not condition (10) with M = 2M.

We note that there exist special cases where both the
conditions (7) and (10) are fulfilled, see e.g. the examples
in Fig. 2b and 2c, which fulfill both conditions for I = IZ.

Remark IV.4. There always exists a reconstructing rank-1
lattice A(z, M) for M(I) with even rank-1 lattice size

~ 2
A < 2w { S(MODP = M) +8). a3l |

and consequently a rank-1 Chebyshev lattice CL(z, M) with
size parameter M = M /2. This result is due to [8, Theo-
rem 2.1] which is a direct consequence of the results from [7].

C. Tent-transformed rank-1 lattices for cosine polynomials

In [12], [13], tent-transformed rank-1 lattices Py (z, M )=
{¢(jz/M mod 1): j =0,..., M — 1}, fulfilling a condition
equivalent to (10) are used, where z € N¢ M e N
and the tent transform ¢: [0,1] — [0,1], ¢(z) = 1 —
|2z — 1], is applied component-wise. Then, the exact re-
construction of cosine polynomials p: [0,1] — R, p(x) :=
S wern 10, cos(mhizy), I C N¢, can be performed by
applying a fast Fourier transform to samples at these nodes,
cf. [13]. Note that these polynomials p are not algebraic
polynomials in general.

V. NUMERICAL RESULTS

Using the algorithm in Fig. 5, we construct rank-1 Cheby-
shev lattices CL(z, M) fulfilling condition (7) for the ¢;-
ball index sets I := IZ for various refinements n € N
and dimensions d. The corresponding size parameters M and
oversampling factors (M + 1)/|I2| are shown in Table I.
Additionally, we apply [7, Algorithm 1 and 2] to the ex-
tended symmetric index sets M(IZ) with the modification
that an even rank-1 lattice size M € 2N is returned. We
obtain reconstructing rank-1 lattices A(z, M) for M(I%) and
consequently rank-1 Chebyshev lattices CL(z, M /2) fulfilling
condition (7) for I ,‘f due to Theorem IV.2. For the dimensions d



TABLE 1
CARDINALITIES OF £1-BALL INDEX SETS I¢ AS WELL AS SIZE
PARAMETERS M OF CORRESPONDING RANK-1 CHEBYSHEV LATTICES
CL(z, M), WHERE M FULFILLS CONDITION (7) AND M = 2M
CONDITION (10) FOR I := I;f, RESPECTIVELY.

Parameters Cardinalities Condition (7) / (9) / (10)

M M+1
d n & IMi(ID] || M =—

2 4]
2 64 2145 4225 4192 1.95
2 128 8385 16 641 16576 1.98
2 256 33153 66 049 65920 1.99
3 16 969 3281 4265 4.40
3 32 6 545 23969 33361 5.10
3 64 47905 183105 264 353 5.52
6 4 210 985 1461 6.96
6 8 3003 26 577 63 369 21.10
6 16 74613 | 1110049 3242322 43.46
7 4 330 1765 2777 8.42
7 8 6435 74313 223332 34.71
7 16 245157 | 5529233 21254517 86.70
10 2 66 201 202 3.08
10 4 1001 7001 19423 19.40
10 8 43758 927441 5912807 135.13

TABLE II

CARDINALITIES OF HYPERBOLIC CROSS INDEX SETS Hg AS WELL AS
SIZE PARAMETERS M := M AND M := ]\7[/2 OF CORRESPONDING
RANK-1 CHEBYSHEV LATTICES CL(z, M) FULFILLING CONDITION (7)
AND (10) FOR [ := Hg, RESPECTIVELY.

Parameters Card. Condition (7) / (9) Condition (10)
— M+1 .
d n |HY| M + M/2
|Hd|
2 256 1979 66 050 33.38 66 050
2 512 4305 263170 61.13 263170
2 | 1024 9311 1050626 112.84 1050626
3 256 10303 302883 29.40 359075
3 512 23976 1424613 59.42 1424662
3] 1024 55202 4600672 83.34 5560 838
6 16 8684 303396 34.94 557773
6 32 26 088 1751513 67.14 2867903
6 64 76 433 8979932 117.49 13603 339
7 8 7184 291 267 40.54 529877
7 16 23816 1659143 69.67 3575914
7 32 75532 10375340 | 137.36 21375543
10 2 6144 495451 80.64 2157672
10 4 27904 3083988 110.52 15390479
10 8 109 824 25099619 | 228.54 88580127

and refinements n in Table I except the case d = 7 and
n = 16, these rank-1 Chebyshev lattices are identical to the
ones constructed by the algorithm in Fig. 5. In the mentioned
case, the algorithm in Fig. 5 yielded a slightly larger size
parameter M = 21344 934. The reason for this is the greedy
search for the generating vector z with fixed initial size
parameter M = Mg a4 and both approaches returned a distinct
generating vector z. If we run the algorithm in Fig. 5 setting

Miare := 21254517, then both approaches yield an identical
rank-1 Chebyshev lattice.

Moreover, we consider hyperbolic cross index sets [ := H¢.
Again, we apply both algorithms for the construction of rank-1
Chebyshev lattices CL(z, M) suitable for reconstruction. The
results of these construction processes are shown in Table II.
We remark that the size parameters M of the rank-1 Cheby-
shev lattices CL(z, M) are distinctly larger for d > 3 when
using [7, Algorithm 1 and 2], which itself uses condition (10).

VI. CONCLUSION

In this paper, we considered the fast evaluation as well as
the fast and exact reconstruction of arbitrary high-dimensional
multivariate algebraic polynomials in Chebyshev form. To
this end, we used the nodes of rank-1 Chebyshev lattices.
Moreover, we presented an algorithm for the construction of
rank-1 Chebyshev lattices suitable for reconstruction based on
ideas for the CBC construction in the periodic case.

ACKNOWLEDGMENT

We thank the referees for their valuable suggestions. More-
over, we gratefully acknowledge support by the German Re-
search Foundation (DFG) within the Priority Program 1324,
project PO 711/10-2.

REFERENCES

[1] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods, ser. Springer
Ser. Comput. Math. Berlin: Springer-Verlag Berlin Heidelberg, 2011,
vol. 41.

[2] R. Cools and K. Poppe, “Chebyshev lattices, a unifying framework for
cubature with Chebyshev weight function,” BIT Numerical Mathematics,
vol. 51, pp. 275 — 288, 2011.

[3] K. Poppe and R. Cools, “CHEBINT: A MATLAB/Octave Toolbox for
Fast Multivariate Integration and Interpolation Based on Chebyshev
Approximations over Hypercubes,” ACM Trans. Math. Softw., vol. 40,
no. 1, pp. 2:1-2:13, Oct. 2013.

, “In Search for Good Chebyshev Lattices,” in Monte Carlo and
Quasi-Monte Carlo Methods 2010, ser. Springer Proceedings in Math-
ematics & Statistics, L. Plaskota and H. WozZniakowski, Eds. Springer
Berlin Heidelberg, 2012, vol. 23, pp. 639 — 654.

[5] 1. H. Sloan and A. V. Reztsov, “Component-by-component construction

of good lattice rules,” Math. Comp., vol. 71, pp. 263 — 273, 2002.

R. Cools and D. Nuyens, “Fast algorithms for component-by-component

construction of rank-1 lattice rules in shift-invariant reproducing kernel

Hilbert spaces,” Math. Comp., vol. 75, pp. 903 — 920, 2004.

[7]1 L. Kdmmerer, “Reconstructing multivariate trigonometric polynomials

from samples along rank-1 lattices,” in Approximation Theory XIV: San

Antonio 2013, G. E. Fasshauer and L. L. Schumaker, Eds.  Springer

International Publishing, 2014, pp. 255 — 271.

D. Potts and T. Volkmer, “Sparse high-dimensional FFT based on rank-1

lattice sampling,” Preprint 171, DFG Priority Program 1324, 2014.

[9] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advan-
tages, Applications. Boston: Academic Press, 1990.

[10] L. Bos, M. Caliari, S. De Marchi, M. Vianello, and Y. Xu, “Bivariate
Lagrange interpolation at the Padua points: The generating curve ap-
proach,” J. Approx. Theory, vol. 143, pp. 15 — 25, 2006, special Issue
on Foundations of Computational Mathematics.

[11] M. Caliari, S. De Marchi, and M. Vianello, “Bivariate Lagrange inter-
polation at the Padua points: Computational aspects,” J. Comput. Appl.
Math., vol. 221, pp. 284 — 292, 2008, Special Issue: Recent Progress in
Spline and Wavelet Approximation.

[12] J. Dick, D. Nuyens, and F. Pillichshammer, “Lattice rules for nonperiodic
smooth integrands,” Numerische Mathematik, vol. 126, pp. 259 — 291,
2014.

[13] D. Nuyens, “Approximation in cosine space using tent transformed
lattice rules,” 2014, Slides of talk given at ICERM Semester Program,
September 15-19 2014, Brown University, Providence, RI.

(4]

[6

—_

[8

=



	I Introduction
	II Prerequisites
	II-A One-dimensional DCT-I
	II-B Index sets and tensor-products of cosines

	III Fast evaluation and reconstruction of multivariate polynomials from I along rank-1 Chebyshev lattices using DCT-I
	III-A Fast evaluation at the nodes of rank-1 Chebyshev lattices
	III-B Fast and exact reconstruction
	III-C Construction of suitable rank-1 Chebyshev lattices

	IV Relations to existing work
	IV-A Padua points and higher-dimensional rank-s Chebyshev lattices
	IV-B Reconstructing rank-1 lattices of multivariate trigonometric polynomials
	IV-C Tent-transformed rank-1 lattices for cosine polynomials

	V Numerical results
	VI Conclusion
	References

