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Abstract. The recovery of signal parameters from noisy sampled data is an essential problem in
digital signal processing. In this paper, we discuss the numerical solution of the following parameter
estimation problem. Let h0 be a multivariate exponential sum, i.e., h0 is a finite linear combination
of complex exponentials with distinct frequency vectors. Determine all parameters of h0, i.e., all
frequency vectors, all coefficients, and the number of exponentials, if finitely many sampled data
of h0 are given. Using Ingham–type inequalities, the Riesz stability of finitely many multivariate
exponentials with well–separated frequency vectors is discussed in continuous as well as discrete
norms. Further we show that a rectangular Fourier–type matrix has a bounded condition number,
if the frequency vectors are well–separated and if the number of samples is sufficiently large. Then
we reconstruct the parameters of an exponential sum h0 by a novel algorithm, the so–called sparse
approximate Prony method (SAPM), where we use only some data sampled along few straight lines.
The first part of SAPM estimates the frequency vectors by using the approximate Prony method in
the univariate case. The second part of SAPM computes all coefficients by solving an overdetermined
linear Vandermonde–type system. Numerical experiments show the performance of our method.
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1. Introduction. Let the dimension d ∈ N and a positive integer M ∈ N\{1} be
given. We consider a d-variate exponential sum of order M that is a linear combination

h0(x) :=

M∑
j=1

cj eifj ·x (x = (xl)
d
l=1 ∈ Rd) (1.1)

of M complex exponentials with complex coefficients cj 6= 0 and distinct frequency
vectors f j = (fj,l)

d
l=1 ∈ Td ∼= [−π, π)d. Assume that |cj | > ε0 (j = 1, . . . ,M) for a

convenient bound 0 < ε0 � 1. Here the torus T is identified with the interval [−π, π).
Further the dots in the exponents of (1.1) denote the usual scalar product in Rd.
If h0 is real–valued, then (1.1) can be represented as a linear combination of ridge
functions

h0(x) =

M∑
j=1

|cj | cos
(
f j · x+ ϕj

)
with cj = |cj | eiϕj . Assume that the frequency vectors f j ∈ Td (j = 1, . . . ,M) fulfill

the gap condition on Td

dist(f j ,f l) := min{‖(f j + 2πk)− f l‖∞ : k ∈ Zd} ≥ q > 0 (1.2)

for all j, l = 1, . . . ,M with j 6= l. Let N ∈ N with N ≥ 2M + 1 be given. In the
following G is either the full grid ZdN := [−N,N ]d ∩ Zd or a union of 2N + 1 grid
points n ∈ Zd lying on few straight lines. If G is chosen such that |G| � (2N + 1)d
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for d ≥ 2, then G is called a sparse sampling grid.
Suppose that perturbed sampled data

h(n) := h0(n) + e(n), |e(n)| ≤ ε

of (1.1) for all n ∈ G are given, where the error terms e(n) ∈ C are bounded by certain
accuracy ε > 0. Then we consider the following parameter estimation problem for the
d–variate exponential sum (1.1): Recover the distinct frequency vectors f j ∈ [−π, π)d

and the complex coefficients cj so that

|h(n)−
M∑
j=1

cj eifj ·n| ≤ ε (n ∈ G) (1.3)

for very small accuracy ε > 0 and for minimal order M . In other words, we are
interested in sparse approximate representations of the given noisy data h(n) ∈ C
(n ∈ G) by sampled data of the exponential sum (1.1), where the condition (1.3) is
fulfilled.
The approximation of data by finite linear combinations of complex exponentials has
a long history, see [19, 20]. There exists a variety of applications, such as fitting
nuclear magnetic resonance spectroscopic data [18] or the annihilating filter method
[31, 6, 30]. Recently, the reconstruction method of [3] was generalized to bivariate
exponential sums in [1]. In contrast to [1], we introduce a sparse approximate Prony
method, where we use only some data on a sparse sampling grid G. Further we
remark the relation to a reconstruction method for sparse multivariate trigonometric
polynomials, see Remark 6.3 and [14, 12, 32].

In this paper, we extend the approximate Prony method (see [23]) to multivariate
exponential sums. Our approach can be described as follows:
(i) Solving a few reconstruction problems of univariate exponential sums, we determine
a finite set of feasible frequency vectors f ′k (k = 1, . . . ,M ′). For each reconstruction
we use only data sampled along a straight line. As parameter estimation we use
the univariate approximate Prony method which can be replaced by another Prony–
like method [24], such as ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques) [26, 27] or matrix pencil methods [10, 29].
(ii) Then we test, if a feasible frequency vector f ′k (k = 1, . . . ,M ′) is an actual
frequency vector of the exponential sum (1.1) too. Replacing the condition (1.3) by
the overdetermined linear system

M ′∑
k=1

c′k eif
′
k·n = h(n) (n ∈ G) , (1.4)

we compute the least squares solution (c′k)M
′

k=1. Then we say that f ′k is an actual
frequency vector of (1.1), if |c′k| > ε0. Otherwise, f ′k is interpreted as frequency

vector of noise and is canceled. Let f̃ j (j = 1, . . . ,M) be all the actual frequency
vectors.
(iii) In a final correction step, we solve the linear system

M∑
j=1

c̃j eif̃j ·n = h(n) (n ∈ G) .
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As explained above, our reconstruction method uses the least squares solution of the
linear system (1.4) with the rectangular coefficient matrix(

eif̃j ·n
)
n∈G, j=1,...,M

(|G| > M) .

If this matrix has full rank M and if its condition number is moderately sized, then
one can efficiently compute the least squares solution of (1.4), which is sensitive to
permutations of the coefficient matrix and the sampled data (see [7, pp. 239 – 244]).
In the special case G = ZdN , we can show that this matrix is uniformly bounded, if

N >
√
dπ
q . Then we use (2N+1)d sampled data for the reconstruction of M frequency

vectors f j and M complex coefficients cj of (1.1).
But our aim is an efficient parameter estimation of (1.1) by a relatively low number
of given sampled data h(n) (n ∈ G) on a sparse sampling grid G. The corresponding
approach is called sparse approximate Prony method (SAPM). Numerical experiments
for d–variate exponential sums with d ∈ {2, 3, 4} show the performance of our pa-
rameter reconstruction.

This paper is divided into two parts. The first part consists of Sections 2 and 3,
where we discuss the Riesz stability of finitely many multivariate exponentials. It is a
known fact that an exponential sum (1.1) with well–separated frequency vectors can
be well reconstructed. Otherwise, one also knows that the parameter estimation of an
exponential sum with clustered frequency vectors is very difficult. What is the basic
cause of these effects? In Section 2, we investigate the Riesz stability of multivariate
exponentials with respect to the continuous norms of L2([−N, N ]d) and C([−N, N ]d),
respectively, where we assume that the frequency vectors fulfill the gap condition (2.1)
(see Lemma 2.1 and Corollary 2.3). These results are mainly based on Ingham–type
inequalities (see [15, pp. 59 – 66 and pp. 153 – 156]). Furthermore we present a result
for the converse assertion, i.e., if finitely many multivariate exponentials are Riesz
stable, then the corresponding frequency vectors are well–separated (see Lemma 2.2).
In Section 3, we extend these stability results to draw conclusions for the discrete
norm of `2(ZdN ). Further we prove that the condition number of the coefficient matrix
of (1.4) is uniformly bounded, if we choose the full sampling grid G = ZdN and if
N is sufficiently large. By the results of Section 3, one can see that well–separated
frequency vectors are essential for a successful parameter estimation of (1.1). Up to
now, a corresponding result for a sparse sampling grid G is unknown.
The second part of this paper consists of Sections 4 – 7, where we present a novel
efficient parameter recovery algorithm of (1.1) for a sparse sampling grid. In Section
4 we sketch the approximate Prony method in the univariate setting. Then we extend
this method to bivariate exponential sums in Section 5. Here we suggest the new
SAPM. The main idea is to project the bivariate reconstruction problem to several
univariate problems and combine finally the results of the univariate reconstructions.
We use only few data sampled along some straight lines in order to reconstruct a
bivariate exponential sum. In Section 6, we extend this reconstruction method to
d–variate exponential sums for moderately sized dimensions d ≥ 3. Finally, various
numerical examples are presented in Section 7.

2. Stability of exponentials. As known, the main difficulty is the reconstruc-
tion of frequency vectors with small separation distance q > 0 (see (1.2)). Therefore
first we discuss the stability properties of the finitely many d–variate exponentials in
dependence of q. We start with a generalization of the known Ingham inequalities
(see [11]):
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Lemma 2.1. (see [15, pp. 153− 156]). Let d ∈ N, M ∈ N \ {1} and N > 0 be given.
If the frequency vectors f j ∈ Rd (j = 1, . . . ,M) fulfill the gap condition on Rd

‖f j − f l‖∞ ≥ q >
√
d π

N
(j, l = 1, . . . ,M ; j 6= l), (2.1)

then the exponentials eifj ·(·) (j = 1, . . . ,M) are Riesz stable in L2([−N,N ]d), i.e., for
all complex vectors c = (cj)

M
j=1

γ1 ‖c‖22 ≤ ‖
M∑
j=1

cj eifj ·(·)‖22 ≤ γ2 ‖c‖22 (2.2)

with some positive constants γ1, γ2, independent of the particular choice of the coef-
ficients cj. Here ‖c‖2 denotes the Euclidean norm of c ∈ CM and

‖f‖2 :=
( 1

(2N)d

∫
[−N,N ]d

|f(x)|2 dx
)1/2

(f ∈ L2([−N,N ]d)) .

For a proof see [15, pp. 153 – 156]. Note that for d = 1, we obtain exactly the classical
Ingham inequalities (see [11]) with the positive constants

γ1 =
2

π

(
1− π2

N2q2
)
, γ2 =

4
√

2

π

(
1 +

π2

4N2q2
)
.

In the case d ≥ 2, the Lemma 2.1 provides only the existence of positive constants γ1,
γ2 without corresponding explicit expressions.
Obviously, the exponentials

eifj ·(·) (j = 1, . . . ,M) (2.3)

with distinct frequency vectors f j ∈ Rd (j = 1, . . . ,M) are linearly independent and
Riesz stable. Now we show that from the first inequality (2.2) it follows that the
frequency vectors f j are well–separated. The following lemma generalizes a former
result [17] for univariate exponentials.
Lemma 2.2. Let d ∈ N, M ∈ N \ {1} and N > 0. Further let f j ∈ Rd (j = 1, . . . ,M)
be given. If there exists a constant γ1 > 0 such that

γ1 ‖c‖22 ≤ ‖
M∑
j=1

cj eifj ·(·)‖22

for all complex vectors c = (cj)
M
j=1, then the frequency vectors f j are well–separated

by

‖f j − f l‖∞ ≥
√

2γ1
dN

for all j, l = 1, . . . ,M (j 6= l). Moreover the exponentials (2.3) are Riesz stable in
L2([−N,N ]d).
Proof. 1. In the following proof we use similar arguments as in [5, Theorem 7.6.5].
We choose cj = −cl = 1 for j 6= l. All the other coefficients are equal to 0. Then by
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the assumption, we obtain

2 γ1 ≤ ‖eifj ·(·) − eif l·(·)‖22

=
1

(2N)d

∫
[−N,N ]d

|1− ei(f l−fj)·x|2 dx

=
1

(2N)d

∫
[−N,N ]d

4 sin2
(
(f l − f j) · x/2

)
dx

≤ 1

(2N)d

∫
[−N,N ]d

∣∣(f l − f j) · x∣∣2 dx

≤ 1

(2N)d

∫
[−N,N ]d

‖f l − f j‖21N2 dx , (2.4)

where we have used the Hölder estimate

|(f l − f j) · x| ≤ ‖f l − f j‖1 ‖x‖∞ ≤ ‖f l − f j‖1N

for all x ∈ [−N, N ]d. Therefore (2.4) shows that

d ‖f l − f j‖∞ ≥ ‖f l − f j‖1 ≥
√

2γ1
N

for all j, l = 1, . . . ,M (j 6= l).
2. We see immediately that M is an upper Riesz bound for the exponentials (2.3) in
L2([−N,N ]d). By the Cauchy–Schwarz inequality we obtain

|
M∑
j=1

cj eifj ·x|2 ≤M ‖c‖22

for all c = (cj)
M
j=1 ∈ CM and all x ∈ [−N, N ]d such that

‖
M∑
j=1

cj eifj ·(·)‖22 ≤M ‖c‖22 .

This completes the proof.

By the Lemmas 2.1 and 2.2, the Riesz stability of the exponentials (2.3) in L2([−N, N ]d)
is equivalent to the fact that the frequency vectors f j are well–separated. Now we
show that in Lemma 2.1 the square norm can be replaced by the uniform norm of
C([−N, N ]d).
Corollary 2.3. If the assumptions of Lemma 2.1 are fulfilled, then the exponentials
(2.3) are Riesz stable in C([−N,N ]d), i.e., for all complex vectors c = (cj)

M
j=1√

γ1
M
‖c‖1 ≤ ‖

M∑
j=1

cj eifj ·(·)‖∞ ≤ ‖c‖1

with the uniform norm

‖f‖∞ := max
x∈[−N,N ]d

|f(x)| (f ∈ C([−N,N ]d)).
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Proof. Let h0 ∈ C([−N,N ]d) be defined by (1.1). Then ‖h0‖2 ≤ ‖h0‖∞ <∞. Using
the triangle inequality, we obtain that

‖h0‖∞ ≤
M∑
j=1

|cj | · 1 = ‖c‖1 .

From Lemma 2.1 and ‖c‖1 ≤
√
M ‖c‖2, it follows that√

γ1
M
‖c‖1 ≤

√
γ1 ‖c‖2 ≤ ‖h0‖2 .

This completes the proof.

Now we use the uniform norm of C([−N, N ]d) and estimate the error ‖h0 − h̃‖∞
between the original exponential sum (1.1) and its reconstruction

h̃(x) :=
M∑
j=1

c̃j eif̃j ·x (x ∈ [−N, N ]d).

We obtain a small error ‖h0− h̃‖∞ in the case
∑M
j=1 |cj − c̃j | � 1 and ‖f j − f̃ j‖∞ ≤

δ � 1 (j = 1, . . . ,M).
Theorem 2.4. Let M ∈ N\{1} and N > 0 be given. Let c = (cj)

M
j=1 and c̃ = (c̃j)

M
j=1

be arbitrary complex vectors. If f j, f̃ j ∈ Rd (j = 1, . . . ,M) fulfill the conditions

‖f j − f l‖∞ ≥ q >
3
√
dπ

2N
(j, l = 1, . . . ,M ; j 6= l),

‖f̃ j − f j‖∞ ≤ δ <
√
dπ

4N
(j = 1, . . . ,M),

then both (2.3) and

eif̃j ·(·) (j = 1, . . . ,M)

are Riesz stable in C([−N, N ]d). Further

‖h0 − h̃‖∞ ≤ ‖c− c̃‖1 + dδN ‖c‖1 .

Proof. 1. By the gap condition on Rd we know that

‖f j − f l‖∞ ≥ q >
3
√
dπ

2N
>

√
dπ

N
(j, l = 1, . . . ,M ; j 6= l).

Hence the original exponentials (2.3) are Riesz stable in C([−N, N ]d) by Corollary
2.3. Using the assumptions, we conclude that

‖f̃ j − f̃ l‖∞ ≥ ‖f j − f l‖∞ − ‖f̃ j − f j‖∞ − ‖f l − f̃ l‖∞

≥ q − 2

√
dπ

4N
>

√
dπ

N
.

Thus the reconstructed exponentials

eif̃j ·(·) (j = 1, . . . ,M)
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are Riesz stable in C([−N, N ]d) by Corollary 2.3 too.
2. Now we estimate the normwise error ‖h0 − h̃‖∞ by the triangle inequality. Then
we obtain

‖h0 − h̃‖∞ ≤ ‖
M∑
j=1

(cj − c̃j) eif̃j ·(·)‖∞ + ‖
M∑
j=1

cj (eifj ·(·) − eif̃j ·(·))‖∞

≤
M∑
j=1

|cj − c̃j |+
M∑
j=1

|cj | max
x∈[−N,N ]d

|eifj ·x − eif̃j ·x| .

Since for dj := f̃ j − f j (j = 1, . . . ,M) and arbitrary x ∈ [−N, N ]d, we can estimate

|eifj ·x − eif̃j ·x| = |1− eidj ·x| =
√

2− 2 cos(dj · x)

= 2 | sin dj · x
2
| ≤ |dj · x| ≤ ‖dj‖∞ ‖x‖1 ≤ dδ N

such that we obtain

‖h0 − h̃‖∞ ≤ ‖c− c̃‖1 + dδN ‖c‖1 .

This completes the proof.

3. Stability of exponentials on a grid. In the former section we have studied
the Riesz stability of d–variate exponentials (2.3) with respect to continuous norms.
Now we investigate the Riesz stability of d–variate exponentials restricted on the full
grid ZdN with respect to the discrete norm of `2(ZdN ). First we will show that a discrete
version of Lemma 2.1 is also true for d–variate exponential sums (1.1). If we sample
an exponential sum (1.1) on the full grid ZdN , then it is impossible to distinguish
between the frequency vectors f j and f j + 2πk with certain k ∈ Zd, since by the
periodicity of the complex exponential

eif̃j ·n = ei (f̃j+2πk)·n (n ∈ ZdN ) .

Therefore we assume in the following that f j ∈ [−π, π)d (j = 1, . . . ,M) and we

measure the distance between two distinct frequency vectors f j , f l ∈ [−π, π)d (j, l =
1, . . . ,M ; j 6= l) by

dist(f j ,f l) := min{‖(f j + 2πk)− f l‖∞ : k ∈ Zd} .

Then the separation distance of the set {f j ∈ [−π, π)d : j = 1, . . . ,M} is defined by

min {dist(f j ,f l) : j, l = 1, . . . ,M ; j 6= l} ∈ (0, π].

The separation distance can be interpreted as the smallest gap between two distinct
frequency vectors in the d–dimensional torus Td.
Since we restrict an exponential sum h0 on the full sampling grid ZdN , we use the
norm

1

(2N + 1)d/2

( ∑
k∈Zd

N

|h0(k)|2
)1/2

in the Hilbert space `2(ZdN ).
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Lemma 3.1. (see [16]). Let q ∈ (0, π] and M ∈ N \ {1} be given. If the frequency
vectors f j ∈ (−π + q

2 , π −
q
2 )d (j = 1, . . . ,M) satisfy

‖f j − f l‖∞ ≥ q >
√
dπ

N
(j, l = 1, . . . ,M ; j 6= l) ,

then the exponentials (2.3) are Riesz stable in `2(ZdN ), i.e., all complex vectors c =
(cj)

M
j=1 satisfy the following Ingham–type inequalities

γ3 ‖c‖22 ≤
1

(2N + 1)d

∑
k∈Zd

N

|
M∑
j=1

cj ei fj ·k |2 ≤ γ4 ‖c‖22

with some positive constants γ3 and γ4, independent of the particular choice of c.
For a proof see [16]. Note that the Lemma 3.1 delivers only the existence of positive
constants γ3, γ4 without corresponding explicit expressions.

Lemma 3.2. Let d ∈ N, M ∈ N \ {1} and N ∈ N with N ≥ 2M + 1 be given. Further
let f j ∈ [−π, π)d (j = 1, . . . ,M). If there exists a constant γ3 > 0 such that

γ3 ‖c‖22 ≤
1

(2N + 1)d

∑
k∈Zd

N

|
M∑
j=1

cj eifj ·k|2

for all complex vectors c = (cj)
M
j=1, then the frequency vectors f j are well–separated

by

dist(f j ,f l) ≥
√

2γ3
dN

for all j, l = 1, . . . ,M with j 6= l. Moreover the exponentials (2.3) are Riesz stable in
`2(ZdN ).
The proof follows similar lines as the proof of Lemma 2.2 and is omitted here. By Lem-
mas 3.1 and 3.2, the Riesz stability of the exponentials (2.3) in `2(ZdN ) is equivalent
to the condition that the frequency vectors f j are well–separated.

Introducing the rectangular Fourier–type matrix

F := (2N + 1)−d/2
(
ei fj ·k

)
k∈Zd

N , j=1,...,M
∈ C(2N+1)d×M ,

we improve the result of [22, Theorem 4.3].
Corollary 3.3. Under the assumptions of Lemma 3.1, the rectangular Fourier–
type matrix F has a uniformly bounded condition number cond2(F ) for all integers

N >
√
d π
q .

Proof. By Lemma 3.1, we know that for all c ∈ CM

γ3 c
Hc ≤ cHFHF c ≤ γ4 cHc (3.1)

with positive constants γ3, γ4. Let λ1 ≥ λ2 ≥ . . . ≥ λM ≥ 0 be the ordered eigenvalues
of FHF ∈ CM×M . Using the Rayleigh–Ritz Theorem and (3.1), we obtain that

γ3 c
Hc ≤ λM cHc ≤ cHFHF c ≤ λ1 cHc ≤ γ4 cHc
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and hence

0 < γ3 ≤ λM ≤ λ1 ≤ γ4 <∞ .

Thus FHF is positive definite and

cond2(F ) =

√
λ1
λM
≤
√
γ4
γ3
.

This completes the proof.
Remark 3.4. Let us consider the parameter estimation problem (1.3) in the special
case G = ZdN with (2N + 1)d given sampled data h(n) (n ∈ ZdN ). Assume that
distinct frequency vectors f j ∈ [−π, π)d (j = 1, . . . , M) with separation distance q
are determined. If we replace (1.3) by the overdetermined linear system

M∑
j=1

cj eif
′
j ·k = h(k) (k ∈ ZdN ) ,

then by Corollary 3.3 the coefficient matrix has a uniformly bounded condition number

for all N >
√
dπ
q . Further this matrix has full rank M . Hence the least squares

solution (cj)
M
j=1 can be computed and the sensitivity of the least squares solution to

perturbations can be shown [7, pp. 239 – 244]. Unfortunately, this method requires too
many sampled data. In Sections 5 and 6, we propose another parameter estimation
method which uses only a relatively low number of sampled data.

4. Approximate Prony method for d = 1. Here we sketch the approximate
Prony method (APM) in the case d = 1. For details see [3, 23, 21]. Let M ∈ N \ {1}
and N ∈ N with N ≥ 2M + 1 be given. By ZN we denote the finite set [−N, N ]∩Z.
We consider a univariate exponential sum

h0(x) :=

M∑
j=1

cj eifjx (x ∈ R)

with distinct, ordered frequencies

−π ≤ f1 < f2 < . . . < fM < π

and complex coefficients cj 6= 0. Assume that these frequencies are well–separated in
the sense that

dist(fj , fl) := min{|(fj + 2πk)− fl| : k ∈ Z} > π

N

for all j, l = 1, . . . ,M with j 6= l. Suppose that noisy sampled data h(k) :=
h0(k) + e(k) ∈ C (k ∈ ZN ) are given, where the magnitudes of the error terms
e(k) are uniformly bounded by a certain accuracy ε1 > 0. Further we assume that
|cj | > ε0 (j = 1, . . . ,M) for a convenient bound 0 < ε0 � 1.

Then we consider the following nonlinear approximation problem: Recover the distinct
frequencies fj ∈ [−π, π) and the complex coefficients cj so that

|h(k)−
M∑
j=1

cj eifjk| ≤ ε (k ∈ ZN )

for very small accuracy ε > 0 and for minimal number M of nontrivial summands.
This problem can be solved by the following
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Algorithm 4.1. (APM)

Input: L, N ∈ N (3 ≤ L ≤ N , L is an upper bound of the number of exponentials),
h(k) = h0(k) + e(k) ∈ C (k ∈ ZN ) with |e(k)| ≤ ε1, and bounds εl > 0 (l = 0, 1, 2).

1. Determine the smallest singular value of the rectangular Hankel matrix

H := (h(k + l))N−L,Lk=−N, l=0

and related right singular vector u = (ul)
L
l=0 by singular value decomposition.

2. Compute all zeros of the polynomial
∑L
l=0 ul z

l and determine all that zeros z̃j
(j = 1, . . . , M̃) that fulfill the property | |z̃j | − 1| ≤ ε2. Note that L ≥ M̃ .

3. For w̃j := z̃j/|z̃j | (j = 1, . . . , M̃), compute c̃j ∈ C (j = 1, . . . , M̃) as least squares
solution of the overdetermined linear Vandermonde–type system

M̃∑
j=1

c̃j w̃
k
j = h(k) (k ∈ ZN ) .

For large M̃ and N , we can apply the CGNR method (conjugate gradient on the
normal equations), where the multiplication of the rectangular Fourier–type matrix

(w̃kj )N,M̃k=−N,j=1 is realized in each iteration step by the nonequispaced fast Fourier
transform (NFFT) (see [13]).
4. Delete all the w̃l (l ∈ {1, . . . , M̃}) with |c̃l| ≤ ε0 and denote the remaining entries
by w̃j (j = 1, . . . ,M) with M ≤ M̃ .
5. Repeat step 3 and compute c̃j ∈ C (j = 1, . . . ,M) as least squares solution of the
overdetermined linear Vandermonde–type system

M∑
j=1

c̃j w̃
k
j = h(k) (k ∈ ZN )

with respect to the new set {w̃j : j = 1, . . . ,M} again. Set f̃j := Im (log w̃j)
(j = 1, . . . ,M), where log is the principal value of the complex logarithm.

Output: M ∈ N, f̃j ∈ [−π, π), c̃j ∈ C (j = 1, . . . ,M).

Remark 4.2. The convergence and stability properties of Algorithm 4.1 are discussed
in [23]. In all numerical tests of Algorithm 4.1 (see Section 7 and [23, 21]), we have
obtained very good reconstruction results. All frequencies and coefficients can be
computed such that

max
j=1,...,M

|fj − f̃j | � 1,

M∑
j=1

|cj − c̃j | � 1 .

We have to assume that the frequencies fj are well–separated, that |cj | are not too
small, that the number 2N+1 of samples is sufficiently large, that a convenient upper
bound L of the number of exponentials is known, and that the error bound ε1 of the
sampled data is small. Up to now, useful error estimates of maxj=1,...,M |fj − f̃j | and∑M
j=1 |cj − c̃j | are unknown.
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Remark 4.3. The above algorithm has been tested for M ≤ 100 and N ≤ 105

in MATLAB with double precision. For fixed upper bound L and variable N , the
computational cost of this algorithm is very moderate with aboutO(N logN) flops. In
step 1, the singular value decomposition needs 14 (2N−L+1)(L+1)2+8 (L+1)2 flops.
In step 2, the QR decomposition of the companion matrix requires 4

3 (L+1)3 flops (see

[9, p. 337]). For large values N and M̃ , one can use the nonequispaced fast Fourier
transform iteratively in steps 3 and 5. Since the condition number of the Fourier–type

matrix (w̃kj )N,M̃k=−N,j=1 is uniformly bounded by Corollary 3.3, we need finitely many
iterations of the CGNR method. In each iteration step, the product between this
Fourier–type matrix and an arbitrary vector of length M̃ can be computed with the
NFFT by O(N logN +L | log ε|) flops, where ε > 0 is the wanted accuracy (see [13]).

Remark 4.4. In this paper, we use the Algorithm 4.1 for parameter estimation
of univariate exponential sums. But we can replace this procedure also by another
Prony–like method [24], such as ESPRIT [26, 27] or matrix pencil method [10, 29].

Remark 4.5. By similar ideas, we can reconstruct also all parameters of an extended
exponential sum

h0(x) =

M∑
j=1

pj(x) ei fjx (x ∈ R) ,

where pj (j = 1, . . . ,M) is an algebraic polynomial of degree mj ≥ 0 (see [4, p. 169]).
Then we can interpret the exactly sampled values

h0(n) =

M∑
j=1

pj(n) znj (n ∈ ZN )

with zj := ei fj as a solution of a homogeneous linear difference equation

M0∑
k=0

pk h0(j + k) = 0 (j ∈ Z) , (4.1)

where the coefficients pk (k = 0, . . . ,M0) are defined by

M∏
j=1

(z − zj)mj+1 =

M0∑
k=0

pk z
k , M0 :=

M∑
j=1

(mj + 1) .

Note that in this case zj is a zero of order mj of the above polynomial and we can
cover multiple zeros with this approach. Consequently, (4.1) has the general solution

h0(k) =

M∑
j=1

( mj∑
l=0

cj,l k
l
)
zkj (k ∈ Z) .

Then we determine the coefficients cj,l (j = 1, . . . ,M ; l = 0, . . . ,mj) in such a way
that

M∑
j=1

( mj∑
l=0

cj,l k
l
)
zkj = h(k) (k ∈ ZN ) ,

where we assume that N ≥ 2M0 + 1. To this end, we compute the least squares
solution of the above overdetermined linear system.
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5. Sparse approximate Prony method for d = 2. Let M ∈ N \ {1} and
N ∈ N with N ≥ 2M+1 be given. The aim of this section is to present a new efficient
parameter estimation method for a bivariate exponential sum of order M using only
O(N) sampling points. The main idea is to project the bivariate reconstruction
problem to several univariate problems and to solve these problems by methods from
the previous Section 4. Finally we combine the results from the univariate problems.
Note that it is not necessary to sample the bivariate exponential sum

h0(x1, x2) =

M∑
j=1

cj ei (fj,1x1+fj,2x2) .

on the full sampling grid ZdN . Assume that the distinct frequency vectors

f j = (fj,1, fj,2)> ∈ [−π, π)2 (j = 1, . . . ,M)

are well–separated by

dist(fj,l, fk,l) > π/N (5.1)

for all j, k = 1, . . . ,M and l = 1, 2, if fj,l 6= fk,l. We solve the corresponding pa-
rameter estimation problem stepwise and call this new procedure sparse approximate
Prony method (SAPM). Here we use only noisy values h(n, 0), h(0, n), h(n, αn + β)
(n ∈ ZN ) sampled along straight lines, where α ∈ Z \ {0} and β ∈ Z are conveniently
chosen.

First we consider the given noisy data h(n, 0) (n ∈ ZN ) of

h0(n, 0) =

M∑
j=1

cj eifj,1n =

M1∑
j1=1

cj1,1 eif
′
j1,1n , (5.2)

where 1 ≤ M1 ≤ M , f ′j1,1 ∈ [−π, π) (j1 = 1, . . . ,M1) are the distinct values of fj,1
(j = 1, . . . ,M) and cj1,1 ∈ C are certain linear combinations of the coefficients cj .
Assume that cj1,1 6= 0. Using the Algorithm 4.1, we compute the distinct frequencies
f ′j1,1 ∈ [−π, π) (j1 = 1, . . . ,M1).

Analogously, we consider the given noisy data h(0, n) (n ∈ ZN ) of

h0(0, n) =
M∑
j=1

cj eifj,2n =

M2∑
j2=1

cj2,2 eif
′
j2,2n, (5.3)

where 1 ≤ M2 ≤ M , f ′j2,2 ∈ [−π, π) (j2 = 1, . . . ,M2) are the distinct values of fj,2
(j = 1, . . . ,M) and cj2,2 ∈ C are certain linear combinations of the coefficients cj .
Assume that cj2,2 6= 0. Using the Algorithm 4.1, we compute the distinct frequencies
f ′j2,2 ∈ [−π, π) (j2 = 1, . . . ,M2).

Then we form the Cartesian product

F = {(f ′j1,1, f
′
j2,2)> ∈ [−π, π)2 : j1 = 1, . . . ,M1, j2 = 1, . . . ,M2} (5.4)

of the sets {f ′j1,1 : j1 = 1, . . . ,M1} and {f ′j2,2 : j2 = 1, . . . ,M2}. Now we test, if

(f ′j1,1, f
′
j2,2

)> ∈ F is an approximation of an actual frequency vector f j = (fj,1, fj,2)>
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(j = 1, . . . ,M). Choosing further parameters α ∈ Z \ {0}, β ∈ Z, we consider the
given noisy data h(n, αn+ β) (n ∈ ZN ) of

h0(n, αn+ β) =

M∑
j=1

cj eiβfj,2 ei(fj,1+αfj,2)n =

M ′2∑
k=1

ck,3 eifk(α)n , (5.5)

where 1 ≤ M ′2 ≤ M , fk(α) ∈ [−π, π) (k = 1, . . . ,M ′2) are the distinct values of
(fj,1 + αfj,2)2π (j = 1, . . . ,M). Here (fj,1 + αfj,2)2π is the symmetric residuum of
fj,1 +αfj,2 modulo 2π, i.e. fj,1 +αfj,2 ∈ (fj,1 +αfj,2)2π + 2π Z and (fj,1 +αfj,2)2π ∈
[−π, π). Note that fk(α) ∈ [−π, π) and that fj,1 + αfj,2 can be located outside of
[−π, π). The coefficients ck,3 ∈ C are certain linear combinations of the coefficients
cj eiβfj,2 . Assume that ck,3 6= 0. Using the Algorithm 4.1, we compute the distinct
frequencies fk(α) ∈ [−π, π) (k = 1, . . . ,M ′2).

Then we form the set F̃ of all those (f ′j1,1, f
′
j2,2

)> ∈ F so that there exists a frequency
fk(α) (k = 1, . . . ,M ′2) with

|fk(α)− (f ′j1,1 + αf ′j2,2)2π| < ε1 ,

where ε1 > 0 is an accuracy bound. Clearly, one can repeat the last step with other
parameters α ∈ Z \ {0} and β ∈ Z to obtain a smaller set F̃ := {f̃ j = (f̃j,1, f̃j,2)> :

j = 1, . . . , |F̃ |}.

Finally we compute the coefficients c̃j (j = 1, . . . , |F̃ |) as least squares solution of the
overdetermined linear system

|F̃ |∑
j=1

c̃j eif̃j ·n = h(n) (n ∈ G) , (5.6)

where G := {(n, 0), (0, n), (n, αn+β); n ∈ ZN} is the sparse sampling grid. In other
words, this linear system (5.6) reads as follows

|F̃ |∑
j=1

c̃j eif̃j,1n = h(n, 0) (n ∈ ZN ) ,

|F̃ |∑
j=1

c̃j eif̃j,2n = h(0, n) (n ∈ ZN ) ,

|F̃ |∑
j=1

c̃j eiβf̃j,2 ei(f̃j,1+αf̃j,2)n = h(n, αn+ β) (n ∈ ZN ) .

Unfortunately, these three system matrices can possess equal columns. Therefore we
represent these matrices as products F lM l (l = 1, 2, 3), where F l is a nonequispaced
Fourier matrix with distinct columns and where all entries of M l are equal to 0 or 1
and only one entry of each column is equal to 1. By [22, Theorem 4.3] the nonequi-
spaced Fourier matrices

F l :=
(
eif̃j,1n

)
n∈ZN ,j=1,...,|F̃ | (l = 1, 2) ,

F 3 :=
(
ei(f̃j,1+αf̃j,2)n

)
n∈ZN ,j=1,...,|F̃ |
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possess left inverses Ll. If we introduce the vectors h1 := (h(n, 0))Nn=−N , h2 :=

(h(0, n))Nn=−N , h3 := (h(n, αn + β))Nn=−N , c̃ := (c̃j)
|F̃ |
j=1, and the diagonal matrix

D := diag (exp(iβf̃j,2))
|F̃ |
j=1, we obtain the linear system

 M1

M2

M3D

 c̃ =

 L1 h1

L2 h2

L3 h3

 . (5.7)

By a convenient choice of the parameters α ∈ Z \ {0} and β ∈ Z, the rank of the
above system matrix is equal to |F̃ |. If this is not the case, we can use sampled values
of h0 along another straight line. We summarize:

Algorithm 5.1. (SAPM for d = 2)
Input: h(n, 0), h(0, n) ∈ C (n ∈ ZN ), bounds ε0, ε1 > 0,
m number of additional straight lines, parameters αl ∈ Z \ {0}, βl ∈ Z (l = 1, . . . ,m),
h(n, αln+ βl) ∈ C (n ∈ ZN ; l = 1, . . . ,m).

1. From the noisy data h(n, 0) (n ∈ ZN ) and h(0, n) (n ∈ ZN ) compute by Algorithm
4.1 the distinct frequencies f ′j1,1 ∈ [−π, π) (j1 = 1, . . . ,M1) in (5.2) and f ′j2,2 ∈
[−π, π) (j2 = 1, . . . ,M2) in (5.3), respectively. Set G := {(n, 0), (0, n) : n ∈ ZN}.
2. Form the Cartesian product (5.4).

3. For l = 1, . . . ,m do:

From the noisy data h(n, αln + βl) (n ∈ ZN ), compute the dis-
tinct frequencies fk(αl) ∈ [−π, π) (k = 1, . . . ,M ′2) in (5.5) by Al-
gorithm 4.1. Form the set F ′ := {f ′j : j = 1, . . . , |F ′|} of all

those (f ′j1,1, f
′
j2,2

)> ∈ F so that there exists a frequency fk(αl)
(k = 1, . . . ,M ′2) with

|fk(αl)− (f ′j1,1 + αlf
′
j2,2)2π| < ε1 .

Set G := G ∪ {(n, αln+ βl) : n ∈ ZN}.
4. Compute the least squares solution of the overdetermined linear system

|F ′|∑
j=1

c′j eif
′
j ·n = h(n) (n ∈ G)

for the frequency set F ′.

5. Form the subset F̃ = {f̃ j : j = 1, . . . , |F̃ |} of F ′ of all those f ′k ∈ F ′ (k =
1, . . . , |F ′|) with |c′k| > ε0.

6. Compute the least squares solution of the overdetermined linear system (5.6)
corresponding to the new frequency set F̃ .

Output: M := |F̃ | ∈ N, f̃ j ∈ [−π, π)2, c̃j ∈ C (j = 1, . . . ,M).

Note that it can be useful in some applications to choose grid points (n, αln + βl)
(n ∈ ZN ) at random straight lines.

14



Remark 5.2. For the above parameter reconstruction, we have used sampled values
of a bivariate exponentialsum h0 on m+ 2 straight lines. We have determined in the
step 3 of Algorithm 5.1 only a set F ′ which contains the set F̃ of all exact frequency
vectors as a subset. This method is related to a result of A. Rényi [25] which is
known in discrete tomography: M distinct points in R2 are completely determined,
if their orthogonal projections onto M + 1 arbitrary distinct straight lines through
the origin are known. Let us additionally assume that ‖f j‖2 < π (j = 1, . . . ,M).
Further let ϕ` ∈ [0, π) (` = 0, . . . ,M) be distinct angles. From sampled data
h0(n cosϕ`, n sinϕ`) (n ∈ ZN ) we reconstruct the parameters fj,1 cosϕ`+fj,2 sinϕ`
for j = 1, . . . ,M and ` = 0, . . . ,M . Since |fj,1 cosϕ` + fj,2 sinϕ`| < π, we have

(fj,1 cosϕ` + fj,2 sinϕ`)2π = fj,1 cosϕ` + fj,2 sinϕ` .

Thus fj,1 cosϕ`+fj,2 sinϕ` is equal to the distance between f j and the line x1 cosϕ`+
x2 sinϕ` = 0, i.e., we know the orthogonal projection of f j onto the straight line
x1 cosϕ` − x2 sinϕ` = 0. Hence we know that m ≤M − 1.

6. Sparse approximate Prony method for d ≥ 3. Now we extend the Algo-
rithm 5.1 to the parameter estimation of a d–variate exponential sum (1.1), where the
dimension d ≥ 3 is moderately sized. Let M ∈ N\{1} and N ∈ N with N ≥ 2M+1 be
given. Assume that the distinct frequency vectors f j = (fj,l)

d
l=0 are well–separated

by the condition

dist(fj,l, fk,l) > π/N

for all j, k = 1, . . . ,M and l = 1, . . . , d with fj,l 6= fk,l.
Our strategy for parameter recovery of (1.1) is based on a stepwise enhancement of
the dimension from 2 to d.
For r = 2, . . . , d, we introduce the matrices

α(r) :=


α
(r)
1,1 · · · α

(r)
1,r−1

...
. . .

...

α
(r)
mr,1

· · · α
(r)
mr,r−1

 ∈ (Z \ {0})mr×(r−1) ,

β(r) :=


β
(r)
1,1 · · · β

(r)
1,r−1

...
. . .

...

β
(r)
mr,1

· · · β
(r)
mr,r−1

 ∈ Zmr×(r−1) ,

where α
(r)
l,1 , . . . , α

(r)
l,r−1 and β

(r)
l,1 , . . . , β

(r)
l,r−1 are the parameters of the grid points

(n, α
(r)
l,1n+ β

(r)
l,1 , . . . , α

(r)
l,r−1n+ β

(r)
l,r−1, 0, . . . , 0) ∈ Zd (n ∈ Zd)

lying at the l-th straight line (l = 1, . . . ,mr). By α
(r)
l (l = 1, . . . ,mr), we denote the

l–th row of the matrix α(r).

Using the given values h(n, 0, 0, . . . , 0), h(0, n, 0, . . . , 0), h(n, α
(2)
l,1 n + β

(2)
l,1 , 0, . . . , 0)

(l = 1, . . . ,m2) for n ∈ ZN , we determine frequency vectors (f ′j,1, f
′
j,2)> ∈ [−π, π)2

(j = 1, . . . ,M ′) by Algorithm 5.1.

Then we consider the noisy data h(0, 0, n, 0, . . . , 0) (n ∈ ZN ) of

h0(0, 0, n, 0, . . . , 0) =

M∑
j=1

cj eifj,3n =

M3∑
j3=1

cj3,3 eif
′
j3,3n,
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where 1 ≤ M3 ≤ M , where f ′j3,3 ∈ [−π, π) (j3 = 1, . . . ,M3) the distinct values
of fj,3 (j = 1, . . . ,M), and where cj3,3 ∈ C are certain linear combinations of the
coefficients cj . Assume that cj3,3 6= 0. Using the Algorithm 4.1, we compute the
distinct frequencies f ′j3,3 ∈ [−π, π) (j3 = 1, . . . ,M3). Now we form the Cartesian
product

F := {(f ′j,1, f ′j,2, f ′j3,3)> ∈ [−π, π)3 : j = 1, . . . ,M ′; j3 = 1, . . . ,M3}

of the sets {(f ′j,1, f ′j,2)> : j = 1, . . . ,M ′} and {f ′j3,3 : j = 1, . . . ,M3}. Now we form a
subset of F by using the data

h(n, α
(3)
l,1 n+ β

(3)
l,1 , α

(3)
l,2 n+ β

(3)
l,2 , 0, . . . , 0) (l = 1, . . . ,m3) .

Since

h0(n, α
(3)
l,1 n+ β

(3)
l,1 , α

(3)
l,2 n+ β

(3)
l,2 , 0, . . . , 0)

=

M∑
j=1

cj ei(β
(3)
l,1 f

′
j,2+β

(3)
l,2 f

′
j,3) ei(f

′
j1,1+f

′
j2,2α

(3)
l,1+f

′
j3,3α

(3)
l,2 )n

=

M ′3∑
k=1

ck,3 eifk(α
(3)
l )n ,

where 1 ≤ M ′3 ≤ M and where fk(α
(3)
l ) ∈ [−π, π) (k = 1, . . . ,M ′3) are the distinct

values of (f ′j,1 + α
(3)
l,1 f

′
j,2 + α

(3)
l,2 f

′
j,3)2π. The coefficients ck,3 ∈ C are certain linear

combinations of the coefficients cj ei(β
(3)
l,1 f

′
j,2+β

(3)
l,2 f

′
j,3). Then we form the set F ′ :=

{f ′j : j = 1, . . . , |F ′|} of all those (f ′j1,1, f
′
j2,2

, f ′j3,3)> ∈ F so that there exists a

frequency fk(α
(3)
l ) (k = 1, . . . ,M ′3) with

|fk(α
(3)
l )− (f ′j1,1 + f ′j2,2α

(3)
l,1 + f ′j3,3α

(3)
l,2 )2π| < ε1 .

Continuing analogously this procedure, we obtain
Algorithm 6.1. (SAPM for d ≥ 3)
Input: h(n, 0, . . . , 0), h(0, n, 0, . . . , 0), . . . , h(0, . . . , 0, n) (n ∈ ZN ), bounds ε0, ε1 > 0,
mr number of straight lines for dimension r = 2, . . . , d, parameters of straight lines
α(r), β(r) ∈ Zmr×(r−1).

1. From the noisy data h(n, 0, . . . , 0), h(0, n, 0, . . . , 0), . . ., h(0, . . . , 0, n) (n ∈ ZN )
compute by Algorithm 4.1 the distinct frequencies f ′jr,r ∈ [−π, π) (jr = 1, . . . ,Mr)
for r = 1, . . . , d.
Set G := {(n, 0, . . . , 0), . . . , (0, . . . , 0, n) : n ∈ ZN}.
2. Set F := {f ′j1,1 : j1 = 1, . . . ,M1}.
3. For r = 2, . . . , d do:

Form the Cartesian product

F := F×{f ′jr,r : jr = 1, . . . ,Mr} = {(f>l , f ′j,r)> : l = 1, . . . |F |, j = 1, . . . ,Mr} .

For l = 1, . . . ,mr do:
For the noisy data

h(n, α
(r)
l,1n+β

(r)
l,1 , . . . , α

(r)
l,r−1n+β

(r)
l,r−1, 0, . . . , 0) (n ∈ ZN ) ,

16



compute the distinct frequencies fk(α
(r)
l ) ∈ [−π, π) (k =

1, . . . ,M ′r) by Algorithm 4.1. Form the set F̃ of all those
(f ′j1,1, f

′
j2,2

, . . . , f ′jr,r)
> ∈ F so that there exists a frequency

fk(α
(r)
l ) with

|fk(α
(r)
l )− (f ′j1,1 + α

(r)
l,1 fj2,2 + · · ·+ α

(r)
l,r−1f

′
jr,r)2π| < ε1 .

Set F := F̃ and

G := G∪{(n, α(r)
l,1n+β

(r)
l,1 , . . . , α

(r)
l,r−1n+β

(r)
l,r−1, 0, . . . , 0) : n ∈ ZN}.

4. Compute the least squares solution of the overdetermined linear system

|F |∑
j=1

c′j eifj ·n = h(n) (n ∈ G) (6.1)

for the frequency set F = {f j : j = 1, . . . , |F |}.
5. Form the set F̃ := {f̃ j : j = 1, . . . , |F̃ |} of all those fk ∈ F (k = 1, . . . , |F |) with
|c′k| > ε0.
6. Compute the least squares solution of the overdetermined linear system

|F̃ |∑
j=1

c̃j eif̃j ·n = h(n) (n ∈ G) (6.2)

corresponding to the new frequency set F̃ = {f̃ j : j = 1, . . . , |F̃ |}.

Output: M := |F̃ | ∈ N, f̃ j ∈ [−π, π)d, c̃j ∈ C (j = 1, . . . ,M).

Remark 6.2. Note that we solve the overdetermined linear systems (6.1) and
(6.2) only by using the values h(n) (n ∈ G), which we have used to determine the
frequencies f̃ j . If more values h(n) are available, clearly one can use further values as
well in the final step to ensure a better least squares solvability of the linear systems,
see (5.7) for the case d = 2 and Corollary 3.3. In addition we mention that there are
various possibilities to combine the different dimensions, see e.g. Example 7.4.
Remark 6.3. Our method can be interpreted as a reconstruction method for sparse
multivariate trigonometric polynomials from few samples, see [14, 12, 32] and the ref-
erences therein. More precisely, let Πd

N denote the space of all d–variate trigonometric
polynomials of maximal order N . An element p ∈ Πd

N can be represented in the form

p(y) =
∑
k∈Zd

N

ck e2πik·y (y ∈ [−1

2
,

1

2
]d)

with ck ∈ C. There exist completely different methods for the reconstruction of
“sparse trigonometric polynomials”, i.e., one assumes that the number M of the
nonzero coefficients ck is much smaller than the dimension of Πd

N . Therefore our
method can be used with

h(x) := p(
x

2N
) =

M∑
j=1

cj ei fj ·x (x ∈ [−N,N ]d),
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and x = 2Ny and f j = πk/N if ck 6= 0. Using Algorithm 6.1, we find the frequency
vectors f j and the coefficients cj and we finally set k := round(Nf j/π), ck := cj . By
[8] one knows sharp versions of L2–norm equivalences for trigonometric polynomials
under the assumption that the sampling set contains no holes larger than the inverse
polynomial degree, see also [2].

7. Numerical experiments. Finally, we apply the algorithms suggested in Sec-
tion 5 to various examples. We have implemented our algorithms in MATLAB with
IEEE double precision arithmetic. We compute the relative error of the frequencies
given by

e(f) := max
l=1,...,d

max
j=1,...,M

|fj,l − f̃j,l|

max
j=1,...,M

|fj,l|
,

where f̃j,l are the frequency components computed by our algorithms. Analogously,
the relative error of the coefficients is defined by

e(c) :=

max
j=1,...,M

|cj − c̃j |

max
j=1,...,M

|cj |
,

where c̃j are the coefficients computed by our algorithms. Further we determine the
relative error of the exponential sum by

e(h) :=
max |h(x)− h̃(x)|

max |h(x)|
,

where the maximum is built from approximately 10000 equispaced points from a grid
of [−N,N ]d, and where

h̃(x) :=

M∑
j=1

c̃j ef̃j ·x

is the exponential sum recovered by our algorithms. We remark that the approxima-
tion property of h and h̃ in the uniform norm of the univariate method was shown in
[21, Theorem 3.4]. We begin with an example previously considered in [28].
Example 7.1. The bivariate exponential sum (1.1) taken from [28, Example 1]
possesses the following parameters

(f>j )3j=1 =

 0.48π 0.48π
0.48π −0.48π
−0.48π 0.48π

 , (cj)
3
j=1 =

 1
1
1

 .

We sample this exponential sum (1.1) at the nodes h(k, 0), h(0, k) and h(k, αk + β),
(k ∈ ZN ), where α, β ∈ Z are given in Table 7.1. Therefore the number of total
sampling points used in our method are only 3(2N + 1) or 4(2N + 1). Then we
apply our Algorithm 5.1 for exact sampled data and for noisy sampled data h̃(k) =
h(k) + 10−δ ek, where ek is uniformly distributed in [−1, 1]. The notation δ = ∞
means that exact data are given. We present the chosen parameters and the results
in Table 7.1. We choose same bounds ε0 = ε1 in Algorithm 5.1 and obtain very precise
results even in the case, where the unknown number M = 3 is estimated by L.
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L N ε0 α β δ e(f) e(c) e(h)

5 6 10−4 1 0 ∞ 1.7e−15 5.9e−14 3.2e−13
10 20 10−4 1 0 ∞ 5.4e−15 4.5e−14 4.5e−14
5 25 10−3 1 0 6 5.6e−09 1.6e−07 2.5e−07
5 25 10−3 1, 2 0, 0 6 1.0e−08 5.9e−07 7.4e−07
5 25 10−3 1 0 5 1.7e−08 1.2e−06 1.3e−06

Table 7.1
Results of Example 7.1.

Example 7.2. We consider the bivariate exponential sum (1.1) with following pa-
rameters

(f>j )8j=1 =



0.1 1.2
0.19 1.3
0.3 1.5
0.35 0.3
−0.1 1.2
−0.19 0.35
−0.3 −1.5
−0.3 0.3


, (cj)

8
j=1 =



1 + i
2 + 3 i
5− 6 i
0.2− i
1 + i

2 + 3 i
5− 6 i
0.2− i


.

For given exact data, the results are presented in Table 7.2. Note that the condition
(5.1) is not fulfilled, but the reconstruction is still possible in some cases. In order to
fulfill (5.1), one has to choose N > π

0.05 , i.e., N ≥ 63.

The dash − in Table 7.2 means that we are not able to reconstruct the signal param-
eters. In the case L = 15, N = 30, α = 1, β = 0, we are not able to find the 8 given
frequency vectors and coefficients. There are other solutions of the reconstruction
problem with 15 frequency vectors and coefficients. However, if we choose one more
line with α = 2, β = 0 or if we choose more sampling points with N = 80, then we
obtain good parameter estimations.

Furthermore, we use noisy sampled data h(k) = h0(k)+10−δ ek, where ek is uniformly
distributed in [−1, 1]. Instead of predeterminated values α and β, we choose these
values randomly. We use only one additional line for sampling and present the results
in Table 7.3, where e(f), e(c) and e(h) are the averages of 100 runs. Note that in this
case we use only 3(2N + 1) sampling points for the parameter estimation.

L N ε0 α β e(f) e(c) e(h)

8 15 10−4 1 0 2.7e−09 5.7e−09 3.4e−09
8 15 10−4 1, 2, 3 0, 1, 2 2.7e−09 5.9e−09 3.3e−09
15 30 10−4 1 0 1.4e−13 3.4e−13 6.5e−13
15 30 2 · 10−1 1 0 – – –
15 30 2 · 10−1 1, 2 0, 0 1.4e−13 4.0e−13 6.0e−13
15 80 2 · 10−1 1 0 3.5e−15 3.2e−14 7.5e−14

Table 7.2
Results of Example 7.2 with exact data.
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L N ε0 δ e(f) e(c) e(h)

8 35 10−3 6 1.4e−06 3.9e−06 5.5e−06
15 30 10−3 6 1.2e−05 3.9e−05 5.3e−05
15 50 10−3 5 4.0e−07 4.1e−06 3.8e−06
15 50 10−3 6 3.8e−08 3.6e−07 3.3e−07

Table 7.3
Results of Example 7.2 with noisy data.

Example 7.3. We consider the trivariate exponential sum (1.1) with following pa-
rameters

(f>j )8j=1 =



0.1 1.2 0.1
0.19 1.3 0.2
0.4 1.5 1.5
0.45 0.3 −0.3
−0.1 1.2 0.1
−0.19 0.35 −0.5
−0.4 −1.5 0.25
−0.4 0.3 −0.3


, (cj)

8
j=1 =



1 + i
2 + 3 i
5− 6 i
0.2− i
1 + i

2 + 3 i
5− 6 i
0.2− i


.

and present the results in Table 7.4. We use only 5(2N + 1) or 6(2N + 1) sampling
points for the parameter estimation.

L N ε0 α(1) α(2) β(1) β(2) δ e(f) e(c) e(h)

8 15 10−4 (1)
(
1 1

)
(0)

(
0 0

)
∞ 1.5e–10 1.7e–10 8.2e–11

8 15 10−4 (1)
(
1 1

)
(1)

(
1 1

)
∞ 1.5e–10 1.7e–10 8.1e–11

10 30 10−3 (1)
(
1 1

)
(0)

(
0 0

)
6 8.7e–07 1.5e–06 2.9e–06

10 30 10−3 (1)

(
1 1
1 2

)
(0)

(
0 0
0 0

)
6 7.8e–08 1.1e–06 1.5e–06

10 30 10−3 (1)

(
1 1
1 2

)
(0)

(
0 0
0 0

)
5 4.5e–06 1.0e–05 1.6e–05

10 30 10−3 (1)

(
1 1
1 2

)
(0)

(
0 0
0 0

)
4 1.2e–05 2.5e–05 5.2e–05

Table 7.4
Results of Example 7.3.

Example 7.4. Now we consider the 4–variate exponential sum (1.1) with following
parameters

(f>j )8j=1 =



0.1 1.2 0.1 0.45
0.19 1.3 0.2 1.5
0.3 1.5 1.5 −1.3
0.45 0.3 −0.3 0.4
−0.1 1.2 0.1 −1.5
−0.19 0.35 −0.5 −0.45
−0.4 −1.5 0.25 1.3
−0.4 0.3 −0.3 0.4


, (cj)

8
j=1 =



1 + i
2 + 3 i
5− 6 i
0.2− i
1 + i

2 + 3 i
5− 6 i
0.2− i


.
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Instead of using Algorithm 6.1 directly, we apply the Algorithm 5.1 for the first two
variables and then for the last variables with the parameters α(2) and β(2). Then we
take the tensor product of the obtained two parameter sets and use the additional
parameters from α(4) and β(4) in order to find a reduced set. Finally we solve the
overdetermined linear system. The results are presented in Table 7.5. We use only
7(2N + 1) or 10(2N + 1) sampling points for the parameter estimation.

L N ε0 α(2) α(4) β(2) β(4) δ e(f) e(c) e(h)

8 15 10−4 1
(
1 1 1

)
0

(
0 0 0

)
∞ 1.7e-10 2.5e-11 1.6e-10

8 15 10−4 1
(
1 1 1

)
1

(
1 1 1

)
∞ 1.7e-10 2.4e-11 1.6e-10

15 30 10−4 1
(
1 1 1

)
0

(
0 0 0

)
∞ 1.3e-14 6.4e-15 8.8e-14

15 30 10−3 1
(
1 1 1

)
0

(
0 0 0

)
6 1.0e-06 3.2e-07 3.0e-06

15 30 10−3 1
(
1 1 1

)
0

(
0 0 0

)
5 1.3e-05 3.4e-06 4.2e-05

15 30 10−3

(
1
−1

) (
1 1 1
−1 1 −1

) (
0
0

) (
0 0 0
0 0 0

)
6 1.1e-06 2.7e-07 3.9e-06

15 30 10−3

(
1
−1

) (
1 1 1
−1 1 −1

) (
0
0

) (
0 0 0
0 0 0

)
5 8.8e-06 1.9e-06 3.3e-05

15 50 10−3

(
1
−1

) (
1 1 1
−1 1 −1

) (
0
0

) (
0 0 0
0 0 0

)
5 4.5e-07 1.2e-07 1.6e-06

15 50 10−3

(
1
−1

) (
1 1 1
−1 1 −1

) (
0
0

) (
0 0 0
0 0 0

)
4 8.0e-07 2.4e-07 1.1e-05

Table 7.5
Results of Example 7.4.
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