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This paper presents some new results on numerical stability for multivari-
ate fast Fourier transform of nonequispaced data (NFFT). In contrast to fast
Fourier transform (of equispaced data), the NFFT is an approximate algo-
rithm. In a worst case study, we show that both approximation error and
roundoff error have a strong influence on the numerical stability of NFFT.
Numerical tests confirm the theoretical estimates of numerical stability.
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1 Introduction

An algorithm for the discrete Fourier transform of equispaced data with low arithmetical
cost is called a fast Fourier transform (FFT). It is very important that a fast algorithm
works stably in a floating point arithmetic. It is known (see e.g. [12, 22]) that univari-
ate FFTs are very sensitive with respect to the accuracy of precomputation and that
under certain conditions these algorithms can be remarkably stable. This result can be
generalized to d-variate FFTs (see Lemma 5.2).

In this paper, we consider the fast computation of a d-variate discrete Fourier trans-
form for nonequispaced data which is shortly called nonequispaced fast Fourier trans-

form (NFFT). In recent years, the NFFT has attracted much attention [3, 5, 20, 10] as a
method for the fast approximate evaluation of a d–variate trigonometric polynomial at
arbitrary nodes. Let M and N be even positive integers. By Id

N we denote the index set
{−N

2 , . . . ,
N
2 − 1}d. For given nonequispaced nodes xj ∈ [−1

2 ,
1
2)d (j ∈ I1

M ) and given
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f̂k ∈ C (k ∈ Id
N ) we are interested in a fast and numerically stable computation of all

values f(xj) of the d-variate trigonometric polynomial

f(x) :=
∑

k∈Id
N

f̂k e−2πik·x .

A direct evaluation of all values f(xj) (j ∈ I1
M ) requires O(NdM) arithmetical opera-

tions, too much for practical purposes. The most efficient NFFTs were proposed by A.
Dutt and V. Rokhlin [5] and by G. Beylkin [3]. Later, G. Steidl [20, 6] has presented a
unified approach to NFFT and has improved the estimates of the approximation error.
Nowadays, software of d-variate NFFT is freely available from the homepage [14].

In contrast to FFT, the NFFT is an approximate algorithm. By NFFT, we can
compute only approximate values for f(xj). Using oversampling, we approximate the
d-variate trigonometric polynomial f by g a linear combination of translates of suitable
window function ϕ having a good localization in the time/spatial and frequency domain.
Here we choose a Gaussian or Kaiser-Bessel window function. Then the Fourier coef-
ficients of g can be easily computed by d-variate FFT. By truncation of ϕ by means
of a cut-off parameter, we can calculate approximate values of f(xj) in a simple and
fast way. Thus the d-variate NFFT with Nd input data and M output data requires
O(Nd logN +M) arithmetical operations.

We measure the nonuniformity of this sampling grid {xj ∈ [−1
2 ,

1
2)d : j ∈ I1

M} by a
mesh norm and a separation distance. Roughly spoken, the mesh norm and the separa-
tion distance is the largest and the smallest gap between neighboring nodes, respectively.
We reformulate results of K. Gröchenig [11] concerning weighted sampling of d-variate
trigonometric polynomials.

In order to introduce the normwise backward stability of NFFT, we have to consider
the inverse NFFT. Therefore we discuss the solvability of the linear system

A
(d)

M,Nd f̂ = f ,

where
A

(d)

M,Nd :=
(
e−2πik·xj

)

j∈I1

M
,k∈Id

N

∈ C
M×Nd

(1.1)

is the nonequispaced Fourier matrix, f̂ := (f̂k)k∈Id
N

∈ C
Nd

is an unknown vector, and

f := (fj)j∈I1

M
is a given vector. In the case Nd < M , this linear system is overdeter-

mined and nonsolvable in general. But we can find a convenient vector f̂ by weighted
reconstruction, where we follow an idea of K. Gröchenig [11] and compensate the “clus-
ters” in the sampling set by special weights. If the mesh norm of the sampling grid is
smaller than O(N−1), then a weighted nonequispaced Fourier matrix is left-invertible.
In the case Nd > M , we focus on the underdetermined and consistent linear system.
We expect to interpolate the given data fj ∈ C (j = 0, . . . , M − 1) exactly by optimal
interpolation via damping factors. If the separation distance of the sampling grid is
greater than O(N−1), then a weighted nonequispaced Fourier matrix is right-invertible.

Now we are able to investigate a worst case roundoff error analysis for the d-variate
NFFT. We propose a definition of normwise backward stability of the approximate
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NFFT. With other words, we consider the influences of approximation error and roundoff
error together. We show that under weak assumptions, the NFFT possesses a remarkable
good numerical stability. The stability depends on the norm of the left inverse or right
inverse of the underlying weighted nonequispaced Fourier matrix. As usual in a worst
case analysis, the errors are overestimated, especially for dimensions d > 1. Nevertheless
the theoretical results describe the right behavior of the error which is first influenced
by the approximation error and later dominated by the roundoff error. This effect is
demonstrated by various numerical tests for dimensions d = 2 and d = 3.

The paper is organised as follows: After introducing the necessary notations for the
NFFT in the Section 2, we collect results for sampling of trigonometric polynomials in
Section 3. Then in Section 4, we introduce the inverse NFFT by means of weighted
reconstruction and optimal interpolation, respectively. Further we estimate the norms
of a left inverse (see Theorem 4.2) and right inverse (see Theorem 4.3) of a weighted
nonequispaced Fourier matrix. Finally in Section 5, we use these results in order to
prove the numerical stability of the NFFT. Various numerical examples concerning the
accuracy of the forward NFFT, and the reconstruction error of the inverse NFFT are
presented in Section 6.

2 Nonequispaced fast Fourier transform

Let Πd := [−1
2 ,

1
2 )d , Id

N := [−N
2 ,

N
2 )d ∩ Z

d, where d ∈ N and N ∈ 2N. In this paper,
we use the notations x = (xt)

d
t=1 ∈ R

d for a d-variate variable and k = (kt)
d
t=1 ∈ Z

d

for a d-variate index. Then we have to evaluate the 1-periodic d-variate trigonometric
polynomial

f(x) :=
∑

k∈Id
N

f̂k e−2πik·x (2.1)

at the nodes xj ∈ Πd (j ∈ I1
M ) with M ∈ 2N. For equispaced nodes xj := j

N with
j ∈ Id

N , the values f(xj) can be computed by the well-known d-variate fast Fourier
transform (FFT) with only O(Nd logN) arithmetical operations. Here we assume that
the nodes xj (j ∈ I1

M ) are nonequispaced. We compute the values of (2.1) at the nodes
xj in the following way. We introduce an oversampling factor α > 1 such that n := αN
is a power of 2. First we approximate f by

g(x) :=
∑

l∈Id
n

glϕ
(
x − l

n

)
,

where ϕ is a d-variate continuous window function and gl are conveniently chosen con-
stants. Further, ϕ is 1-periodic with respect to each variable. Assume that the Fourier
series of ϕ converges uniformly. Then the Fourier series of g reads as follows

g(x) :=
∑

k∈Zd

ck(g) e−2πik·x
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with the corresponding Fourier coefficients

ck(g) :=

∫

Πd

g(x) e2πik·x dx =
∑

l∈Id
n

gl

∫

Πd

ϕ
(
x − l

n

)
e2πik·x dx = ĝk ck(ϕ)

with

ĝk :=
∑

l∈Id
n

gl e2πik·l/n , ck(ϕ) :=

∫

Πd

ϕ(x) e2πik·x dx (k ∈ Z
d) . (2.2)

Hence we obtain that

g(x) =
∑

k∈Zd

ĝk ck(ϕ) e−2πik·x

=
∑

k∈Id
N

ĝk ck(ϕ) e−2πik·x +
∑

r∈Zd\{0}

∑

k∈Id
N

ĝk ck+nr(ϕ) e−2πi(k+nr)·x . (2.3)

If the Fourier coefficients ck(ϕ) become sufficiently small for k ∈ Z
d \Id

n and if ck(ϕ) 6= 0
for all k ∈ Id

N , then we suggest by comparing (2.1) with (2.3) to set

ĝk :=

{

f̂k/ck(ϕ) for k ∈ Id
N ,

0 for k ∈ Id
n \ Id

N .

Now the values gl can be obtained from (2.2) by the inverse d-variate reduced FFT, i.e.,

gl = n−d
∑

k∈Id
N

ĝk e−2πik·l/n (l ∈ Id
n) .

If ϕ is also localised in time/spatial such that it can be approximated by a 1-periodic
d-variate function ψ ∈ L2

1(R
d) with supp ψ ∩ Πd ⊂ 2m

n Πd with 1 ≤ m≪ N , then

f(xj) ≈ g(xj) ≈ h(xj) :=
∑

l∈Id
n,m(xj)

glψ
(
xj − l

n

)
(j ∈ I1

M ) (2.4)

with the index set Id
n,m(xj) := {l ∈ Id

n : nxj −m1 ≤ l ≤ nxj +m1}. Here we have used

the notation 1 := (1)dt=1. For fixed xj (j ∈ I1
M ), the above sum (2.4) contains at most

(2m+ 1)d nonzero summands. In the following, m is called cut-off parameter.

In summary, we obtain the following d-variate nonequispaced fast Fourier transform

(NFFT) with Nd input data and M output data. This algorithm requires O(nd log n+
mdM) arithmetical operations (see [18]).

Algorithm 2.1 ( d-variate NFFT)
Input: M,N ∈ 2N, m ∈ N, α > 1, n := αN, xj ∈ Πd (j ∈ I1

M ), f̂k ∈ C (k ∈ Id
N ).

1. Precompute ck(ϕ) (k ∈ Id
N ) and ψ(xj − l

n) (j ∈ I1
M , l ∈ Id

n,m(xj)).
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2. Compute ĝk := f̂k/ck(ϕ) (k ∈ Id
N ).

3. Compute gl by d-variate reduced FFT

gl := n−d
∑

k∈Id
N

ĝk e−2πik·l/n (l ∈ Id
n) .

4. Form
h(xj) :=

∑

l∈Id
n,m(xj)

gl ψ
(
xj − l

n

)
(j ∈ I1

M ) .

Output: h(xj) ≈ f(xj) (j ∈ I1
M ).

In contrast to FFT, the NFFT is an approximate algorithm. By NFFT, we can com-
pute approximate values of f(xj). The approximation error depends on the choice of the
window functions ϕ and ψ. If the window function ϕ is the tensor product of 1-periodised
dilated Gaussian bells with cut-off parameter m

ϕ(x) := (πb)−d/2
d∏

t=1

( ∑

rt∈Z

e−(n(xt+rt))2/b
)

,

if ψ is the tensor product of 1-periodised dilated truncated Gaussian bells

ψ(x) := (πd)−d/2
d∏

t=1

∑

rt∈Z

χ[−m,m](n(xt + rt)) e−(n(xt+rt))2/b ,

if α ≥ 3
2 and

3
2 ≤ b ≤ 2αmπ−1 (2α − 1)−1

(

1 + d−1
(2α−1)2

)−1/2
,

then the approximation error can be estimated (see [6]) by

( ∑

j∈I1

M

|f(xj) − h(xj)|2
)1/2

≤M1/2Nd/2 d 2d+1 e−bπ2(1−α−1) ‖f‖2 . (2.5)

Here χ[−m,m] denotes the characteristic function of the interval [−m, m].

If the window function ϕ is the tensor product of (dilated) Kaiser–Bessel functions

ϕ0 (see [13, 9]), i.e.,

ϕ(x) =
d∏

t=1

( ∑

rt∈Z

ϕ0(xt + rt)
)

,

where ϕ0 is given by

ϕ0(xt) :=







sinh(b
√

m2 − n2x2
t )

π
√

m2 − n2x2
t

for |xt| ≤ m
n

(
b := π

(
2 − 1

α

))
,

sin(b
√

n2x2
t −m2)

π
√

n2x2
t −m2

otherwise
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with

ck(ϕ0) =

{
1
n I0

(

m
√

b2 − (2πk/n)2
)

for k = −n
(
1 − 1

2α

)
, . . . , n

(
1 − 1

2α

)
,

0 otherwise,

where I0 denotes the modified zero–order Bessel function, and if ψ := ϕ, then one can
estimate the approximation error (see [6, 16])

( ∑

j∈I1

M

|f(xj)−h(xj)|2
)1/2

≤M1/2Nd/2 d 2d+1 π(m+
√
m)

4
√

1 − α−1 e−2πm
√

1−α−1 ‖f̂‖2

(2.6)
with f̂ := (f̂k)k∈Id

N
. Other possibilities are powers of sinc functions or B-splines (see

e.g. [14]).

3 Sampling of trigonometric polynomials

By {xj ∈ Πd : j ∈ I1
M} with M ∈ 2N we denote a nonuniform sampling set of M distinct

nodes. In Πd, we introduce the metric

ρ(x,y) := min
k∈Zd

‖x − y + k‖∞ (x,y ∈ Πd) .

We measure the non uniformity of the given sampling set by the mesh norm

δ := 2 max
x∈Πd

min
j∈I1

M

ρ(xj ,x) ∈ (0, 1]

and the separation distance

q := min
j,l∈I1

M
,j 6=l

ρ(xj ,xl) ∈ (0, 1
2 ] .

We might interpret the mesh norm δ and the separation distance q as the largest and
the smallest gap between neighboring nodes, respectively. Note that

δ = inf
{
s ∈ (0, 1] :

⋃

j∈I1

M

B(xj , s) = [−1
2 ,

1
2 ]d

}

with B(xj, s) := {x ∈ [−1
2 ,

1
2 ]d : ρ(x,xj) ≤ s

2} (see [2]). We have the following obvious
relation between the separation distance q, the mesh norm δ and the number of sampling
points M .

Lemma 3.1 Let M ∈ 2N and d ∈ N. Let {xj ∈ Πd : j ∈ I1
M} be an arbitrary sampling

set with M distinct nodes. Then

0 < q ≤M−1/d ≤ δ ≤ 1 .
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Proof: 1. Let {xj ∈ Πd : j ∈ I1
M} be an arbitrary sampling set. Assume that δ < M−1/d

and choose one s with δ < s < M−1/d. Consider to each node xj its surrounding cube
B(xj, s) with side length s. Then the sum of the measures of these cubes fulfils the
inequality

∑

j∈I1

M

m(B(xj , s)) = M sd < M (M−1/d)d = 1 .

This contradicts to the fact that
⋃

j∈I1

M

B(xj, s) ⊃ Πd . Hence M−1/d ≤ δ ≤ 1.

2. Assume that q > M−1/d. Then the sum of the measures of all cubes B(xj, q) fulfils
the inequality

∑

j∈I1

M

m(B(xj , q)) = M qd > M (M−1/d)d = 1 .

This contradicts to the facts that B(xj , q) ∩ B(xk, q) for j, k ∈ I1
M (j 6= k) have no

interior points and that
⋃

j∈I1

M

B(xj, q) ⊆ Πd . Therefore 0 < q ≤M−1/d.

The quantity δ can be interpreted as the maximum distance of any node xj to its next
neighbour. Let Vj (j ∈ I1

M ) be the modified Voronoi regions

Vj :=
{
x ∈ Πd : ρ(x,xj) ≤ ρ(x,xk) for all k ∈ I1

M \ {j}
}

and let wj = m(Vj) be the Lebesgue measure of Vj. By definition, we have Vj ∩ Vk 6= ∅
for j 6= k and

∑

j∈I1

M

χ
Vj

= χ
Πd

(3.1)

almost everywhere and hence
∑

j∈V 1

M
wj = 1.

By PN/2 we denote the set of all trigonometric polynomials f of the form (2.1). The
parameter N/2 can be interpreted as the bandwidth of f . It measures the permissible
amount of oscillation. By Theorem 3.2, f ∈ PN/2 is uniquely determined by its values

f(xj) (j ∈ I1
M ) and its weighted discrete norm (

∑

j∈I1

M

wj |f(xj)|2)1/2 is equivalent to the

L2-norm ‖f‖2 :=
( ∫

Πd

|f(x)|2 dx
)1/2

. The next result is a reformulation of Theorem 5

in [11].

Theorem 3.2 (see [11]) Let N,M ∈ 2N and d ∈ N. If the mesh norm δ of {xj ∈ Πd :
j ∈ I1

M} fulfils

δ < (π N d)−1 log 2 , (3.2)

then for all d-variate trigonometric polynomials f ∈ PN/2

(2 − eπdNδ) ‖f‖2 ≤
( ∑

j∈I1

M

wj |f(xj)|2
)1/2

≤ 2 ‖f‖2 . (3.3)
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Proof: Since
∑

j∈I1

M

wj |f(xj)|2 =

∫

Πd

∣
∣

∑

j∈I1

M

f(xj)χVj
(x)

∣
∣2dx ,

we want to estimate

‖f −
∑

j∈I1

M

f(xj)χVj
‖2
2 =

∑

j∈I1

M

∫

Vj

|f(x) − f(xj)|2 dx .

We expand f into a Taylor series at x and obtain

f(xj) =
∑

α∈Nd
0

1
α! (xj − x)αDαf(x)

where α = (αt)
d
t=1, |α| :=

d∑

t=1
αt, α! :=

d∏

t=1
(αt!), xα :=

d∏

t=1
xαt

t and

Dαf(x) := ∂|α|

∂α1x1...∂αdxd
f(x)

are usual multi-index notations. This Taylor expansion yields the estimate

|f(x) − f(xj)| ≤
∑

α∈Nd
0
\{0}

1
α! |xj − x|α |Dαf(x)| .

Since the sampling set {xj ∈ Πd : j ∈ I1
M} has the mesh norm δ, we see that ρ(xj ,x) ≤ δ

for x ∈ Vj . Observing that f is 1-periodic in each variable, we obtain that for x ∈ Vj

|f(x) − f(xj)| ≤
∑

α∈Nd
0
\{0}

1
α! δ

|α| |Dαf(x)| .

Hence by (3.1) it follows that

∑

j∈I1

M

|f(x) − f(xj)|2 χVj
(x) ≤

∑

α∈Nd
0
\{0}

(
1
α! δ

|α| |Dαf(x)|
)2

almost everywhere. By Bernstein’s inequality, the L2-norms of the partial derivatives of
f ∈ PN/2 are majorised by

‖Dαf‖2 ≤ (Nπ)|α| ‖f‖2 .

Therefore

‖f −
∑

j∈I1

M

f(xj)χVj
‖2 ≤

∑

α∈Nd
0
\{0}

1
α! δ

|α| ‖Dαf‖2 ≤ ∑

α∈Nd
0
\{0}

1
α! (δNπ)|α| ‖f‖2

=
(
edπNδ − 1

)
‖f‖2 .
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Consequently we obtain that

(
2 − edπNδ

)
‖f‖2 ≤

∥
∥

∑

j∈I1

M

f(xj)χVj

∥
∥

2
=

( ∑

j∈I1

M

|f(xj)|2 wj

)1/2
≤ edπNδ ‖f‖2 .

By our assumption (3.2), we see that 2 − edπNδ > 0.

Note that the specific choice of weights wj is crucial for the explicit estimate. For
dimensions d ≥ 1 the estimate (3.3) is not optimal in the sense that the dependence on
d is not expected. However for d = 1, K. Gröchenig has proved in [11] the following
result: Let N , M ∈ 2N. If the mesh norm δ of {xj ∈ [−1

2 ,
1
2) : j ∈ I1

M} fulfils δ < 1
N ,

then for all univariate trigonometric polynomials f ∈ PN/2

(1 − δN) ‖f‖2 ≤
( ∑

j∈I1

M

|f(xj)|2 wj

)1/2
≤ (1 + δN) ‖f‖2 .

4 Weighted reconstruction and optimal interpolation

The inverse NFFT can be introduced as follows. The reconstruction of a trigonometric
polynomial f ∈ PN/2 from given values fj ∈ C (j ∈ I1

M ) amounts to solving the following
system of M linear equations

∑

k∈Id
N

f̂k e−2πik·xj = fj (j ∈ I1
M ) . (4.1)

Now the discrete Fourier coefficients f̂k are the unknowns. Since fj are often determined
by measurements, we only know the exact values f(xj) of (2.1) approximately, i.e.,
fj ≈ f(xj) (j ∈ I1

M ). Introducing the nonequispaced Fourier matrix as in (1.1) and the

vectors f̂ := (f̂k)k∈Id
N

∈ C
Nd

, f := (fj)j∈I1

M
, the linear system (4.1) can be written in

the form
A

(d)

M,Nd f̂ = f . (4.2)

For Nd < M , the linear system (4.2) is overdetermined and nonsolvable in general. Then
a standard method is to determine the least squares solution of (4.2) with minimal norm,
i.e.,

min
{

‖f̂‖2 : f̂ ∈ C
Nd

with ‖A(d)

M,Nd f̂ − f‖2 = min
}

.

This can be done by means of singular value decomposition which is very expensive
and no practical way at all. In the following, we find f̂ by weighted reconstruction. In
order to compensate the “clusters” in the sampling set {xj : j ∈ I1

M}, it is useful to
incorporate the weights wj = m(Vj) > 0 (j ∈ I1

M ) into our problem. Hence we consider
the weighted reconstruction problem

‖f − A
(d)

M,Nd f̂‖2
WM

=
∑

j∈I1

M

wj |f(xj) − fj|2 = min (4.3)
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with the diagonal matrix W M := diag (wj)j∈I1

M
. In [11], it is proven that the minimisa-

tion problem (4.3) for f̂ ∈ C
Nd

is uniquely solvable under the assumptions of Theorem
3.2. Note that problem (4.3) can be solved with the weighted normal equation of first
kind. Hence we introduce the weighted multilevel Toeplitz matrix

T Nd :=
(
A

(d)

M,Nd

)H
W M A

(d)

M,Nd ∈ C
Nd×Nd

. (4.4)

Then the entries of T Nd reads as follows

tk,l :=
∑

j∈I1

M

wj e2πixj ·(k−l) (k, l ∈ Id
N ).

Note that the solution of (4.3) is computed iteratively by means of the conjugate gradient
method in [7, 2], where the multilevel Toeplitz structure of T Nd is used for fast matrix
vector multiplications (see also [15]).

Theorem 4.1 (see [2]) Let N , M ∈ 2N and d ∈ N. If the mesh norm δ of the sampling

set {xj ∈ Πd : j ∈ I1
M} fulfils (3.2), then T Nd is positive definite and its spectrum is

contained in [(2 − eπdNδ)2, 4].

Proof: We express the “sampled energy”
∑

j∈I1

M

|f(xj)|2 wj of f ∈ PN/2 by the Fourier

coefficients f̂k of f :

∑

j∈I1

M

|f(xj)|2 wj =
∑

k∈Id
N

∑

l∈Id
N

f̂k f̂ l

∑

j∈I1

M

wj e2πi(k−l)·xj =
∑

k∈Id
N

∑

l∈Id
N

f̂k f̂ l tk,l

=
∑

k∈Id
N

f̂k

(∑

l∈Id
N

tk,l f̂l

)

= 〈f̂ , T Nd f̂〉 .

The matrix T Nd acts on C
Nd

and its entries tk,l depend only on k − l. For d = 1, the
matrix T N is therefore a Toeplitz matrix. For d ≥ 2, T Nd is a block Toeplitz matrix
with Toeplitz blocks. From Theorem 3.2, it follows that T Nd is positive definite, since
by Parseval equation

(2 − eπdNδ)2 〈f̂ , f̂〉 ≤ 〈f̂ , T Nd f̂〉 ≤ 4 〈f̂ , f̂〉

for all f̂ ∈ C
Nd

. If the smallest and largest eigenvalues of the Hermitian matrix T Nd are
denoted by λmin(T Nd) and λmax(T Nd), then by the variational properties of eigenvalues
we infer

(2 − eπdNδ)2 ≤ λmin(T Nd) ≤ λmax(T Nd) ≤ 4 .

Hence the spectrum of T Nd is contained in [(2 − eπdNδ)2, 4].
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Theorem 4.2 Let N , M ∈ 2N. If the mesh norm δ of the sampling set {xj ∈ Πd :

j ∈ I1
M} fulfils (3.2), then the weighted nonequispaced Fourier matrix W

1/2
M A

(d)

M,Nd is

left-invertible. The spectral norm of the left inverse

LNd,M := T−1
Nd

(
A

(d)

M,Nd

)H
W

1/2
M

is bounded by

‖LNd,M‖2 ≤ (2 − eπdNδ)−1 .

Proof: From M−1/d ≤ δ and (3.2), it follows that Nd < M . Immediately we see that

LNd,M W
1/2
M A

(d)

M,Nd = T−1
Nd T Nd = INd .

Therefore, LNd,M is a left inverse of W
1/2
M A

(d)

M,Nd . Since

(
W

1/2
M A

(d)

M,Nd

)H
W

1/2
M A

(d)

M,Nd = T Nd

and since the spectrum of T Nd is contained in [(2 − eπdNδ)−2, 4], the singular values of

W
1/2
M A

(d)

M,Nd are lying in [(2− eπdNδ)−1, 2]. By singular value decomposition of the left
inverse LNd,M , it follows that the spectral norm of LNd,M can be estimated by

‖LNd,M‖2 ≤ (2 − eπdNδ)−1 .

This completes the proof.

In contrast, we focus now on the underdetermined and consistent linear system (4.2),
i.e., we expect to interpolate the given data fj ∈ C, j = 0, . . . ,M − 1, exactly. We

use the fact that the nonequispaced Fourier matrix A
(d)

M,Nd has full rank M for every

polynomial order N
2 > dq−1 (see [15]). In particular, we incorporate damping factors

ŵk > 0, k ∈ Id
N , and consider the optimal interpolation problem

‖f̂‖2

Ŵ
−1

Nd

=
∑

k∈Id
N

(ŵk)−1 |f̂k|2
f̂→ min subject to AM,Nd f̂ = f , (4.5)

where Ŵ Nd := diag (ŵk)k∈Id
N

. From a result in [15] we obtain the following

Theorem 4.3 Let N , M ∈ 2N. If the separation distance q of the sampling set {xj ∈
Πd : j ∈ I1

M} fulfils q > 2d
N , then the weighted nonequispaced Fourier matrix A

(d)

M,Nd Ŵ
1/2

Nd

is right-invertible. The spectral norm of the right inverse

RNd,M := Ŵ
1/2

Nd

(
A

(d)

M,Nd

)H
K−1

M

with the kernel matrix KM := A
(d)

M,Nd Ŵ Nd (A
(d)

M,Nd)
H is bounded by

‖RNd,M‖2 ≤
(

1 −
(

2d
Nq

)d+1
)−1/2

.

11



Proof: We use the fact (see [15, Corollary 4.7]) that the eigenvalues of the kernel
matrix KM obtained from the B-spline kernel of order β = d+ 1 are bounded by

0 < 1 −
(

2d
Nq

)d+1 ≤ λmin(KM ) ≤ 1 ≤ λmax(KM ) ≤ 1 +
(

2d
Nq

)d+1
.

Following now the lines of the proof from Theorem 4.2, we obtain the assertion.
Note that problem (4.5) can be solved with the weighted normal equation of second

kind.

5 Error analysis of NFFT

In the following we use Wilkinson’s standard model for the binary floating point arith-
metic for real numbers (see [12, p. 44]). Let M denote the set of all floating point num-
bers. If x ∈ R is represented by the floating point number fl(x) ∈ M, then fl(x) = x(1+δ′)
with |δ′| ≤ u, where u denotes the unit roundoff or machine precision as long as we dis-
regard underflow and overflow. For arbitrary x0, x1 ∈ M and any arithmetical operation
◦ ∈ {+, −, ×, /}, the exact value y = x0◦x1 ∈ R and the computed value fl(x0◦x1) ∈ M

are related by
fl(x0 ◦ x1) = (x0 ◦ x1)(1 + δ◦) (|δ◦| ≤ u) . (5.1)

In the IEEE single precision arithmetic (24 bits for the mantissa including 1 sign bit, 8
bits for the exponent), we have u = 2−24 ≈ 5.96 × 10−8. Concerning the IEEE double
precision arithmetic (53 bit for the mantissa including 1 sign bit, 11 bit for the exponent),
we find u = 2−53 ≈ 1.11 × 10−16 (see [12, p. 45]).

Since complex arithmetic is implemented using real arithmetic, we can derive the
following bounds for the roundoff error of complex floating point operations.

Lemma 5.1 (see [12, p. 79], [23]) Let x0, x1 ∈ M + i M. Then

fl(x0 + x1) = (x0 + x1)(1 + δ+) (|δ+| ≤ u) ,

fl(x0 × x1) = (x0 × x1)(1 + δ×) (|δ×| ≤ 4
√

3
3 (u+ u2)).

In the case x0 ∈ M ∪ i M and x1 ∈ M + i M, we have

fl(x0 × x1) = (x0 × x1)(1 + δ×) (|δ×| ≤ u) . (5.2)

In this section, we show that under weak assumptions the NFFT possesses a remark-
able good numerical stability. But first we present a result concerning the numerical
stability of the d-variate FFT.

5.1. The d-variate FFT is stable

Let
F

(d)

nd := n−d/2
(
e−2πil·k/n

)

l,k∈Id
n

be the d-variate (equispaced) Fourier matrix.

12



Lemma 5.2 Let n be a power of 2. Assume that all complex n-th roots of unity are

precomputed by direct call such that

|e−2πik/n − fl
(
e−2πik/n

)
| ≤

√
2

2 u (k = 1, . . . , n− 1) .

For arbitrary x ∈ (M + i M)n
d

let y := F
(d)

nd x. Then the d-variate FFT is stable in the

following sense that

‖ỹ − y‖2 ≤
(
d kn u+ O(u2)

)
‖x‖2 ,

where kn = 4.01651 log2 n and ỹ := fl
(
F

(d)

nd x
)
.

Proof: 1. For a proof in the case d = 1 see [12, p. 453] or [21]. Thus the univariate
Cooley–Tukey FFT is numerically stable in the following sense that for all input vectors
x ∈ (M + i M)n

‖ỹ − y‖2 ≤
(
kn u+ O(u2)

)
‖x‖2 ,

where y := F
(1)
n x ∈ C

n is the exact Fourier transformed vector and ỹ := fl
(
F

(1)
n x

)
∈

(M + i M)n is that vector computed by Cooley–Tukey FFT in floating point arithmetic.
In [12, p. 453], kn reads as follows 13

2

√
2 log2 n ≈ 9.119239 log2 n. A more detailed

analysis in [21] shows that kn = (1 + 4
√

3
3 +

√
2

2 ) log2 n ≈ 4.01651 log2 n is also possible.

2. For shortness, we prove only the case d = 2. The (k1, k2)-th component of y = F
(2)
n2 x

reads as follows

yk1,k2
:= 1

n

∑

l1∈I1
n

∑

l2∈I1
n

e−2πi(l1k1+l2k2)/n xl1,l2 (k1, k2 ∈ I1
n)

= 1√
n

∑

l2∈I1
n

e−2πi l2k2/n
(

1√
n

∑

l1∈I1
n

e−2πi l1k1/n xl1,l2

)

.

︸ ︷︷ ︸

=:zk1,l2

Setting

xl2 :=
(

xl1,l2

)n
2
−1

l1=−n
2

(l2 ∈ I1
n) , x :=






x−n
2

...
xn

2
−1




 ,

we compute the bivariate FFT via the known row–column method. In a first step, we
calculate for each l2 ∈ I1

n

zl2 =
(
zk1,l2

)n
2
−1

k1=−n
2

:= F (1)
n xl2

by univariate FFT. Then we form z′
k1

:=
(
zk1,l2

)n
2
−1

l2=−n
2

. In a second step, we compute

for each k1 ∈ I1
n

yk1
=

(
yk1,k2

)n
2
−1

k2=−n
2

:= F (1)
n z′

k1
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and we obtain the result

y :=






y−n
2

...
y n

2
−1




 ∈ C

n2

.

Now we estimate the roundoff error of the bivariate FFT. By step 1 we know that

‖ẑl2 − zl2‖2
2 ≤

(
knu+ O(u2)

)2 ‖xl2‖2
2 (l2 ∈ I1

n)

with kn = 4.01651 log2 n. Summation of all inequalities yields

‖ẑ − z‖2
2 ≤

(
kn u+ O(u2)

)2‖x‖2
2 , (5.3)

where

ẑl2 := fl
(
F (1)

n xl2

)
, z :=






z−n
2

...
z n

2
−1




 , ẑ :=






ẑ−n
2

...
ẑ n

2
−1




 .

Now we set for each k1 ∈ I1
n

ẑ′
k1

:=
(

ẑk1,l2

)n
2
−1

l2=−n
2

, ỹk1
:= F (1)

n ẑ′
k1
, ŷk1

:= fl(F (1)
n ẑ′

k1
) .

Applying step 1 again, we can estimate that

‖ŷk1
− ỹk1

‖2
2 ≤

(
knu+ O(u2)

)2 ‖ẑ′
k1
‖2
2 (k1 ∈ I1

n).

Summation of these inequalities yields

‖ŷ − ỹ‖2
2 ≤

(
knu+ O(u2)

)2‖ẑ′‖2
2 (5.4)

with

ŷ :=






ŷ−n
2

...
ŷ n

2
−1




 , ỹ :=






ỹ−n
2

...
ỹ n

2
−1




 , ẑ′ :=






ẑ′
−n

2

...
ẑ′

n
2
−1




 .

Now by ‖z‖2 = ‖x‖2 and (5.3) it follows that

‖ẑ′‖2 = ‖ẑ‖2 ≤ ‖ẑ − z‖2 + ‖z‖2 ≤
(
1 + knu+ O(u2)

)
‖x‖2 =

(
1 + O(u)

)
‖x‖2 .

Thus by (5.4) we obtain that

‖ŷ − ỹ‖2 ≤
(
knu+ O(u2)

)
(1 + O(u)) ‖x‖2 =

(
knu+ O(u2)

)
‖x‖2 . (5.5)

By triangle inequality we get ‖ŷ − y‖2 ≤ ‖ŷ − ỹ‖2 + ‖ỹ − y‖2 . Now we can estimate

‖ỹ − y‖2 ≤
(
knu+ O(u2)

)
‖x‖2 , (5.6)

since ỹk1
− yk1

= F
(1)
n (ẑ′

k1
− z′

k1
), F

(1)
n is unitary and ‖ỹk1

− yk1
‖2
2 = ‖ẑ′

k1
− z′

k1
‖2
2

(k1 ∈ I1
n) . By summation of these inequalities and 1. we get

‖ỹ − y‖2
2 = ‖ẑ′ − z′‖2

2 = ‖ẑ − z‖2
2 ≤

(
knu+ O(u2)

)2‖x‖2
2 .

Finally from (5.5) and (5.6) it follows the assertion for d = 2.
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5.2. The d-variate NFFT is robust

The Algorithm 2.1 reads in matrix-vector notation

h := n−d/2 BM,nd F
(d)

nd Dnd,Nd f̂ (f̂ ∈ (M + i M)N
d

) , (5.7)

where BM,Nd and Dnd,Nd denotes sparse matrices

BM,nd :=
(
ψ(xj − l

n)
)

j∈I1

M
,l∈Id

n
,

Dnd,Nd :=
(
ONd,(nd−Nd)/2 | diag (ck(ϕ)−1)k∈Id

N
|ONd,(nd−Nd)/2

)

with the zero matrix ONd,(nd−Nd)/2 of size Nd × ((nd − Nd)/2). Note that h ∈ C
M is

an approximation of f := A
(d)

M,Nd f̂ .

We call an algorithm for the computation of the NFFT robust, if for all f̂ ∈ (M+i M)N
d

there exist a positive constant kN with kNu≪ 1 such that

‖fl(h) − h‖2 ≤
(
kNu+ O(u2)

)
‖f̂‖2 .

Note that for the univariate case it was proven in [18, Theorem 12.3] and [19, Theorem
5.2] that the NFFT is robust too. In the following, we show that the multivariate NFFT
is robust.

Theorem 5.3 Let M , N ∈ 2N. Let n = αN (α > 1) be a power of 2 and m ∈ N with

2m ≪ n be given. Let q be the separation distance of the sampling set {xj : j ∈ I1
M}.

Let τ ∈ L1(R)∩L2(R) be a nonnegative even function which decreases monotonically in

[0,∞) and let

ϕ0(x) :=
∑

r∈Z

τ(n(x+ r)), ψ0(x) :=
∑

r∈Z

(τ χ[−m,m])(n(x+ r)) (x ∈ R) .

Assume that ϕ0 has a uniformly convergent Fourier expansion with the Fourier coeffi-

cients

ck(ϕ0) = n−1 τ̂
(

2πk
n

)
(k ∈ Z) ,

where τ̂ is the Fourier transform of τ and where |ck(ϕ0)| ≥ |ck+1(ϕ0)| for all k ≥ 0. Let

ϕ and ψ be the tensor products

ϕ(x) := ϕ0(x1) . . . ϕ0(xd) , ψ(x) := ψ0(x1) . . . ψ0(xd) .

As ϕ0 and ψ0, respectively, one can choose a 1-periodized dilated Gaussian bell and

a 1-periodized dilated truncated Gaussian bell, respectively, for details see Section 2.
If h̃ = fl(h) denotes the computed vector of (5.7), then the normwise roundoff error

‖h̃ − h‖2 can be estimated by

‖h̃ − h‖2 ≤
(
k̃nu+ O(u2)

)
‖f̂‖2

for arbitrary input vector f̂ ∈ (M + i M)N
d

, where

k̃n : = n−d/2 β̃ |τ̂(π
α)|−d

(
(2m+ 1)d + 4.1 d log2 n+ 3

)
,

β̃ : = min
{(

2m
nq + 1

)d/2
, M1/2

} (
(τ(0))2 + ‖τ‖2

2

)d/2
.
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Proof: 1. First, we estimate the spectral norm of the sparse matrix Dnd,Nd . By

(
Dnd,Nd

)H
Dnd,Nd = diag

(
|nd ck(ϕ)|−2

)

k∈Id
N

,

we see immediately that

‖Dnd,Nd‖2 = max
k∈Id

N

{
n−d |ck(ϕ)|−1

}
= n−d |cN (ϕ0)|−d = |τ̂

(
π
α

)
|−d ,

i.e.,
‖Dnd,Nd‖2 ≤ |τ̂

(
π
α

)
|−d . (5.8)

2. Since ψ0 is even, 1-periodic and monotone decreasing in [0, 1
2 ], we can estimate for

fixed j ∈ I1
M that

n−1
∑

l∈I1
n

ψ0(xj − l
n)2 ≤ n−1 ψ0(0)

2 +

1/2∫

−1/2

ψ0(x)
2 dx .

By definition of ψ0 it follows that

∑

l∈I1
n

ψ0(xj − l
n)2 ≤ τ(0)2 + n

m/n∫

−m/n

τ(nx)2 dx = τ(0)2 + ‖τ‖2
2

for fixed j ∈ I1
M . Since ψ is a tensor product, we obtain that

∑

l∈Id
n

ψ(xj − l
n)2 ≤

(
τ(0)2 + ‖τ‖2

2

)d
(5.9)

for fixed j ∈ I1
M . For the sparse matrix BM,nd = (bj,l)j∈I1

M
,l∈Id

n
with bj,l := ψ(xj− l

n) ≥ 0,

the j-th component of the vector BM,nd y with y = (yl)l∈Id
n

reads as follows

(
BM,nd y

)

j
=

∑

l∈Id
n

bj,l yl .

Let bj,lr > 0 for lr ∈ Id
n (r = 1, . . . , nj). By construction of ψ, we know that nj ≤

(2m+ 1)d. By Cauchy–Schwarz inequality, we obtain for each j ∈ I1
M

|(BM,nd y)j |2 ≤
( nj∑

r=1

bj,lr |ylr |
)2

≤
( nj∑

r=1

b2j,lr

)( nj∑

r=1

|ylr |2
)

.

Using (5.7), we can estimate

nj∑

r=1

b2j,lr ≤
∑

l∈Id
n

ψ(xj − l
n)2 ≤

(
τ(0)2 + ‖τ‖2

2

)d
,
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such that

|BM,nd)j |2 ≤
(
τ(0)2 + ‖τ‖2

2

)d
nj∑

r=1

|ylr |2 .

For each l ∈ Id
n, the cube l

n + [−m
n ,

m
n ]d contains at most (2m

nq + 1)d different nodes

xj ∈ Πd, since q is the separation distance of {xj ∈ Πd : j ∈ I1
M}. Therefore, each

column of BM,nd has at most

min
{(

2m
nq + 1

)d
, M

}

non-zero entries bj,l. Consequently,

‖BM,ndy‖2
2 =

∑

j∈I1

M

|(BM,ndy)j |2 ≤ min
{(

2n
nq + q

)d
, M

}(
τ(0)2 + ‖τ‖2

2

)d ‖y‖2
2 ,

i.e.,

‖BM,nd‖2 ≤ min
{(

2m
nq + 1

)d/2
,M1/2

}(
τ(0)2 + ‖τ‖2

2

)d/2
=: β̃ . (5.10)

3. For arbitrary f̂ ∈ (M + i M)N
d

, we introduce x := Dnd,Nd f̂ and the corresponding

computed vector x̃ := fl(Dnd,Nd f̂). By Lemma 5.1 it is easy to check that

‖x̃ − x‖2 ≤ u |τ̂
(

π
α

)
|−d ‖f̂‖2 .

Now from (5.8) it follows that

‖x̃‖2 ≤ ‖x̃ − x‖2 + ‖x‖2 ≤ ‖x̃ − x‖2 + ‖Dnd,Nd‖2 ‖f̂‖2

≤ |τ̂
(

π
α

)
|−d (u+ 1) ‖f̂‖2 .

4. Set y := F
(d)

nd x and ỹ := fl(F
(d)

nd x̃). Then we can estimate

‖ỹ − y‖2 ≤ ‖ỹ − F
(d)

nd x̃‖2 + ‖F (d)

nd (x̃ − x)‖2 .

Since F
(d)

nd is unitary and since the Euclidean norm is unitary invariant, we obtain by
Lemma 5.2 on numerical stability of d-variate FFT that

‖ỹ − y‖2 ≤
(
d kn u+ O(u2)

)
‖x̃‖2 + ‖x̃ − x‖2

≤
(
(d kn + 1)u+ O(u2)

)
|τ̂

(
π
α

)
|−d‖f̂‖2

with kn = 4.01651 log2 n, i.e.,

‖ỹ − y‖2 ≤
(
(4.1 d log2 n+ 1)u+ O(u2)

)
|τ̂

(
π
α

)
|−d‖f̂‖2 . (5.11)

By (5.8) and (5.11), we obtain

‖ỹ‖2 ≤ ‖y‖2 + ‖ỹ − y‖2 = ‖F (d)

nd x‖2 + ‖ỹ − y‖2

= ‖x‖2 + ‖ỹ − y‖2 ≤ ‖Dnd,Nd‖2 ‖f‖2 + ‖ỹ − y‖2

≤
(
|τ̂

(
π
α

)
|−d + O(u)

)
‖f̂‖2 . (5.12)
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5. Now we consider the error between z := BM,nd y and z̃ := fl(BM,nd ỹ). By (5.10)
and (5.11), we obtain

‖z̃ − z‖2 ≤ ‖z̃ − BM,nd ỹ‖2 + ‖BM,nd (ỹ − y)‖2

≤ ‖z̃ − BM,nd ỹ‖2 + ‖BM,nd‖2 ‖ỹ − y‖2

≤ ‖z̃ − BM,nd ỹ‖2 + β̃
(
(4.1 d log2 n+ 1)u+ O(u2)

)
|τ̂

(
π
α

)
|−d ‖f̂‖2 .

Since each row of BM,nd contains at most (2m+ 1)d nonzero entries (see step 2 of this
proof), it follows by [12, p. 76] that

|z̃ − BM,nd ỹ| ≤
(
(2m+ 1)d u+ O(u2)

)
BM,nd |ỹ|

and consequently by (5.10) that

‖z̃ − BM,nd z̃‖ ≤
(
(2m+ 1)d u+ O(u2)

)
‖BM,nd‖2 ‖z̃‖2

≤
(
(2m+ 1)d β̃ u+ O(u2)

)
‖ỹ‖2

and hence by (5.12)

‖z̃ − BM,nd ỹ‖2 ≤
(
(2m+ 1)d β̃ |τ̂

(
π
2

)
|−d u+ O(u2)

)
‖f̂‖2

such that

‖z̃ − z‖2 ≤ β̃ |τ̂
(

π
α

)
|−d

((
(2m+ 1)d + 4.1 d log2 n+ 1

)
u+ O(u2)

)

‖f̂‖2 . (5.13)

By (5.8), (5.10), and (5.13), we can estimate

‖z̃‖2 ≤ ‖z‖2 + ‖z̃ − z‖2 = ‖BM,nd y‖2 + ‖z̃ − z‖2

≤ β̃ ‖y‖2 + ‖z̃ − z‖2

= β̃ ‖F (d)

nd x‖2 + ‖z̃ − z‖2 = β̃ ‖x‖2 + ‖z̃ − z‖2

≤ β̃ ‖Dnd,Nd‖2 ‖f‖2 + ‖z̃ − z‖2

≤
(
β̃ |τ̂

(
π
α

)
|−d + O(u)

)
‖f‖2 . (5.14)

6. By (5.7), the final step of our NFFT algorithm is the scaling h := n−d/2 z, where n
is a power of 2. Let h̃ := fl(n−d/2 z̃). For even d log2 n, this scaling with a power of 2
does not produce an additional roundoff error such that h̃ = n−d/2 z̃ and

‖h̃ − h‖2 = n−d/2 ‖z̃ − z‖2 .

For odd d log2 n, we can precompute n−d/2 = 2−(d log2 n)/2 by 2−(d log2 n+1)/2 fl(
√

2) ∈ M,
where |fl(

√
2) −

√
2| ≤ u. Then it follows from (5.2) that

|h̃ − h| ≤ n−d/2 |z̃ − z| + n−d/2 |z̃|
(
2u+ O(u2)

)

and hence
‖h̃ − h‖2 ≤ n−d/2 ‖z̃ − z‖2 + n−d/2 ‖z̃‖2 (2u+ O(u2)) .

The last inequality is also true for even d log2 n. By (5.13) and (5.14) we obtain the
assertion and hence the multivariate NFFT is robust.
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5.3. The d-variate NFFT is backward stable

We consider arbitrary input vectors f̂ ∈ (M + i M)N
d

, where all components of f̂ are
floating point numbers. In this way, we neglect the inherent error and we essentially

consider only the algorithmic one. Let g := A
(d)

M,Nd f̂ be the exact Fourier transformed

vector. Let h := n−d/2 BM,nd F
(d)

nd Dnd,Nd f̂ be the exact result of the approximate

NFFT Algorithm 2.1. Further, let h̃ ∈ (M + i M)M be the output vector computed
by Algorithm 2.1, using a binary floating point arithmetic with unit roundoff u. (see
Figure 5.1). The weighted reconstruction problem (4.3) is solvable under the conditions

of Theorem 4.2 and the matrix A
(d)

M,Nd has a left inverse LNd,MW
1/2
M . We introduce

△f̂ ∈ C
Nd

by

△f̂ := LNd,MW
1/2
M h̃ − f̂ .

Then we say that an approximate algorithm for computing of g = A
(d)

M,Nd f̂ is normwise

backward stable (see [12, p. 142]), if the scaled approximation error

‖LNd,MW
1/2
M ‖2 ‖h − g‖2

is sufficiently small and if there exists a positive constant kn with

‖LNd,MW
1/2
M ‖2 kn u≪ 1

such that

‖△f̂‖2 ≤
(
‖LNd,MW

1/2
M ‖2 kn u+ O(u2)

)
‖f̂‖2 + ‖LNd,MW

1/2
M ‖2 ‖h − g‖2 .

f̂ ∈ (M + i M)N
d

g = A
(d)

M,Nd f̂ ∈ C
M

h = n−d/2 BM,ndF
(d)

nd Dnd,Nd f̂ ∈ C
M

f̂ + ∆f̂ = LNd,MW
1/2
M h̃ h̃ := fl(h) ∈ (M + i M)M

Figure 5.1: Normwise backward stability of NFFT via weighted reconstruction (4.3).

From f̂ = LNd,M W
1/2
M A

(d)

M,Nd f̂ it follows that

△f̂ = LNd,M W
1/2
M (h̃ − A

(d)

M,Nd f̂) = LNd,M W
1/2
M (h̃ − g)

= LNd,M W
1/2
M (h̃ − h) + LNd,M W

1/2
M (h − g)
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and hence

‖△f̂‖2 ≤ ‖LNd,M W
1/2
M ‖2 ‖h̃ − h‖2 + ‖LNd,M W

1/2
M ‖2 ‖h − g‖2 . (5.15)

The approximation error ‖h − g‖2 can be estimated by (2.6) and (2.5), respectively.
Under the assumptions of Theorem 4.2, we see that

‖LNd,M‖2 ≤ (2 − eπdNδ)−1 , ‖W 1/2
M ‖2 ≤ max

j∈I1

M

√
wj ≤

√
δ .

An estimate of ‖h̃ − h‖2 is given in Theorem 5.3. Therefore we obtain immediately

Theorem 5.4 Under the assumptions of Theorem 4.2, the weighted reconstruction prob-

lem (4.3) is solvable and the approximate NFFT Algorithm 2.1 is normwise backward

stable.

In an analogous manner, we can consider the underdetermined case, i.e., the interpo-
lation case. The optimal interpolation problem (4.5) is solvable under the conditions of

Theorem 4.3 and the matrix A
(d)

M,Nd has a right inverse Ŵ
1/2

Nd RNd,M . Again we introduce

△f̂ ∈ C
Nd

by

△f̂ := Ŵ
1/2

Nd RNd,M h̃ − f̂ .

f̂ ∈ (M + i M)N
d

g = A
(d)

M,Nd f̂ ∈ C
M

h = n−d/2 BM,ndF
(d)

nd Dnd,Nd f̂ ∈ C
M

f̂ + ∆f̂ = Ŵ
1/2

Nd RNd,M h̃ h̃ := fl(h) ∈ (M + i M)M

Figure 5.2: Normwise backward stability of NFFT via optimal interpolation (4.5).

See Figure 5.2. Following the lines above, we obtain by Theorem 4.3

Theorem 5.5 Under the assumptions of Theorem 4.3, the optimal interpolation problem

(4.5) is solvable and the approximate NFFT Algorithm 2.1 is normwise backward stable.

6 Numerical examples

The following numerical examples are computed with the NFFT C-subroutine library
[14], where we choose different window functions with different cut-off parameters m and
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oversampling factor α = 2. The NFFT evaluates the corresponding d-variate trigono-
metric polynomial (2.1) at M arbitrary nodes in O((αN)2 log(αN)d+mdM) arithmetical
operations.

We start with the following numerical example, in order to confirm Theorem 5.3 by
numerical results.

Example 6.1 We compute the Dirichlet kernels at M = Nd random knots xj ∈
[−1/2, 1/2)d (j = 0, . . . ,M − 1) by choosing f̂k = 1 for k ∈ Id

N for d = 2 and d = 3. In
the bivariate case d = 2, we have for xj = (x1j , x2j) ∈ [−1/2, 1/2)2 j = 0, . . . ,M − 1

gj =
∑

k∈I2

N

e−2πik·xj =
2 (cos(πN(x1j + x2j)) − cos(πN(x1j − x2j)))

(
e−2πix1j − 1

) (
e−2πix2j − 1

) .

In Figure 6.1 we show the error (each is an average of 10 tests) E := ‖g−h̃‖2

‖f̂‖2

for various

cut-off parameters m = 3, . . . , 19, for various N and different window functions. By the
triangle inequality, we can estimate

E =
‖g − h̃‖2

‖f̂‖2

≤ ‖g − h‖2

‖f̂‖2

+
‖h − h̃‖2

‖f̂‖2

,

where the first term on the left hand side decays exponentially by (2.5) (first phase) and
the second term is estimated in Theorem 5.3 (second phase). Furthermore we observe
in the second phase that the constant kn increase with increasing cut-off parameter m.
Finally we present in Figure 6.1 (right) the same test in the trivariate case d = 3. Note
that for N = 16 we choose m = 3, . . . , 16 since the NFFT requires m ≤ N .

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

 

 

N=32
N=64
N=128
N=256

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

 

 

N=32
N=64
N=128
N=256

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

 

 

N=16
N=32
N=64
N=128

Figure 6.1: Error E with respect to various cut-off parameters m = 3, . . . , 19 and differ-
ent N , left: Gaussian window d = 2, middle: Kaiser-Bessel window d = 2,
right: Kaiser-Bessel window d = 3.

In the following we provide numerical examples for the NFFT on the important lino-
gram grid (see [17, 1, 8]). Let d = 2 and let {x1, . . . ,xM} be a linogram grid centered af
(0, 0), which is formed by concentric squares centered at (1/2, 1/2) (see Figure 6.2 left).
We choose R ∈ 2 N and T ∈ 4 N and put

{x1, . . . ,xM} =
⋃

−R/2≤j≤R/2−1

⋃

−T/4≤t≤T/4−1

{xH
t,j,x

V
t,j}
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where

xH
t,j =

(
j
R ,

4t
T

j
R

)

, xV
t,j =

(

−4t
T

j
R ,

j
R

)

.

We take the weights wt,j = π|j|/(TR2) and choose T = R = 2N . The number of points
in this grid is M = TR = 4N2. One can easily show that δ = 2/N . Note that the
assumption of Theorem 3.2 is not fulfilled, because (3.2) would require δ < 0.1/N . In
order to fulfil this assumption one has to chose T and R much greater. However our
numerical examples show that this is not necessary. Therefore an approach for estimating
the smallest eigenvalue of (1.1) based on probabilistic arguments was given in [4]. With
the following numerical example we are able to explain the numerical behavior observed
in [8] and confirm Theorem 5.4 by numerical results.

Example 6.2 We choose vectors randomly f̂ ∈ ([0, 1]+ i [0, 1])1024
2

randomly. Then we
compute by the NFFT the values f(xj) of the bivariate trigonometric polynomial (2.1)
on the linogram grid for d = 2 and j = 0, . . . ,M − 1 with an oversampling factor α = 2
and cut-off parameter m = 3 : 3 : 15, i.e., with different accuracy. In Figure 6.2 (middle)
we plot the reconstruction error

E2(l) :=

√
∑

k∈Id
N
|f̂k − f̂l,k|2

√
∑

k∈Id
N
|f̂k|2

,

where f̂l,k denotes the k-th entry of the l-th iterate within the CGNR method.

Instead of computing the left inverse LNd,MW
1/2
M of A

(d)

M,Nd , we compute an approxi-

mation of the left inverse of n−d/2 BM,ndF
(d)

nd Dnd,Nd by the CGNR method and denote

this matrix after l CGNR steps by L̃
l
W

1/2
M . We infer from (5.15) the estimate

E2(l) ≤ ‖L̃l‖2
‖h − h̃‖2

‖f̂‖2

+ ‖L̃l − LNd,M W
1/2
M ‖2

‖h‖2

‖f̂‖2

+ ‖LNd,M W
1/2
M ‖2

‖h − g‖2

‖f̂‖2

.

Our numerical results are again in perfect accordance with the theoretical results. In
the first phase we observe the exponential decay of ‖h−g‖2

‖f̂‖2

and in the second stage

the saturation dominated by the roundoff error. By the term ‖L̃l − LNd,M W
1/2
M ‖2 we

can explain the saturation with respect to the iteration number for constant cut-off
parameters m. In Figure 6.2 (middle and right) we show the reconstruction error E2(l)
by using the Gaussian window function and the Kaiser-Bessel window function. We see
in the saturation phase of Figure 6.2 (right) that the numerical error increase slightly
with increasing m as expected for the term ‖h− h̃‖2/‖f̂‖2 (see Theorem 5.3). However
we observe that the assumption (3.2) of Theorem 4.2 is too pessimistic and we observe
a much better numerical behavior for greater mesh norms.
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Figure 6.2: Left:linogram grid, middle and right: Reconstruction error E2(l) after l it-
erations for various cut-off parameters m, middle: Gaussian window, right:
Kaiser-Bessel window.
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