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The reconstruction of high-dimensional sparse signals is a challenging task in a
wide range of applications. In order to deal with high-dimensional problems, effi-
cient sparse fast Fourier transform algorithms are essential tools. The second and
third authors have recently proposed a dimension-incremental approach, which
only scales almost linear in the number of required sampling values and almost
quadratic in the arithmetic complexity with respect to the spatial dimension d. Us-
ing reconstructing rank-1 lattices as sampling scheme, the method showed reliable
reconstruction results in numerical tests but suffers from relatively large num-
bers of samples and arithmetic operations. Combining the preferable properties
of reconstructing rank-1 lattices with small sample and arithmetic complexities,
the first author developed the concept of multiple rank-1 lattices. In this paper,
both concepts — dimension-incremental reconstruction and multiple rank-1 lat-
tices — are coupled, which yields a distinctly improved high-dimensional sparse
fast Fourier transform. Moreover, the resulting algorithm is analyzed in detail
with respect to success probability, number of required samples, and arithmetic
complexity. In comparison to single rank-1 lattices, the utilization of multiple
rank-1 lattices results in a reduction in the complexities by an almost linear fac-
tor with respect to the sparsity. Various numerical tests confirm the theoretical
results, the high performance, and the reliability of the proposed method.
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1 Introduction

Equally weighted cubature formulas, called quasi Monte-Carlo rules, are substantial tools in
the field of numerical integration. One kind of such cubature formulas are so called lattice
rules that allow for the very efficient numerical treatment of high-dimensional integrals. In
particular rank-1 lattices are very well investigated in this field of mathematics, cf. [27, 4] for
more details on this topic.

In a natural way, different researchers used lattice rules in order to approximate integrals
that compute Fourier coefficients of functions, and thus, reconstruct periodic signals. This
reconstruction can be done by interpolation, cf. e.g. [24, 1], as well as approximation, cf.
[28, 20, 21, 22, 2]. In particular, for highly interesting types of functions, e.g. functions of
dominating mixed smoothness, suitable approximations use lattices that necessarily require a
relatively large number of sampling nodes in comparison to the achievable worst case approx-
imation errors, cf. [2]. A recent idea [15] to prevent the usage of a single huge rank-1 lattice is
to sample along multiple rank-1 lattices in order to reconstruct trigonometric polynomials or
approximate functions. With high probability, this ansatz significantly reduces the number
of required sampling values, cf. [16]. The crucial innovation is the strategy that determines
rank-1 lattices at random, which is also used in a more recent paper for numerical integration,
cf. [18].

In this paper, we deal with the reconstruction and approximation of multivariate periodic
functions based on samples without knowing the locations of the non-zero or approximately
largest Fourier coefficients. A method which allows for efficiently performing this task will be
called multivariate sparse fast Fourier transform in the following. One aim is to exactly re-
construct the Fourier coefficients p̂k, k ∈ I, of an arbitrarily chosen trigonometric polynomial

p(x) :=
∑
k∈I

p̂k e2πik·x (1.1)

with frequencies supported on an index set I ⊂ Zd of finite cardinality, i.e. |I| < ∞, from
sampling values of p, where the frequency index set I is unknown. The Fourier coefficients
p̂k ∈ C of the trigonometric polynomial p are formally given by the Fourier transform of p,

p̂k :=

∫
Td

p(x) e−2πik·xdx, k ∈ I. (1.2)

Alternatively, in case of a general function f ∈ L1(Td) ∩ C(Td), we aim to determine an
approximation of the (roughly) largest Fourier coefficients

f̂k :=

∫
Td

f(x) e−2πik·xdx, k ∈ I,

from sampling values of f . The critical part for both tasks is the determination of the unknown
frequency index set I. Using a tensor-product approach and computing a full-dimensional
fast Fourier transform (FFT) is not feasible in practice already for medium dimensions (like
d = 5) due to the curse of dimensionality.

Various methods for multivariate sparse FFTs exist which are based on different ideas. In
general these methods require a search domain Γ ⊂ Zd of possible frequencies as an input
parameter, which is often chosen as a full grid ĜdN := {−N,−N + 1, . . . , N}d of expansion

N ∈ N, |ĜdN | = (2N + 1)d. Usually, an additional input parameter is the number of approx-

imately largest Fourier coefficients f̂k to determine or, in the case of the reconstruction of a
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multivariate trigonometric polynomial p, an upper bound on the cardinality |supp p̂| of the
support in frequency domain

supp p̂ := {k ∈ Zd : p̂k 6= 0}.

Next, we briefly mention some of the existing methods.

One approach, which requires a relatively small amount of samples, is applying random
sampling in compressed sensing [5, 3, 6], but the number of required arithmetic operations
contains the cardinality |Γ| of the search domain Γ as a linear factor, see e.g. [6, 17, 19], and
therefore typically suffers heavily from the curse of dimensionality.

In [10], a multivariate sparse FFT method was discussed which uses randomized sub-
sampling and filters. The method is based on the one-dimensional versions from [9, 8,
11]. As search domain Γ, a full grid ĜdN is used and the number of required samples is

O(|supp p̂| logN) for constant dimension d and the arithmetic complexity is O(Nd logO(1)N).
We remark that the sample complexity O(|supp p̂| logN) might contain a factor of dO(d),
cf. [10, Section IV]. This means that both complexities suffer from the curse of dimensional-
ity.

In [12], a deterministic multivariate sparse FFT algorithm was presented, which uses the
Chinese Remainder Theorem and which requires O(d4 |supp p̂|2 log4(dN)) samples and arith-
metic operations. This means there is neither exponential/super-exponential dependency on
the dimension d ∈ N nor a dependency on a failure probability in the asymptotics of the
number of samples and arithmetic operations for this method. Besides this deterministic
algorithm, there also exists a randomized version which only requires O(d4 |supp p̂| log4(dN))
samples and arithmetic operations with high probability.

In this work, we focus on a dimension-incremental method for a high-dimensional sparse
FFT published in [26]. The method adaptively constructs the frequency index set I belong-
ing to the non-zero or approximately largest Fourier coefficients in a dimension-incremental
way based on sampling values. One preferable property of this strategy is that the sampling
complexity is linear in the dimension d up to logarithmic factors. Another advantage is the
applicability in practice for relative high sparsities even in the case where the sampling values
are perturbed by noise. Moreover, the dimension-incremental strategy provides a straightfor-
ward implementation for the (approximate) recovery of multivariate periodic signals. Known
properties of the function under consideration, such as smoothness conditions as well as (pos-
sibly very large) supersets of the locations of the non-zero or approximately largest Fourier
coefficients, can be directly exploited by restricting the search domain Γ of considered fre-
quencies. In general, the dimension-incremental approach is a probabilistic method, which
repeatedly performs the sampling using r ∈ N many detection iterations. Theoretical bounds
on r are currently unknown and will be addressed in this paper.

One crucial challenge of the dimension-incremental method is the construction of spatial
discretizations for high-dimensional sparse trigonometric polynomials that allow for an effi-
cient reconstruction. In [26], the authors mainly used single rank-1 lattices, which worked very
reliably in various numerical experiments. Besides this reliability, the main advantage of using
single rank-1 lattices as spatial discretizations is the available fast Fourier transform for these
sampling sets. However, the bottlenecks of this approach are the relatively expensive construc-
tion of reconstructing rank-1 lattices and, in addition, the relatively large number of sampling
nodes. In detail, for sparsity s := |I| or when determining s many approximate Fourier coeffi-
cients, the method requires O(d r3s2N) samples and O(d r3s3 +d r3s2N log(r sN)) arithmetic
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operations in the case
√
N . s . Nd, when restricting the search space Γ of considered fre-

quency candidates to a full grid ĜdN of expansionN ∈ N. In order to reduce these complexities,
the paper [26] also numerically investigated alternative sampling sets that allow for efficient
reconstructions of sparse signals. The authors observed in the numerical experiments, that
the additionally investigated types of sampling sets do not offer the reliability and stability
as obtained for single rank-1 lattices.

Again, we emphasize that the dimension-incremental idea from [26] should work with any
sampling method which reliably computes Fourier coefficients in a fast way. Accordingly, the
dimension-incremental sparse FFT may be improved by providing sampling sets that combine
four preferable properties:

• low oversampling factors,

• stability and thus reliability,

• efficient construction methods,

• fast Fourier transform algorithms.

Exactly this combination of objectives motivated the development of the concept of recon-
structing multiple rank-1 lattices in [15, 16]. Therein, a reconstruction approach for mul-
tivariate trigonometric polynomials p with known frequency index sets I based on samples
along multiple rank-1 lattices is proposed. Instead of using a single rank-1 lattice for the
reconstruction, which requires O(d |I|3) arithmetic operations for the construction of a suit-
able reconstructing rank-1 lattice that consists of up to O(|I|2) samples, a union of cleverly
chosen rank-1 lattices is utilized, where the latter is named reconstructing multiple rank-1
lattice. Such a reconstructing multiple rank-1 lattice consists of O(|I| log |I|) nodes with
high probability under mild assumptions and, in this case, the construction only requires
O(|I|(d+ log |I|) log |I|) arithmetic operations, cf. [16, Corollary 3.7 and Algorithm 4].

As mentioned above, we include the multiple rank-1 lattice idea into the dimension-
incremental reconstruction approach in this work. We obtain a method, see Algorithm 3,
which requires O(dr2sN log(rsN)) samples and O

(
d2r2sN log2(rsN)

)
arithmetic operations.

One of the main contributions of this work is the detailed investigation of the over-
all success probability of the dimension-incremental reconstruction method. For the first
time, we show bounds on the number of detection iterations r when using single and
multiple rank-1 lattices as sampling sets. When reconstructing a trigonometric poly-
nomial p using Algorithm 3, we prove in Theorem 4.6 that under mild assumptions
and when choosing the number of detection iterations r := d2| supp p̂|(log 3 + log d +
log | supp p̂| − log ε)e for a given failure probability ε ∈ (0, 1) ensures that the proposed
algorithm successfully detects all non-zero Fourier coefficients p̂k 6= 0 with probability at
least 1 − ε. In this case, we require O

(
d | supp p̂|2N log2(| supp p̂|) | log ε|

)
samples and

O
(
d2 | supp p̂|2N log3(| supp p̂|) | log ε|

)
arithmetic operations. In our numerical tests, we did

not require the linear factor | supp p̂| in the number of detection iterations r, but we were
able to choose this parameter as a constant ≤ 10. It is an open question if a smaller bound
on r can be theoretically shown under mild assumptions on the Fourier coefficients p̂k. The
key result which would need to be improved is currently based on a Markov-type inequality
in Lemma 4.1, see also the discussion in Section 4.2. Still, the results in Lemma 4.1, Corol-
lary 4.2 and Corollary 4.3 imply a distinct improvement compared to the previous ones in
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[26, Lemma 2.4 and Theorem 2.5], which would yield a factor of | supp p̂|2 in r when applying
the theoretical considerations in Section 4.1 on [26, Theorem 2.5].

If the Fourier coefficients p̂k fulfill certain stronger properties, we obtain distinctly smaller
sample and arithmetic complexities by slightly modifying the algorithms, see also Re-
mark 3.2. As discussed in Section 4.3, if we know that the real parts of all non-zero
p̂k have identical sign 6= 0 or that the imaginary parts of all non-zero p̂k have identi-
cal sign 6= 0, then we can use a modified version of Algorithm 3 with r := 1 detec-
tion iteration. The resulting algorithm successfully detects all non-zero Fourier coefficients
p̂k 6= 0 with probability at least 1− ε, requiring O

(
d | supp p̂|N log(| supp p̂|N)

)
samples and

O
(
d2 | supp p̂|N log2(| supp p̂|N) (log d− log ε)

)
arithmetic operations, cf. Section 4.3.

The remaining parts of this paper are structured as follows. In Section 2, we briefly review
important aspects of reconstructing multiple rank-1 lattices and dimension-incremental re-
construction. The new method is discussed in Section 3. In Section 4, we develop bounds on
the number of detection iterations r and on the success probability 1− ε for the reconstruc-
tion of multivariate trigonometric polynomials p when using reconstructing single or multiple
rank-1 lattices as sampling sets. Numerical tests performed in Section 5 demonstrate the high
performance of the proposed method for high-dimensional trigonometric polynomials p as well
as for a 10-dimensional test function f which is non-sparse in frequency domain. Finally, in
Section 6, we conclude the results of this paper.

2 Prerequisites

For our method, we combine two main ingredients. One is using so-called reconstructing
multiple rank-1 lattices for known frequency index sets I from [15, 16]. The second one is
the dimension-incremental reconstruction approach for unknown frequency index sets I as
presented in [26].

2.1 Reconstructing multiple rank-1 lattices

First, we start with definitions from [16] using slightly adapted symbols in this work.
The sampling sets X constructed and used by the method presented in Section 3 are based

on so-called rank-1 lattices

Λ(z,M) := {jz/M mod 1 : j = 0, . . . ,M − 1} ⊂ Td,

where z ∈ Zd and M ∈ N are called generating vector and lattice size of Λ(z,M), respec-
tively. For an arbitrary multivariate trigonometric polynomial p, see (1.1), with frequencies k
supported on an index set I ⊂ Zd, |I| <∞, we can reconstruct all the Fourier coefficients p̂k,
k ∈ I given in (1.2), from samples along a rank-1 lattice X := Λ(z,M) if the Fourier matrix

A(X , I) :=
(

e2πik·x
)
x∈X ,k∈I

has full column rank. This is the case if and only if Λ(z,M) is a reconstructing rank-1 lattice
for I, i.e., the reconstruction property

k · z 6≡ k′ · z (mod M) for all k,k′ ∈ I,k 6= k′,

is fulfilled. Such a reconstructing rank-1 lattice Λ(z,M) can be easily constructed using a
simple component-by-component construction method, cf. [14]. However, the construction
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method has rather high computational costs and may require O(d|I|3) arithmetic operations.
Moreover, under mild assumptions, the lattice size M is bounded by |I| ≤ M ≤ |I|2, where
this number M tends more to the upper bound for many interesting structures of frequency
index sets I.

Recently, in [15, 16], a modified approach was presented, which allows for drastically re-
ducing the number of samples. This approach uses rank-1 lattices Λ(z,M) as building blocks
and builds sampling sets based on multiple instances. The corresponding sampling sets are
called multiple rank-1 lattices and they can be constructed by simple and efficient randomized
construction algorithms. A multiple rank-1 lattice is the union of L ∈ N many rank-1 lattices,

Λ = Λ(z1,M1, . . . ,zL,ML) :=
L⋃
`=1

Λ(z`,M`),

and consists of

M := |Λ(z1,M1, . . . ,zL,ML)| ≤ 1− L+
L∑
`=1

M`

many distinct nodes. If Λ = Λ(z1,M1, . . . ,zL,ML) allows for the reconstruction of all mul-
tivariate trigonometric polynomials p with frequencies supported on a frequency index set I,
it will be called reconstructing multiple rank-1 lattice for I.

In simplified terms, the basic idea is that each of the rank-1 lattices Λ(z`,M`), ` = 1, . . . , L,
should be a reconstructing one for some index set I` ⊂ I and that

⋃L
`=1 I` = I. We remark

that this condition is not sufficient in general and we require an additional property.
One construction method is Algorithm 1, which searches for a reconstructing multiple

rank-1 lattice Λ for a given index set I such that the properties

k · z` 6≡ k′ · z` (mod M`) for all k ∈ I`, k′ ∈ I,k 6= k′,
L⋃
`=1

I` = I, (2.1)

are fulfilled. The rank-1 lattice sizes M` are chosen distinctly from the set

P Iλ,Lmax
:=

{
pj ∈ P I : pj =

{
min{p ∈ P I : p > λ} : j = 1

min{p ∈ P I : p > pj−1} : j = 2, . . . , Lmax.

}
(2.2)

of the Lmax ∈ N smallest prime numbers in

P I := {M ′ ∈ N : M ′ prime with |{k mod M ′ : k ∈ I}| = |I|}

larger than a certain λ ∈ N. With probability at least 1− γ, Λ returned by Algorithm 1 is a
reconstructing multiple rank-1 lattice fulfilling properties (2.1). For fixed oversampling factor
c > 0, the cardinality M := |Λ| of the multiple rank-1 lattice is in

O
(

max{|I|, NI ,− log γ | log | log γ||}(log |I| − log γ)
)
, (2.3)

where NI := maxj=1,...,d{maxk∈I kj − minl∈I lj} is the expansion of I. This follows since
M . Lmax{|I|, NI , L logL} . max{|I|, NI , L logL}(log |I| − log γ), cf. [16, Corollary 3.7],
and

L logL . log |I| log log |I| − log γ log | log γ| − log γ log log |I|+ log |I| log | log γ|
. log |I| log log |I| − log γ log | log γ| . |I| − log γ | log | log γ||.
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At this point, we stress on the fact that the oversampling factor M/|I| does not depend on
the dimension d. Moreover, the construction using Algorithm 1 requires

O
(

max{|I|, NI ,− log γ | log | log γ||}(log |I|+ d+ log logNI)(log |I| − log γ)
)
, (2.4)

arithmetic operations. This is caused by the complexity of determining the lattice sizes M`,
` = 1, . . . , Lmax, e.g. using the sieve of Eratosthenes, which is

.MLmax log logMLmax . max{|I|, NI , L logL} log log max{|I|, NI , L logL}

. max{|I|, NI ,− log γ | log | log γ||}(log log |I|+ log logNI + log logL)

. max{|I|, NI ,− log γ | log | log γ||} (log logNI) (log log |I|+ log logL)

. max{|I|, NI ,− log γ | log | log γ||} (log logNI) (log |I| − log γ)

and of the for loop, which is

Lmax(|I| log |I|+ d|I|) . |I|(log |I|+ d)(log |I| − log γ).

We remark that the proposed method represents a minor modification of [16, Algorithm 4].
After randomly choosing the generating vector zL in line 7 of Algorithm 1, the original version
in [16, Algorithm 4] checks if the rank-1 lattice Λ(zL,ML) is able to reconstruct additional
Fourier coefficients p̂k, k ∈ I \ Ĩ. Otherwise, a new generating vector zL is randomly chosen
and the check is repeated until at least one additional Fourier coefficient p̂k, k ∈ I \ Ĩ, can be
reconstructed. The analysis in [16, Corollary 3.7] yields the same bounds with respect to the
success probability of finding a reconstructing multiple rank-1 lattice Λ and with respect to
the cardinality |Λ| for [16, Algorithm 4] and Algorithm 1. However, the upper bound for the
arithmetic complexity of [16, Algorithm 4] is only with high probability, whereas the arith-
metic complexity is guaranteed for Algorithm 1 due to the realized modifications. In practice,
we observe that Algorithm 1 may require slightly more samples than [16, Algorithm 4].

Another construction method is [16, Algorithm 6], which searches for a reconstructing
multiple rank-1 lattice such that the properties

k · z` 6≡ k′ · z` (mod M`) for all k ∈ I`, k′ ∈ I \

{
`−1⋃
`′=1

I`′

}
, k 6= k′,

L⋃
`=1

I` = I,

are fulfilled. Under mild assumptions, [16, Algorithm 6] returns a reconstructing multiple
rank-1 lattice of cardinality O(|I| log2 |I|) with high probability, where the constants do not
depend on the dimension d, and requires O(|I|(d+ log |I|) log3 |I|) arithmetic operations with
high probability.

Besides the small cardinalities and fast construction algorithms, a further main advantage
of reconstructing multiple rank-1 lattices is the existence of a direct and fast inversion method
for computing Fourier coefficients p̂k from sampling values, cf. Algorithm 2 for multiple rank-
1 lattices constructed by [16, Algorithm 4] or Algorithm 1 as well as cf. [15, Algorithm 6] for
multiple rank-1 lattices constructed by [16, Algorithm 6].

2.2 Dimension-incremental method

We use the dimension-incremental approach from [26]. This approach proceeds similarly as a
dimension-incremental method for anharmonic trigonometric polynomials based on Prony’s
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Algorithm 1 (Minor modification of [16, Algorithm 4]). Determining reconstructing mul-
tiple rank-1 lattices with pairwise distinct lattice sizes, fulfilling condition (2.1) with high
probability.

Input: I ⊂ Zd frequency index set
c ∈ (1,∞) ⊂ R oversampling factor
γ ∈ (0, 1) ⊂ R upper bound on failure probability

1: Determine maximal number of rank-1 lattices Lmax :=
⌈
c2/(c− 1)2 (ln |I| − ln γ)/2

⌉
.

2: Determine lower bound λ := c (|I| − 1) for lattice sizes.
3: Determine set P Iλ,Lmax

of prime lattice sizes, cf. (2.2), and arrange p1 < . . . < pLmax .

4: Initialize index set Ĩ := ∅ of frequencies belonging to reconstructible Fourier coefficients.
5: for L := 1, . . . , Lmax do
6: Choose lattice size ML = pL ∈ P Iλ,Lmax

.

7: Choose generating vector zL from [0,ML − 1]d ∩ Zd uniformly at random.
8: Determine IL := {k ∈ I : 6 ∃h ∈ I \ {k} with k · zL ≡ h · zL (mod ML)}, cf. (2.1).
9: Update Ĩ := Ĩ ∪ IL.

10: If |Ĩ| = |I|, then exit for loop.
11: end for L
Output: M1, . . . ,ML lattice sizes of rank-1 lattices and

z1, . . . ,zL generating vectors of rank-1 lattices such that
Λ(z1,M1, . . . ,zL,ML) is a reconstructing multiple rank-1 lattice

for I with probability at least 1− γ

Complexity:O
(
|I| (log |I|+ d) log |I|

)
for |I| & NI , fixed c and fixed γ, where
NI := maxj=1,...,d{maxk∈I kj −minl∈I lj}
is the expansion of I.

Algorithm 2 Non-iterative reconstruction of a trigonometric polynomial p from sampling
values along reconstructing multiple rank-1 lattices for known frequency index set I.

Input: I ⊂ Zd frequency index set, |I| <∞
Λ := Λ(z1,M1, . . . ,zL,ML) reconstructing multiple rank-1 lattice for I

fulfilling condition (2.1)
(p(x̃j))x̃j∈Λ sampling values of trigonometric polynomial p

Initialize counter[k] := 0 and ˜̂pk := 0 for k ∈ I.
for ` := 1, . . . , L do

Determine I` := {k ∈ I : 6 ∃h ∈ I \ {k} with k · z` ≡ h · z` (mod M`)}, cf. (2.1).

Compute ˜̂gk := 1
M`

∑M`−1
j=0 p

(
j
M`
z` mod 1

)
e−2πijk·z`/M` for k ∈ I`, using inverse rank-1

lattice FFT, cf. [13, Algorithm 3.2].
Set counter[k] := counter[k] + 1 and ˜̂pk := ˜̂pk + ˜̂gk for k ∈ I`.

end for `
Set ˜̂pk := ˜̂pk/counter[k] for k ∈ I.

Output:
(

˜̂pk

)
k∈I

reconstructed Fourier coefficients

Complexity: O
(
M̃ log M̃+L |I| (d+log |I|)

)
|Λ| ≤

∑L
`=1M` =: M̃
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method in [25]. For a given search domain Γ ⊂ Zd, |Γ| < ∞, which may be very large like
e.g. a full grid ĜdN , a frequency index set I ⊂ Γ containing the approximately largest Fourier
coefficients of a function f under consideration is determined based on samples. In doing
so, the index set I is constructed component-by-component in a dimension-incremental way
starting with the first component.

In order to describe the method, we introduce additional notation from [26] and we assume
that the function under consideration is a multivariate trigonometric polynomial p. We denote
the projection of a frequency k := (k1, . . . , kd)

> ∈ Zd to the components i := (i1, . . . , im) ∈
{ι ∈ {1, . . . , d}m : ιt 6= ιt′ for t 6= t′} by Pi(k) := (ki1 , . . . , kim)> ∈ Zm. Correspondingly, we
define the projection of a frequency index set I ⊂ Zd to the components i by Pi(I) :=
{(ki1 , . . . , kim) : k ∈ I}. Using this notation, the general approach is the following:

1. Determine the first components of the unknown frequency index set, i.e., determine an
index set I(1) ⊆ P1(Γ) which should be identical to the projection P1(supp p̂) or contain
this projection, I(1) ⊇ P1(supp p̂).

2. For dimension increment step t = 2, . . . , d, i.e., for each additional dimension:

a) Determine the t-th components of the unknown frequency index set, i.e., determine
an index set I(t) ⊆ Pt(Γ) which should be identical to the projection Pt(supp p̂) or
contain this projection, I(t) ⊇ Pt(supp p̂).

b) Determine a suitable sampling set X (1,...,t) ⊂ Td, |X (1,...,t)| � |Γ|, which allows to
detect those frequencies from the index set (I(1,...,t−1)×I(t))∩P(1,...,t)(Γ) belonging
to non-zero Fourier coefficients p̂k.

c) Sample the trigonometric polynomial p along the nodes of the sampling set X (1,...,t).

d) Compute the Fourier coefficients ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ).

e) Determine the non-zero Fourier coefficients from ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t)) ∩
P(1,...,t)(Γ), and obtain the index set I(1,...,t) of detected frequencies. The I(1,...,t)

index set should be equal to the projection P(1,...,t)(supp p̂).

3. Use the index set I(1,...,d) and the computed Fourier coefficients ˜̂p(1,...,d),k, k ∈ I(1,...,d),
as an approximation for the support supp p̂ and the Fourier coefficients p̂k, k ∈ supp p̂.

The proposed approach includes the construction of a suitable sampling set in step 2b and
the computation of (projected) Fourier coefficients in step 2d. There exist different methods
for the realization of these steps.

In [26], the utilization of reconstructing rank-1 lattices was mainly considered as sampling
sets, which allows for efficiently computing the (projected) Fourier coefficients using a so-called
rank-1 lattice FFT, i.e., a single one-dimensional FFT followed by a simple index transform,
cf. [13, Algorithm 3.2]. This approach yielded high stability and reliability in numerical tests,
but required a relatively high number of samples and the construction of reconstructing rank-1
lattices may involve high computational costs.

Alternatively, for computing the (projected) Fourier coefficients, sub-sampling along recon-
structing rank-1 lattices using `1 minimization or using a variant of Prony’s method as well as
randomly obtained generated sets using `1 minimization were also considered in [26]. These
approaches performed well when determining the unknown frequency index sets I and Fourier
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coefficients p̂k of sparse multivariate trigonometric polynomials p based on unperturbed sam-
pling values. However, for the case of noisy sampling values or functions f ∈ L1(Td) ∩ C(Td)
with infinite support in frequency domain, these methods failed in numerical tests.

In the next section, we present a novel approach, which is based on using multiple rank-1
lattices, which does not have these limitations.

3 Method

In this section, we present a substantial improvement of the dimension-incremental approach
developed in [26]. On the one hand, we change the sampling sets to multiple rank-1 lattices
Λ = Λ(z1,M1, . . . ,zL,ML), which significantly reduces the number of required sampling val-
ues compared to single rank-1 lattices Λ(z,M). On the other hand, we describe modifications
on [26, Algorithm 2], that allow for estimates of the success probability, the total number of
required sampling values, and the overall complexity of the resulting algorithms. In particular
for sparse trigonometric polynomials, these modifications will entail detailed estimates that
only depend on properties of the frequency support of the sparse trigonometric polynomial
and a factor that is logarithmic in the failure probability, cf. Section 4.

In Section 3.1, we present two algorithms based on sampling along multiple rank-1 lattices.
These algorithms perform the steps as generally explained in Section 2.2. Afterwards, in
Section 3.2, we discuss the number of required samples and arithmetic operations of the
proposed methods in general.

3.1 Algorithm

We present the first proposed realization of the dimension-incremental approach from Sec-
tion 2.2 as Algorithm 3, which uses multiple rank-1 lattices as sampling nodes, cf. Section 2.1.

Compared to [26, Algorithm 2], we perform the following modifications. In step 2b, we
apply Algorithm 1 on the frequency index set (I(1,...,t−1)× I(t))∩P(1,...,t)(Γ) in order to build
a reconstructing multiple rank-1 lattice. This change of the construction of the sampling
sets drastically reduces the arithmetic complexity of the overall algorithm as discussed in
Section 3.2. Additionally, the resulting sampling set X (1,...,t) consists of distinctly less nodes
and, consequently, the number of sampling values in step 2c is reduced. Afterwards in step 2d,
the projected Fourier coefficients ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), are computed
using Algorithm 2. Moreover, we do not need to perform the additional step 2f from [26,
Algorithm 2], which also reduces the number of arithmetic operations.

Another essential modification compared to the algorithms presented in [26] concerns the
thresholding behavior. In [26] a relative threshold parameter θ ∈ R+ with respect to a
currently numerically computed Fourier coefficient ˜̂p(1,...,t),k was used. Here, we utilize an
absolute threshold δ ∈ R+, which is an input parameter of Algorithm 3. This absolute
threshold is required for our theoretical considerations in Section 4, where we show estimates
for failure probabilities and for the number of required detection iterations r ∈ N.

Moreover, we introduce an additional input parameter b ∈ N, which is the maximal number
of multiple rank-1 lattice searches per component for the search of reconstructing multiple
rank-1 lattices. This parameter b is required in order to achieve a deterministic runtime
behavior and is considered theoretically in Lemma 4.5 of Section 4.1. In practice, choosing
the parameters r and b as a small constant (e.g. ≤ 10) should often suffice as observed in the
numerical tests in Section 5.

10



Algorithm 3 Reconstruction of a multivariate trigonometric polynomial p from sampling
values along multiple rank-1 lattices.

Input: Γ ⊂ Zd search space in frequency domain, superset for supp p̂
p(◦) trigonometric polynomial p as black box (function handle)
δ ∈ R+ absolute threshold
s, slocal ∈ N sparsity parameter (slocal := s by default)
r ∈ N number of detection iterations (e.g. see Theorem 4.6 or Section 5)
b ∈ N maximal number of multiple rank-1 lattice searches per component

(step 1)
Set K1 := max(P1(Γ))−min(P1(Γ)) + 1, I(1) := ∅.
for i := 1, . . . , r do

Choose components x′2, . . . , x
′
d ∈ T of sampling nodes uniformly at random.

Compute ˜̂p1,k1 := 1
K1

∑K1−1
`=0 p

(
`
K1
, x′2, . . . , x

′
d

)
e−2πi`k1/K1 , k1 ∈ P1(Γ), with FFT.

Set I(1) := I(1) ∪ {k1 ∈ P1(Γ) : (up to) slocal-largest values | ˜̂p1,k1 | ≥ δ}.
end for i

(step 2)
for t := 2, . . . , d do
(step 2a)

Set Kt := max(Pt(Γ))−min(Pt(Γ)) + 1, I(t) := ∅.
for i := 1, . . . , r do

Choose components x′1, . . . , x
′
t−1, x

′
t+1, . . . , x

′
d ∈ T of sampling nodes uniformly at ran-

dom.

˜̂pt,kt :=
Kt−1∑̀

=0

p
(
x′1, . . . , x

′
t−1,

`
Kt
, x′t+1, . . . , x

′
d

)
e−2πi`kt/Kt , kt ∈ Pt(Γ), using FFT.

Set I(t) := I(t) ∪ {kt ∈ Pt(Γ) : (up to) slocal-largest values | ˜̂pt,kt | ≥ δ}.
end for i

(step 2b)
If t < d, set r̃ := r and s̃ := slocal, otherwise r̃ := 1 and s̃ := s. Set I(1,...,t) := ∅.
Search for reconstructing multiple rank-1 lattice Λ(z1,M1, . . . ,zL,ML) for (I(1,...,t−1) ×
I(t)) ∩ P(1,...,t)(Γ) using Algorithm 1 with algorithm parameters c := 2 and γ := 0.5;
repeat up to b− 1 times or until reconstruction property (2.1) is fulfilled.
Λ := Λ(z1,M1, . . . ,zL,ML) consists of nodes x̃j ∈ Tt, j = 0, . . . ,M (t) − 1, M (t) = |Λ|.
for i := 1, . . . , r̃ do

Choose components x′t+1, . . . , x
′
d ∈ T of sampling nodes uniformly at random.

Set X (1,...,t) := {xj := (x̃j , x
′
t+1, . . . , x

′
d) mod 1 : j = 0, . . . ,M (t) − 1} ⊂ Td.

(step 2c) Sample p along the nodes of the sampling set X (1,...,t).
(step 2d) Compute ˜̂p(1,...,t),k for k ∈ (I(1,...,t−1)×I(t))∩P(1,...,t)(Γ) from sampling values p(xj),

xj ∈ X (1,...,t), with inverse multiple rank-1 lattice FFT using Algorithm 2.
(step 2e) Set I(1,...,t) := I(1,...,t) ∪ {k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) :

(up to) s̃-largest values | ˜̂p(1,...,t),k| ≥ δ}.
end for i

end for t

11



Algorithm 3 continued.

(step 3) Set I := I(1,...,d) and ˜̂p :=
(

˜̂p(1,...,d),k

)
k∈I

.

Output: I ⊂ Γ ⊂ Zd index set of detected frequencies, |I| ≤ min{s, |Γ|}
˜̂p ∈ C|I| corresponding Fourier coefficients, | ˜̂p(1,...,d),k| ≥ δ

Additionally, we present a second dimensional-incremental reconstruction algorithm. To
this end, we modify Algorithm 3 by using [16, Algorithm 6] for the determination of the
reconstructing multiple rank-1 lattices and obtain Algorithm 4. We stress on the fact that [16,
Algorithm 6] does not ensure to terminate. However, if it is terminating, the output is always
a reconstructing multiple rank-1 lattice. Therefore, we omit a repeatedly invocation of [16,
Algorithm 6] in step 2b and we remove the parameter b. Since the construction approach of the
multiple rank-1 lattices changes, we need to apply the corresponding FFT algorithms, i.e., the
projected Fourier coefficients ˜̂p(1,...,t),k, k ∈ (I(1,...,t−1) × I(t))∩P(1,...,t)(Γ), in step 2d are now
computed using the inverse multiple rank-1 lattice FFT from [15, Algorithm 6]. As discussed
in Section 3.2, the sample and arithmetic complexities of Algorithm 4 are slightly higher by
a logarithmic factor and non-deterministic. However, in the numerical tests in Section 5, the
observed total number of samples and runtimes are usually smaller for Algorithm 4.

Moreover, we will apply parts of the theoretical results from Section 4 to the dimension-
incremental approach using single rank-1 lattices as sampling sets. For this, we need to
modify the thresholding behavior of [26, Algorithm 2]. As described above, we use an absolute
threshold δ ∈ R+ as input parameter and this yields Algorithm 5.

Remark 3.1. The dimension-incremental method as described in Section 2.2 and realized by
[26, Algorithm 1,2] as well as Algorithm 3, 4 and 5 proceeds component-by-component starting
with the first dimension, then the second et cetera. In principle, any order / permutation of the
components {1, 2, . . . , d} may be used. Depending on the actual function under consideration,
a different order may be beneficial or not, since this may influence the aliasing behavior in
the various dimension increment steps t.

Remark 3.2. As discussed in [26, Section 2.2.1], we may set the number of detection itera-
tions r := 1 for [26, Algorithm 1,2], Algorithm 3, Algorithm 4 and Algorithm 5 if the Fourier
coefficients p̂k of the trigonometric polynomial p under consideration fulfill a certain property,
namely, that the signs of the real part Re(p̂k) of all non-zero Fourier coefficients p̂k are iden-
tical 6= 0 or that the signs of the imaginary part Im(p̂k) are identical 6= 0. Then, we do not
choose the components x′1, . . . , x

′
d ∈ T randomly but fix them to zero. In the case of [26, Al-

gorithm 1,2] and Algorithm 5, this yields a purely deterministic dimension-incremental sparse
FFT method. For Algorithm 3 and 4, we still perform probabilistic constructions since we ap-
ply Algorithm 1 and [16, Algorithm 6] for obtaining reconstructing multiple rank-1 lattices,
respectively. We discuss the resulting sample and arithmetic complexities for Algorithm 3
and 5 in Section 4.3.

Remark 3.3. In the description of Algorithm 3, 4 and 5, we mention that the input parameter
p is a trigonometric polynomial as a black box. Alternatively, we may also insert a function
f ∈ L1(Td) ∩ C(Td) with infinitely many non-zero Fourier coefficients f̂k. If these Fourier
coefficients decay in a certain way, we may also successfully detect the approximately largest

12



Algorithm 4 (Modified Algorithm 3). Reconstruction of a multivariate trigonometric poly-
nomial p from sampling values along reconstructing multiple rank-1 lattices.

Input: Γ ⊂ Zd search space in frequency domain, superset for supp p̂
p(◦) trigonometric polynomial p as black box (function handle)
δ ∈ R+ absolute threshold
s, slocal ∈ N sparsity parameter (slocal := s by default)
r ∈ N number of detection iterations

(step 1)
...
(step 2)
for t := 2, . . . , d do

...
(step 2b)

If t < d, set r̃ := r and s̃ := slocal, otherwise r̃ := 1 and s̃ := s. Set I(1,...,t) := ∅.
Search for reconstructing multiple rank-1 lattice Λ(z1,M1, . . . ,zL,ML) for (I(1,...,t−1) ×
I(t))∩P(1,...,t)(Γ) using [16, Algorithm 6] with algorithm parameters c := 2 and δ′ := 0.5

for i := 1, . . . , r̃ do
...

(step 2d) Compute ˜̂p(1,...,t),k for k ∈ (I(1,...,t−1)×I(t))∩P(1,...,t)(Γ) from sampling values p(xj),

xj ∈ X (1,...,t), with inverse multiple rank-1 lattice FFT using [15, Algorithm 6].
...

end for i
end for t
(step 3)

Compute ˜̂p(1,...,d),k for k ∈ I(1,...,d) from sampling values p(xj), xj ∈ X (1,...,d), with inverse
multiple rank-1 lattice FFT using [15, Algorithm 6].

Set I := I(1,...,d) and ˜̂p :=
(

˜̂p(1,...,d),k

)
k∈I

.

Output: I ⊂ Γ ⊂ Zd index set of detected frequencies, |I| ≤ min{s, |Γ|}
˜̂p ∈ C|I| corresponding Fourier coefficients, | ˜̂p(1,...,d),k| ≥ δ

ones by choosing the input parameters appropriately as the numerical results in Section 5.3
indicate.

After presenting the new algorithms, we give its sample and arithmetic complexities.

3.2 Number of samples and arithmetic complexity

We provide a detailed description of the complexities for various steps of Algorithm 3, 4
and 5. We perform the analysis for the case where the search domain Γ is the full grid ĜdN of
expansion N ∈ N and the sparsity parameter s & N . For other cases, the resulting sample and
arithmetic complexities can be determined analogously. When estimating the complexities,
we keep track of the number of detection iterations r ∈ N and the theoretical size of this
parameter is discussed later in Section 4. In practice, as the numerical results in Section 5
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Algorithm 5 (Modified version of [26, Algorithm 2]). Reconstruction of a multivariate
trigonometric polynomial p from sampling values along (single) reconstructing rank-1 lattices.

Input: Γ ⊂ Zd search space in frequency domain, superset for supp p̂
p(◦) trigonometric polynomial p as black box (function handle)
δ ∈ R+ absolute threshold
s, slocal ∈ N sparsity parameter (slocal := s by default)
r ∈ N number of detection iterations (e.g. see Theorem 4.7 or Section 5)

(step 1)
...
for i := 1, . . . , r do

...
I(1) := I(1) ∪ {k1 ∈ P1(Γ) : (up to) slocal-largest values | ˜̂p1,k1 | ≥ δ}

end for i
...
(step 2)
for t := 2, . . . , d do

...
for i := 1, . . . , r do

...
Set I(t) := I(t) ∪ {kt ∈ Pt(Γ) : (up to) slocal-largest values | ˜̂pt,kt | ≥ δ}.

end for i
(step 2b)

If t < d, set r̃ := r and s̃ := slocal, otherwise r̃ := 1 and s̃ := s. Set I(1,...,t) := ∅.
...
for i := 1, . . . , r̃ do

...
(step 2e)

Set I(1,...,t) := I(1,...,t) ∪ {k ∈ (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ) :

(up to) s̃-largest values | ˜̂p(1,...,t),k| ≥ δ}.
end for i
...

end for t

(step 3) Set I := I(1,...,d) and ˜̂p :=
(

˜̂p(1,...,d),k

)
k∈I

.

Output: I ⊂ Γ ⊂ Zd index set of detected frequencies, |I| ≤ min{s, |Γ|}
˜̂p ∈ C|I| corresponding Fourier coefficients, | ˜̂p(1,...,d),k| ≥ δ
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suggest, the number of detection iterations r may be chosen as a constant value in many
cases, e.g. r = 1 for multivariate trigonometric polynomials p in the noiseless case or ≤ 10
for other considered test settings.

In step 2 of Algorithm 3 in dimension increment step t, the index sets I(1,...,t−1) and I(t)

consist of at most rs and |Ĝ1
N | = 2N + 1 many frequencies, respectively. This yields that the

index set I(1,...,t−1)×I(t) consists of |I(1,...,t−1)×I(t)| ≤ rs (2N+1) . rsN frequency candidates.
The sampling set X (1,...,t) built in step 2b of Algorithm 3, where P(1,...,t)(X (1,...,t)) is a multiple

rank-1 lattice returned by applying Algorithm 1 on the index set Jt := (I(1,...,t−1) × I(t)) ∩
P(1,...,t)(Γ), has the size

|X (1,...,t)| < 2L̃max{2(rs (2N + 1)− 1), 4L̃ ln L̃} . rsN log(rsN),

where L̃ := d2 ln (rs (2N + 1)) + 2 ln 2e, cf. the proof of Lemma 4.5 with c := 2 and
γ := 1/2. Moreover, the construction of the sampling set X (1,...,t) requiresO

(
b rsN(log(rsN)+

t) log(rsN) + d
)

arithmetic operations. The inverse multiple rank-1 lattice FFT, cf. Algo-

rithm 2, in step 2d requires . |X (1,...,t)| log |X (1,...,t)| + L̃|Jt| (t + log |Jt|) . rsN
(

log(rsN) +
t
)

log(rsN) arithmetic operations for each detection iteration i ∈ {1, . . . , r} and each dimen-
sion increment step t ∈ {2, . . . , d}.

In total, this yields

. dr2sN log(rsN) + d r N . dr2sN log(rsN) (3.1)

many samples and

. d r2sN (d+ log(rsN)) log(rsN) . d2 r2sN log2(rsN) (3.2)

arithmetic operations for Algorithm 3 assuming r & b. We remark that we do not have any
exponential dependence in the dimension d, neither for the number of samples nor for the
arithmetic complexity, but only a polynomial dependence of degree ≤ 2. The sample and
arithmetic complexities are distinctly reduced by using Algorithm 3 (multiple rank-1 lattices)
and compared to Algorithm 5 or [26, Algorithm 2] (single rank-1 lattices), where the latter two
algorithms require . dr3s2N samples and . dr3s3 + dr3s2N log(rsN) arithmetic operations.

In particular, the number of used sampling values as well as the arithmetic complexity is
distinctly improved to an almost linear term with respect to the sparsity parameter s for
Algorithm 3 and multiple rank-1 lattices.

When analyzing the sample and arithmetic complexity of Algorithm 4, we obtain similar
numbers except for additional logarithmic factors. In total, we require

. dr2sN log2(rsN) + d r N . dr2sN log2(rsN)

many samples with high probability and

. drsN
(
d log(rsN) + r log(rsN) + d

)
log2(rsN) . d2r2sN log3(rsN)

arithmetic operations with high probability for Algorithm 4. We remark that we do not
observe these additional logarithmic factors in numerical tests. Presumably, this is due to
the relatively rough estimates of the complexities in [16]. Moreover, the numerical results in
Section 5 suggest that Algorithm 4 requires even less samples and has smaller runtime than
Algorithm 3 in practice.
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We remark that for obtaining the estimates of the sample and arithmetic complexities
in this section, we did not assume that the function under consideration is a multivariate
trigonometric polynomial p, see also Remark 3.3. In the next section, we will especially
address the special case, when the function under consideration is sparse in frequency domain,
and we will give possible choices for the input parameters of Algorithm 3 and 5 depending on
the targeted success probability.

4 Theoretical results

In this section, we analyze in detail the sample and arithmetic complexities of Algorithm 3
and 5 applied to multivariate trigonometric polynomials p. We start with the case of sparse
multivariate trigonometric polynomials p having arbitrary Fourier coefficients p̂k in Sec-
tion 4.1. Afterwards, in Section 4.2, we discuss the obtained results. Later, in Section 4.3, we
consider the case where the Fourier coefficients p̂k fulfill certain stronger properties, resulting
in a modification of Algorithm 3 and 5 with small sample and arithmetic complexities.

4.1 Multivariate trigonometric polynomial with arbitrary Fourier coefficients

We analyze the computation of (projected) Fourier coefficients in step t. We denote the
sampling set Λ = Λ(z1,M1, . . . ,zL,ML) for short and assume that Λ is a reconstructing
multiple rank-1 lattice for the frequency index set

Jt :=
(
I(1,...,t−1) × I(t)

)
∩ P(1,...,t)(Γ),

Jt ⊃ P(1,...,t)(supp p̂), determined by Algorithm 1 in Section 2.1 or by one of Algorithms 1 to
4 from [16]. We denote x̃ := (x′t+1, . . . , x

′
d). We use Algorithm 2 in order to determine the

projected Fourier coefficients ˜̂pΛ
(1,...,t),k, k ∈ Jt. Due to the construction of the reconstructing

multiple rank-1 lattice Λ, for each k ∈ Jt, there exists at least one ` ∈ {1, . . . , L} such that

k · z` 6≡ k′ · z` (mod M`) for all k 6= k′ ∈ Jt (4.1)

holds and we have

˜̂p
Λ(z`,M`)
(1,...,t),k :=

1

M`

M`−1∑
j=1

p

(
j

M`
z`, x̃

)
e
−2πik·z`

j
M`

=
∑

h∈supp p̂

1

M`

M`−1∑
j=1

p̂he
2πih·(z`

j
M`

,x̃)
e
−2πik·z`

j
M`

=
∑

h∈supp p̂
((h1,...,ht)−k)·z`≡0 (mod M`)

p̂h e2πi(ht+1,...,hd)·x̃

=
∑

h∈supp p̂
(h1,...,ht)=k

p̂(k,ht+1,...,hd) e2πi(ht+1,...,hd)·x̃.

If there exists more than one ` ∈ {1, . . . , L} such that (4.1) holds, then Algorithm 2 computes

the average of all these coefficients ˜̂p
Λ(z`,M`)
(1,...,t),k , where the latter are identical. Consequently, we
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obtain projected Fourier coefficients

˜̂pΛ
(1,...,t),k =

∑
h∈supp p̂

(h1,...,ht)=k

p̂(k,ht+1,...,hd) e2πi(ht+1,...,hd)·x̃.

As in [26, Section 2.2.2], we interpret the projected Fourier coefficients ˜̂pΛ
(1,...,t),k as a trigono-

metric polynomial g(x̃) := ˜̂pΛ
(1,...,t),k with respect to x̃ ∈ Td−t. In Algorithm 3, we choose

x̃ ∈ Td−t uniformly at random. As an improvement to [26, Theorem 2.5], we estimate the
probability that a projected Fourier coefficient ˜̂pΛ

(1,...,t),k is of a certain absolute value, i.e., we
estimate the measure of the following setx̃ ∈ Td−t : |g(x̃)| =

∣∣∣∣∣∣
∑
h∈Ĩ

ĝh e2πih·x̃

∣∣∣∣∣∣ < δ

 .

Similarly, for Γ ⊃ supp p̂ and t ∈ {1, . . . , d}, we have for the projected Fourier coefficient

˜̂pt,kt :=

Kt−1∑
`=0

p

(
x′1, . . . , x

′
t−1,

`

Kt
, x′t+1, . . . , x

′
d

)
e−2πi`kt/Kt

=
∑

h∈supp p̂
ht=kt

p̂h e2πi(h1,...,ht−1,ht+1,...,hd)·x̃ for kt ∈ Pt(Γ) (4.2)

in step 1 and 2a of Algorithm 3, and we interpret ˜̂pt,kt as a trigonometric polynomial g(x̃) :=
˜̂pt,kt with respect to x̃ := (x′1, . . . , x

′
t−1, x

′
t+1, . . . , x

′
d) ∈ Td−1.

Lemma 4.1. Let a trigonometric polynomial g : Tn → C, n ∈ N, g(x) :=
∑

h∈Ĩ ĝh e2πih·x 6≡
0, Ĩ ⊂ Zn, |Ĩ| < ∞, be given such that the property ‖g|L1(Tn)‖ > δ for a threshold δ > 0
is fulfilled. Moreover, let X1, . . . , Xn ∈ T be independent, identical, uniformly distributed
random variables and we denote by X := (X1, . . . , Xn)> ∈ Tn the random vector. Then, the
probability

P(|g(X)| < δ) ≤ 1− ‖g|L1(Tn)‖ − δ
‖g|L∞(Tn)‖

=
‖g|L∞(Tn)‖ − ‖g|L1(Tn)‖+ δ

‖g|L∞(Tn)‖
< 1.

If maxh∈Ĩ |ĝh| > δ, then

P(|g(X)| < δ) ≤ 1−
maxh∈Ĩ |ĝh| − δ∑

h∈Ĩ |ĝh|
=: q < 1.

Choosing r random vectors X1, . . . ,Xr ∈ Tn independently, we observe

P

(
r⋂
i=1

{|g(Xi)| < δ}

)
≤ qr.

Proof. Let Y be a real valued random variable. We refer to the lower bound

Eh(Y )− h(δ)

‖h(Y )|L∞(R)‖
≤ P(|Y | ≥ δ)
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in [23, Par. 9.3.A] and apply this for the even and on [0,∞) nondecreasing function h(t) := |t|.
We set Y = |g(X)| and we obtain

P(|g(X)| ≥ δ) ≥ ‖g|L1(Tn)‖ − δ
‖g|L∞(Tn)‖

and

P(|g(X)| < δ) ≤ 1− ‖g|L1(Tn)‖ − δ
‖g|L∞(Tn)‖

=
‖g|L∞(Tn)‖ − ‖g|L1(Tn)‖+ δ

‖g|L∞(Tn)‖
.

The estimate |ĝh| = |
∫
Tn g(x) e−2πih·xdx| ≤

∫
Tn |g(x)|dx = ‖g|L1(Tn)‖ for all h ∈ Ĩ yields

maxh∈Ĩ |ĝh| ≤ ‖g|L
1(Tn)‖. Since we have ‖g|L∞(Tn)‖ = ess supx∈Tn |g(x)| ≤

∑
h∈Ĩ |ĝh| and

maxh∈Ĩ |ĝh| > δ, the assertion follows.

Based on these estimates, we determine bounds on the probability that a projected Fourier
coefficient is below an absolute threshold δ. Since the projected Fourier coefficient may
consist only of minimal non-zero Fourier coefficients p̂h, the threshold δ has to be chosen
δ < minh∈supp p̂ |p̂h| in order to apply the second part of Lemma 4.1.

Corollary 4.2. Let a threshold value δ > 0, a trigonometric polynomial p with the property
minh∈supp p̂ |p̂h| > δ and a search space Γ ⊃ supp p̂ of finite cardinality be given. For fixed
t ∈ {1, . . . , d} and Kt := max(Pt(Γ)) − min(Pt(Γ)) + 1, we compute the one-dimensional
projected Fourier coefficients for the t-th component by

˜̂pt,kt = p̃t,kt(x
′
1, . . . , x

′
t−1, x

′
t+1, . . . , x

′
d)

:=

Kt−1∑
`=0

p

(
x′1, . . . , x

′
t−1,

`

Kt
, x′t+1, . . . , x

′
d

)
e−2πi`kt/Kt , kt ∈ Pt(Γ),

where the values x′1, . . . , x
′
t−1, x

′
t+1, . . . , x

′
d ∈ T are independently chosen uniformly at random.

Then, the probability

P(| ˜̂pt,kt | < δ) ≤ 1−
‖ ˜̂pt,kt |L1(Td−1)‖ − δ
‖ ˜̂pt,kt |L∞(Td−1)‖

≤ 1−
maxh=(h1,...,ht−1,kt,ht+1,...,hd)∈supp p̂ |p̂h| − δ∑

h=(h1,...,ht−1,kt,ht+1,...,hd)∈supp p̂ |p̂h|
=: qt,kt < 1 for kt ∈ Pt(supp p̂)

holds due to Lemma 4.1. Repeating the computation of ˜̂pt,kt = ˜̂pt,kt(x̃) for different randomly
chosen x̃ = x̃1, . . . , x̃r ∈ Td−1, r ∈ N, we estimate

P
(

max
ν=1,...,r

| ˜̂pt,kt(x̃ν)| < δ

)
≤ (qt,kt)

r.

Applying the union bound yields

P

 ⋃
kt∈Pt(supp p̂)

{
max
ν=1,...,r

| ˜̂pt,kt(x̃ν)| < δ

} ≤ ∑
kt∈Pt(supp p̂)

(qt,kt)
r

≤ min
{
| supp p̂|,Kt

}(
max

kt∈Pt(supp p̂)
qt,kt

)r
. (4.3)
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Corollary 4.3. Let a threshold value δ > 0, a trigonometric polynomial p with the property
minh∈supp p̂ |p̂h| > δ and the search space Γ ⊃ supp p̂ of finite cardinality be given. For fixed
t ∈ {2, . . . , d− 1}, we compute the t-dimensional projected Fourier coefficients ˜̂pΛ

(1,...,t),k, k ∈(
I(1,...,t−1) × I(t)

)
∩P(1,...,t)(Γ), in step 2d of Algorithm 3 by applying Algorithm 2 on p(◦, x̃),

where x̃ is choosen uniformly at random in Td−t. If Λ(z1,M1, . . . ,zL,ML) is a reconstructing
multiple rank-1 lattice for P(1,...,t)(supp p̂) determined by Algorithm 1 in Section 2.1 or by
one of [16, Algorithms 1 to 4], then the probability

P(| ˜̂pΛ
(1,...,t),k| < δ) ≤ 1−

‖ ˜̂pΛ
(1,...,t),k|L1(Td−t)‖ − δ

‖ ˜̂pΛ
(1,...,t),k|L∞(Td−t)‖

≤ 1−
maxh=(k,ht+1,...,hd)∈supp p̂ |p̂h| − δ∑

h=(k,ht+1,...,hd)∈supp p̂ |p̂h|

=: q(1,...,t),k < 1 for k ∈ P(1,...,t)(supp p̂) ∩
(
I(1,...,t−1) × I(t)

)
(4.4)

due to Lemma 4.1. Repeating the computation of ˜̂pΛ
(1,...,t),k = ˜̂pΛ

(1,...,t),k(x̃) for different ran-

domly chosen x̃ = x̃1, . . . , x̃r ∈ Td−t, r ∈ N, we estimate

P
(

max
ν=1,...,r

| ˜̂pΛ
(1,...,t),k(x̃ν)| < δ

)
≤ (q(1,...,t),k)r.

Applying the union bound yields

P

 ⋃
k∈P(1,...,t)(supp p̂)∩(I(1,...,t−1)×I(t))

{
max
ν=1,...,r

| ˜̂pΛ
(1,...,t),k(x̃ν)| < δ

}
≤

∑
k∈P(1,...,t)(supp p̂)∩(I(1,...,t−1)×I(t))

(q(1,...,t),k)r

≤ | supp p̂|

(
max

k∈P(1,...,t)(supp p̂)∩(I(1,...,t−1)×I(t))
q(1,...,t),k

)r
. (4.5)

Analyzing Algorithm 3 in detail, we compute the adaptive approximation in d dimension
increment steps. In each of the dimension increment steps, at most three probabilistic sub-
steps are performed, cf. step 1, 2a, 2b. If each of these probabilistic sub-steps is successful,
we detect all frequencies from supp p̂ correctly. We use the union bound to estimate the
corresponding probability

P

(
d⋂
t=1

At ∩
d⋂
t=2

Bt ∩
d⋂
t=2

Ct

)
= 1− P

(
d⋃
t=1

A{
t ∪

d⋃
t=2

B{
t ∪

d⋃
t=2

C{
t

)

≥ 1−
d∑
t=1

P(A{
t )−

d∑
t=2

P(B{
t )−

d∑
t=2

P(C{
t ), (4.6)
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where the events

At :=
{
Pt(supp p̂) ⊂ I(t)

}
,

Bt :=
{

Λ(z1,M1, . . . ,zL,ML) is a reconstructing multiple rank-1 lattice

for P(1,...,t)(supp p̂)
}
,

Ct :=
{
P(1,...,t)(supp p̂) ⊂ I(1,...,t)

}
.

The probabilities P(A{
t ) and P(C{

t ) of the complements of At and Ct were estimated in (4.3)
and (4.5), respectively. An upper bound on P(B{

t ) is obtained via the maximal number b of
multiple rank-1 lattice searches per component. For the whole algorithm, we allow a failure
probability ε ∈ (0, 1). We split this up such that each probabilistic sub-step has an equal
upper bound on its failure probability of ε/(3d). This strategy allows for estimates of

• the number of detection iterations r,

• the maximal number b of multiple rank-1 lattice searches per component,

First, we estimate the required number of detection iterations r.

Lemma 4.4. Let a threshold value δ ≥ 0, a trigonometric polynomial p 6≡ 0 with the property
minh∈supp p̂ |p̂h| ≥ 3δ and the search space Γ ⊃ supp p̂ of finite cardinality be given. Choosing
the number of detection iterations

r ≥ 2| supp p̂|(log 3 + log d+ log | supp p̂| − log ε) (4.7)

in Algorithm 3 guarantees that each of the probabilities P(A{
t ) and P(C{

t ) is bounded from
above by ε/(3d).

Proof. We estimate the probability P(C{
t ) by (4.5) and we increase r such that

P

 ⋃
k∈P(1,...,t)(supp p̂)∩(I(1,...,t−1)×I(t))

{
max
ν=1,...,r

| ˜̂pΛ
(1,...,t),k(x̃ν)| < δ

}
≤ | supp p̂|

(
max

k∈P(1,...,t)(supp p̂)∩(I(1,...,t−1)×I(t))
q(1,...,t),k

)r
≤ ε

3d
.

is fulfilled. Consequently r has to be bounded from below by

log 3 + log d+ log | supp p̂| − log ε

− log maxk∈P(1,...,t)(supp p̂)∩(I(1,...,t−1)×I(t)) q(1,...,t),k
. (4.8)
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We denote the index set Ĩ := P(1,...,t)(supp p̂) ∩
(
I(1,...,t−1) × I(t)

)
and we estimate(

max
k∈Ĩ

q(1,...,t),k

)−1

(4.4)
= min

k∈Ĩ

∑
h=(k,ht+1,...,hd)∈supp p̂ |p̂h|∑

h=(k,ht+1,...,hd)∈supp p̂ |p̂h| −maxh=(k,ht+1,...,hd)∈supp p̂ |p̂h|+ δ

= 1 + min
k∈Ĩ

maxh=(k,ht+1,...,hd)∈supp p̂ |p̂h| − δ∑
h=(k,ht+1,...,hd)∈supp p̂ |p̂h|

≥ 1 + min
k∈Ĩ

2 maxh=(k,ht+1,...,hd)∈supp p̂ |p̂h|
3
∑

h=(k,ht+1,...,hd)∈supp p̂ |p̂h|
≥ 1 +

2

3| supp p̂|
=

3| supp p̂|+ 2

3| supp p̂|
.

Consequently, we obtain

1

− log
(
maxk∈Ĩ q(1,...,t),k

) =
1

log
((

maxk∈Ĩ q(1,...,t),k

)−1
)

≤ 1

log
(

3| supp p̂|+2
3| supp p̂|

) =
1

log(3| supp p̂|+ 2)− log(3| supp p̂|)
< 2| supp p̂|.

Choosing r as in (4.7) satisfies the lower bound (4.8) and P(C{
t ) ≤ ε/(3d) is fulfilled. The

bound P(A{
t ) ≤ ε/(3d) follows analogously.

Next, we deal with the choice of the maximal number b of multiple rank-1 lattice searches
per component.

Lemma 4.5. Let a frequency index set Ĩ ⊂ Zd, |Ĩ| <∞, be given. We apply Algorithm 1 on
Ĩ with fixed minimal oversampling factor c > 1 and fixed failure probability γ ∈ (0, 1) in order
to try determining a reconstructing multiple rank-1 lattice Λ = Λ(z1,M1, . . . ,zL,ML). We
repeatedly perform this at most b ∈ N many times and stop if Λ fulfills properties (2.1). Then,
the total lattice size M = |Λ(z1,M1, . . . ,zL,ML)| is in O

(
max{|Ĩ|, NĨ} log |Ĩ|

)
, and the total

number of arithmetic operations is in O
(
b max{|Ĩ|, NĨ}(log |Ĩ|+d+log logNĨ) log |Ĩ|

)
, where

NĨ := maxj=1,...,d{maxk∈Ĩ kj −minl∈Ĩ lj} is the expansion of Ĩ. Moreover,

b =

⌈
log 3 + log d− log ε

| log γ|

⌉
calls of Algorithm 1 guarantee that Λ is a reconstructing multiple rank-1 lattice
Λ(z1,M1, . . . ,zL,ML) with probability at least 1− ε/(3d), ε ∈ (0, 1).

Proof. With probability at least 1 − γ, Λ(z1,M1, . . . ,zL,ML) returned by Algorithm 1 is a
reconstructing multiple rank-1 lattice for Ĩ. From (2.3) and (2.4) for fixed γ, we immediately
obtain the claimed upper bound for the total lattice size M and the number of arithmetic
operations, respectively.
Repeatedly applying Algorithm 1 in case of failure up to totally b̃ times results in a success
property of at least 1 − γ b̃. Consequently, ensuring a success property of at least 1 − ε/(3d)
yields the claimed upper bound b on the number of calls.

Finally, we combine the obtained results in order to estimate the sample and arithmetic
complexity of Algorithm 3 for a given success probability 1− ε.
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Theorem 4.6. Let a failure probability ε ∈ (0, 1) be given. We apply Algorithm 3 on a
multivariate trigonometric polynomial p using the following parameters. We choose

• the search space Γ such that supp p̂ ⊂ Γ ⊂ ĜdN ,

• an absolute threshold 0 < δ ≤ minh∈supp p̂ |p̂h|/3,

• the sparsity parameter s ≥ | supp p̂|,

• the number of detection iterations r := d2 | supp p̂|(log 3 + log d+ log | supp p̂| − log ε)e,

• the number of multiple rank-1 lattice searches b := d(log 3 + log d− log ε)/ log 2e.

Moreover, we assume | supp p̂| & N and | supp p̂| & d. Then, with probability 1 − ε, the
output of the index set I of Algorithm 3 is supp p̂, the total number of sampling nodes is
in O

(
d | supp p̂|2N(log | supp p̂|)2| log ε|

)
, and the total number of arithmetic operations is in

O
(
d2| supp p̂|2N(log | supp p̂|)3| log ε|

)
.

When choosing the sparsity parameter s ≤ C | supp p̂| for a constant C ≥ 1, we
always require . d | supp p̂|3N(log | supp p̂|)3| log ε| |log | log ε|| many samples and .
d2| supp p̂|3N(log | supp p̂|)4| log ε|2 |log | log ε||2 arithmetic operations.

Proof. As discussed above, we use the union bound to estimate

P (supp p̂ ⊂ I) ≥ P

(
d⋂
t=1

At ∩
d⋂
t=2

Bt ∩
d⋂
t=2

Ct

)
(4.6)

≥ 1−
d∑
t=1

P(A{
t )−

d∑
t=2

P(B{
t )−

d∑
t=2

P(C{
t )

for the output I of Algorithm 3. From Lemma 4.4, we obtain P(A{
t ) ≥ ε/(3d) and P(C{

t ) ≥
ε/(3d). Moreover, we have P(B{

t ) ≥ ε/(3d) due to Lemma 4.5. Altogether, this yields
P (supp p̂ ⊂ I) ≥ 1− ε. Next, we discuss the complexities.
In the general case, the number of frequencies within I(1,...,t) is bounded from above by rs,
cf. Section 3.2. We show that a successful application of Algorithm 3 on the multivariate
trigonometric polynomial p does not detect more than | supp p̂| different frequencies in each
dimension increment step. In particular, we proof by contradiction that I(t) = Pt(supp p̂) and
I(1,...,t) = P(1,...,t)(supp p̂) holds.

First, we consider the construction of the frequency index sets I(t), t = 1, . . . , d, i.e., steps 1
and 2a. We assume that there exists kt 6∈ Pt(supp p̂) such that | ˜̂pt,kt | ≥ δ > 0,

˜̂pt,kt
(4.2)
:=

Kt−1∑
`=0

p

(
x′1, . . . , x

′
t−1,

`

Kt
, x′t+1, . . . , x

′
d

)
e−2πi`kt/Kt

=
∑

h∈supp p̂
ht≡kt (mod Kt)

p̂h e2πi(h1,...,ht−1,ht+1,...,hd)·x̃,

holds, which implies that there exists at least one ht ∈ Z \ {kt}, such that p̂h 6= 0 and ht ≡ kt
(mod Kt). Since Kt := max(Pt(Γ))−min(Pt(Γ)) + 1 and kt ∈ Pt(Γ), we observe ht 6∈ Pt(Γ)
and this yields Γ 6⊃ supp p̂, which is in contradiction to the choice of Γ. Consequently, the
inclusion I(t) ⊂ Pt(supp p̂) holds and with probability at least 1−ε/(3d), we have the equality
I(t) = Pt(supp p̂).
Second, in step 2e of Algorithm 3, the frequency index sets I(1,...,t) are constructed. For
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the index set of frequency candidates Jt := (I(1,...,t−1) × I(t)) ∩ P(1,...,t)(Γ), we require
Jt ⊃ P(1,...,t)(supp p̂) and that Λ is a reconstructing multiple rank-1 lattice for Jt ful-

filling condition (2.1). Then, for each k ∈ Jt fulfilling | ˜̂pΛ
(1,...,t),k| ≥ δ > 0, we have

k ∈ P(1,...,t)(supp p̂). We show this by contradiction and for this, we assume that there

exists a frequency k ∈ Jt \ P(1,...,t)(supp p̂) with | ˜̂pΛ
(1,...,t),k| ≥ δ > 0. The projected Fourier

coefficient ˜̂pΛ
(1,...,t),k returned by Algorithm 2 is computed as an arithmetic mean of at least

one coefficient

˜̂p
Λ(z`,M`)
(1,...,t),k :=

1

M`

M`−1∑
j=1

p

(
j

M`
z`, x̃

)
e
−2πik·z`

j
M`

=
∑

(k′,ht+1,...,hd)∈supp p̂
k′·z`≡k·z` (mod M`)

p̂(k′,ht+1,...,hd) e2πi(ht+1,...,hd)·x̃.

Since ˜̂pΛ
(1,...,t),k 6= 0, there exists at least one ` such that ˜̂p

Λ(z`,M`)
(1,...,t),k 6= 0, and thus, there exists

at least one p̂(k′,ht+1,...,hd) 6= 0, where (k′, ht+1, . . . , hd) ∈ supp p̂ and k′ ·z` ≡ k ·z` (mod M`).
On the one hand, due to the assumption k 6∈ P(1,...,t)(supp p̂), we have k′ 6= k. On the other
hand, Λ is a reconstructing multiple rank-1 lattice constructed by Algorithm 1 fulfilling the
properties (2.1). Consequently, we obtain k′ 6∈ Jt, which is in contradiction to the require-
ment Jt ⊃ P(1,...,t)(supp p̂).

If all events A1, and At, Bt, Ct for t ∈ {2, . . . , d} occur, the equalities I(1) = P1(supp p̂),
I(t) = Pt(supp p̂), and I(1,...,t) = P(1,...,t)(supp p̂) hold. In particular, this means that the

cardinalities are bounded by |I(1,...,t)| ≤ | supp p̂|. This leads to a distinct reduction in
the upper bounds of the complexities in (3.1) and (3.2). In more detail, the factors r s
can be replaced by | supp p̂|, which leads to O (dr| supp p̂|N log(| supp p̂|N)) samples and
O
(
d2 r| supp p̂|N log2(| supp p̂|N)

)
arithmetic operations.

The latter discussed events occur with probability 1 − ε as mentioned above. Taking the
assumptions | supp p̂| & N and | supp p̂| & d as well as the choice of the parameters r
and b into account, we obtain with probability at least 1 − ε that the number of samples
is in O

(
d | supp p̂|2N log2 | supp p̂| | log ε|

)
and that the number of arithmetic operations is in

O
(
d2 | supp p̂|2N log3 | supp p̂| | log ε|

)
.

The worst case number of samples and arithmetic complexities follow from the parameter
choices and the discussions in Section 3.2.

Similarly, we obtain estimates for the sample and arithmetic complexity of Algorithm 5.

Theorem 4.7. Let a failure probability ε ∈ (0, 1) be given. We apply Algorithm 5 on a
trigonometric polynomial p using the following parameters. We choose

• the search space Γ such that supp p̂ ⊂ Γ ⊂ ĜdN ,

• an absolute threshold 0 < δ ≤ minh∈supp p̂ |p̂h|/3,

• the sparsity parameter s ≥ | supp p̂|,

• the number of detection iterations r := d2| supp p̂|(log 2 + log d+ log | supp p̂| − log ε)e.
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Moreover, we assume | supp p̂| & N and | supp p̂| & d. Then, with probability 1 − ε,
the output I of Algorithm 3 is supp p̂, the total number of sampling nodes is in
O
(
d | supp p̂|3N (log | supp p̂|)| log ε|

)
, and the total number of arithmetic operations is

in O
(
d | supp p̂|3N (log | supp p̂|)2| log ε|

)
.

When choosing the sparsity parameter s ≤ C | supp p̂| for a constant C ≥ 1,
we always require . d | supp p̂|5N(log | supp p̂|)3| log ε|3 many samples and .
d | supp p̂|6 (log | supp p̂|)3 | log ε|3 + d | supp p̂|5N(log | supp p̂|)4| log ε|3 |log | log ε|| arithmetic
operations.

Proof. We proceed similarly as in the proof of Theorem 4.6. The main difference is that we
use reconstructing single rank-1 lattices, which are constructed by a deterministic algorithm.
Consequently, we have

P (supp p̂ ⊂ I) ≥ P

(
d⋂
t=1

At ∩
d⋂
t=2

Ct

)
(4.6)

≥ 1−
d∑
t=1

P(A{
t )−

d∑
t=2

P(C{
t )

for the output I of Algorithm 3. For each probability P(A{
t ) and P(C{

t ), we ensure an lower
bound of ε/(2d). Consequently, we have a slightly smaller choice for the number of detection
iterations r in Lemma 4.4.
For the number of samples, the dominating terms are the sizesM (t) of the single rank-1 lattices
in each dimension increment step t ∈ {2, . . . , d}. If all of the previous steps succeeded, we
have M (t) . | supp p̂|2N by [26, Corollary 2.3] as a consequence of [14]. In total, this means

. d r | supp p̂|2N . d | supp p̂|3N(log | supp p̂|) | log ε|

many samples with probability at least 1− ε.
Building the reconstructing single rank-1 lattices requires O

(
d | supp p̂|3

)
arithmetic opera-

tions in total and computing the rank-1 lattice FFTs O
(
d r | supp p̂|2N log | supp p̂|

)
many

in total with probability at least 1 − ε, which yields the claimed arithmetic complexity
O
(
d | supp p̂|3N (log | supp p̂|)2| log ε|

)
.

Since Algorithm 5 requires . dr3s2N samples and . dr3s3 + dr3s2N log(rsN) arithmetic
operations, cf. [26, Section 2.2.3], the worst case complexities follow due to the parameter
choices of r and s.

4.2 Discussion

In Section 4.1, we obtained detailed theoretical estimates for the sample and arithmetic
complexities of Algorithm 3 and 5 when applied on multivariate trigonometric polynomials p.
Starting point of the theoretical results was Lemma 4.1, which estimates the probability that
the absolute value of a multivariate trigonometric polynomial is below or equal to a certain
threshold δ for a uniformly random sample. Afterwards, this result was used in Corollary 4.2
and 4.3 to bound the probability that the absolute value of a single aliased Fourier coefficient
in Algorithm 3 or 5 is below or equal to a given absolute threshold δ, which would mean that
the corresponding frequency component is not detected. Using a certain number of detection
iterations r, repeated sampling can be used to decrease the overall failure probability and
increase the overall probability of successfully detecting all non-zero Fourier coefficients p̂k 6= 0
of the multivariate trigonometric polynomial p under consideration. Based on the previously
mentioned results, the required number of detection iterations r was estimated by

r ≥ 2| supp p̂|(log 3 + log d+ log | supp p̂| − log ε)
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in Lemma 4.4 for a given failure probability ≤ ε ∈ (0, 1). This lower bound for r contains
the number | supp p̂| of non-zero Fourier coefficients as a linear factor which is probably
overestimated. Moreover, even if we would decrease the absolute threshold δ to almost zero,
the currently used proof technique would still result in a lower bound which contains | supp p̂|
as a linear factor. However, this does not match our expectations and the observed numerical
results in Section 5.

We remark that Lemma 4.1 still leads to a distinct improvement compared to the previous
results based on [26, Lemma 2.4], which would yield an even larger bound on r containing
the factor | supp p̂|2 in Section 4.1.

In order to obtain a smaller bound on r and, consequently, lower sample and arithmetic
complexities, an improved version of Lemma 4.1 would be required. For instance, an answer
to the following more general question for trigonometric polynomials would immediately give
such an improvement. Assume that a trigonometric polynomial g : Tn → C, n ∈ N, is given
and let

q :=

∫
{x∈Tn : |g(x)|≤δ}

dx =

∣∣∣∣∣∣
x̃ ∈ Tn : |g(x̃)| =

∣∣∣∣∣∣
∑

k∈supp ĝ

ĝk e2πih·x̃

∣∣∣∣∣∣ ≤ δ

∣∣∣∣∣∣ .

How is it possible to show
1

log 1
q

�∼ | supp ĝ|

and which conditions on the Fourier coefficients ĝk are sufficient. Of course, these conditions
should be as weak as possible.

As already mentioned in [26], assuming a special property of the Fourier coefficients p̂k of a
multivariate trigonometric polynomial p allows for choosing the number of detection iterations
r := 1 as we discuss in the next section. However, for a more general case, we currently do
not know how to obtain improved bounds on r.

4.3 Multivariate trigonometric polynomial with special Fourier coefficients
allowing for r = 1 detection iteration

If we assume that the function under consideration is a multivariate trigonometric polyno-
mial p with the additional property that the signs of the real part Re(p̂k) of all non-zero Fourier
coefficients p̂k are identical 6= 0 or that the signs of the imaginary part Im(p̂k) are identical
6= 0, then we obtain a deterministic version of Algorithm 5 as explained in Remark 3.2. This
strategy requires O

(
d | supp p̂|2N

)
samples and O

(
d | supp p̂|3 + d | supp p̂|2N

)
arithmetic op-

erations.

In this setting, Algorithm 3 is not purely deterministic due to the probabilistic search for
the reconstructing multiple rank-1 lattices. From the proof of Theorem 4.6, we obtain that
Algorithm 3 detects all non-zero Fourier coefficients with probability at least 1 − ε when
setting the number of multiple rank-1 lattice searches parameter b := d(log d− log ε)/ log 2e
and the sparsity s ≥ | supp p̂|. This requires O

(
d | supp p̂|N log(| supp p̂|N)

)
samples and

O
(
d2 | supp p̂|N log2(| supp p̂|N) (log(d) − log ε)

)
arithmetic operations with probability at

least 1− ε. Choosing the sparsity parameter s ≤ C | supp p̂| for a constant C ≥ 1 guarantees
these complexities.
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5 Numerical results

In this section, we present several numerical results, which empirically confirm the high effec-
tiveness and robustness of the proposed method. In Section 5.1, we start with the reconstruc-
tion of random multivariate trigonometric polynomials p in up to d = 30 spatial dimensions,
where the sampling values are not perturbed by noise. Additionally, we consider the case,
where the sampling values are perturbed by additive Gaussian noise in Section 5.2. Moreover,
in Section 5.3, we successfully determine the approximately largest Fourier coefficients and
the corresponding frequencies of a 10-dimensional test function.

In all numerical tests, we compare the new algorithms based on multiple rank-1 lattice
sampling with Algorithm 5, which uses single reconstructing rank-1 lattices. On the one
hand, we consider Algorithm 3 to confirm theoretical results from Section 4. On the other
hand, all numerical test settings will be treated by Algorithm 4, for which we currently do
not have an extensive theoretical framework. The main difference in both algorithms is the
construction of the multiple rank-1 lattices. The construction method used in Algorithm 4
does not allow for the application of the proof techniques we developed in Section 4 and may
result in higher theoretical upper bounds on the sampling and arithmetic complexities, see also
the discussion in [16, Section 4.1]. However, for the numerical test settings in [16], the number
of sampling nodes was distinctly lower, when using this construction method, compared to
the construction method used in Algorithm 3. Since we observe a similar preferable behavior
when using Algorithm 4, we also present the corresponding results in detail.

We implemented the methods and numerical tests in MATLAB. All tests were run using
MATLAB R2015b and IEEE 754 double precision arithmetic. The time measurements were
performed on a computer with Intel Xeon 5160 CPU (3 GHz) and 64 GB RAM using 1 thread.

In general, we observe that the total number of samples is distinctly lower when using
multiple rank-1 lattices instead of single rank-1 lattices.

We remark that when performing the numerical tests, we implicitly assumed that we have
at least some basic knowledge about the function under consideration, like e.g. a reasonable
search domain Γ or estimates of the minimal absolute value of the Fourier coefficients p̂k, the
sparsity |supp p̂|, the noise level, etc.

5.1 Random sparse trigonometric polynomial

As in [26, Section 3.1], we construct random multivariate trigonometric polynomials p with
frequencies supported within the cube ĜdN = [−N,N ]d ∩ Zd. For this, we choose |supp p̂|
frequencies k ∈ ĜdN uniformly at random and corresponding Fourier coefficients p̂k ∈ [−1, 1)+
[−1, 1)i, |p̂k| ≥ 10−6, k ∈ I = supp p̂. For the reconstruction of the trigonometric polynomials
p, we only assume that the search domain Γ := ĜdN ⊃ supp p̂. Additionally, we do not truncate
the frequency index sets of detected frequencies I(1,...,t), t ∈ {2, . . . , d}, i.e., we set the sparsity
parameter s := |Γ|. Alternatively, one may choose s := |supp p̂| and this yields identical results
for the considered random sparse trigonometric polynomials.

Example 5.1. (Number of samples and errors). We set the expansion N := 32. Now, we
compare the results of Algorithm 5, which is a modification of [26, Algorithm 2] with absolute
thresholding and which uses reconstructing single rank-1 lattices, with Algorithm 3 and 4,
which use multiple rank-1 lattices as sampling sets. We set the absolute threshold parameter
δ := 10−12 and the number of detection iterations r := 1. For sparsity |supp p̂| := 1 000
and 10 000, we run tests for dimension d ∈ {5, 10, 15, 20, 25, 30}. All tests are repeated 10
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times with newly chosen frequencies k ∈ Γ and Fourier coefficients p̂k ∈ C. Then, for the 10
repetitions, we determine the maximum of the total number of samples and the maximum of
the relative `2-errors of the Fourier coefficients. For Algorithm 5 using reconstructing single
rank-1 lattices, the results are shown in columns 3–4 of Table 5.1. Moreover, the results
for Algorithm 3 and 4 using multiple rank-1 lattices are presented in columns 5–6 and 7–
8, respectively. For multiple rank-1 lattices, we also run the tests for sparsity |supp p̂| :=
100 000. We observe that in the considered cases, the obtained relative `2-errors are near
machine precision. Moreover, we require distinctly less samples than if we had used a d-
dimensional FFT on a full grid, which would require |Γ̂5

32| = 1 160 290 625 already in the
5-dimensional case. Additionally, for sparsity |supp p̂| := 10 000, Algorithm 3 using multiple
rank-1 lattices required only about 1/9 of the samples compared to Algorithm 5 using single
rank-1 lattices. We observe that the number of samples may be even further reduced by
using Algorithm 4, which required only 1/84 to 1/41 of the samples compared to single rank-
1 lattices for sparsity |supp p̂| := 10 000. For sparsity |supp p̂| := 100 000, we were not able to
apply Algorithm 5, which uses single rank-1 lattices, since this would have required too many
samples and extremely long runtimes.
Instead of choosing the absolute threshold parameter δ := 10−12, we also repeated the tests
for a larger absolute threshold of δ := 10−7 ≤ mink∈supp p̂ |p̂k|/10 and we obtained almost
identical results as in Table 5.1.
We remark that we also ran the numerical tests applying a modified version of Algorithm 3,
which uses [16, Algorithm 4] instead of Algorithm 1 for determining reconstructing multiple
rank-1 lattices. Then, we obtained results comparable to those of Algorithm 3 in Table 5.1
requiring slightly less samples, i.e., between 2 and 10 percent less in most cases.

From the previous example, we observe that for fixed dimension d and increasing sparsity
|supp p̂|, the number of samples increases only moderately for Algorithm 3 and 4. In the next
example, we investigate the behavior in more detail and additionally measure the runtimes
using only one CPU thread.

Example 5.2. (Number of samples and runtimes with respect to sparsity). As in Exam-
ple 5.1, we set the expansion N := 32, the threshold parameter δ := 10−12 and the num-
ber of detection iterations r := 1. Since we want to compare our methods with a full d-
dimensional FFT, we restrict ourselves to the 5-dimensional case, which already yields a
search space Γ = Ĝ5

32 of cardinality |Γ| = 655 = 1 160 290 625. For sparsity s := |supp p̂| ∈
{1 000, 2 000, 5 000, 10 000, 20 000, 50 000}, we determine the runtimes of Algorithm 5 as well
as the runtimes of Algorithm 3 and 4. For Algorithm 3 and 4, we additionally determine
the runtimes for sparsity s = 100 000. For each of the considered cases, we subtract the time
required for sampling. We repeat the tests 10 times and capture the maximum of the obtained
numbers of samples and runtimes. The results are depicted in Figure 5.1. In Figure 5.1a, we
show the maximal number of samples with respect to the sparsity s. We denote the results of
Algorithm 5 using single rank-1 lattices by “A2R1L”, of Algorithm 3 using multiple rank-1
lattices by “MLFFT” and of Algorithm 4 using multiple rank-1 lattices by “MLFFT6”. Ad-
ditionally, we plot the number of samples required by a 5-dimensional FFT on a full grid and
denote this by “5d FFT”. We observe that the number of samples for Algorithm 5 using rank-1
lattices increases roughly like ∼ s1.5 in this example, which is less than the theoretical results
of O(s2) suggest. For sparsity s = 50 000, the number of samples almost equals the cardinality
of the search space |Ĝ5

32|, which is the number of samples required by a 5-dimensional FFT.
Moreover, the number of samples is distinctly lower for Algorithm 3 using multiple rank-1
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Algorithm 5 using Algorithm 3 using Algorithm 4 using
single rank-1 lattices multiple rank-1 lattices multiple rank-1 lattices
max. total max. rel. max. total max. rel. max. total max. rel.

d |supp p̂| #samples `2-error #samples `2-error #samples `2-error

5 1 000 6 260 605 8.0e-16 4 525 799 5.3e-16 581 881 5.8e-16
10 1 000 20 848 685 5.4e-16 12 115 199 5.3e-16 1 589 349 5.1e-16
15 1 000 35 937 525 7.2e-16 18 827 483 5.3e-16 2 599 029 5.2e-16
20 1 000 52 361 205 6.9e-16 27 030 181 5.3e-16 3 609 753 5.2e-16
25 1 000 67 164 695 5.0e-16 33 666 561 5.3e-16 4 621 205 5.1e-16
30 1 000 80 660 385 5.7e-16 40 085 363 5.3e-16 5 644 059 5.1e-16

5 10 000 190 618 285 8.6e-16 40 854 167 3.5e-16 4 648 335 4.0e-16
10 10 000 1 081 274 675 6.3e-16 129 929 699 3.4e-16 15 186 447 3.8e-16
15 10 000 1 969 412 575 1.3e-15 225 282 365 3.5e-16 25 662 189 3.8e-16
20 10 000 2 935 663 575 5.3e-16 316 957 693 3.4e-16 36 161 887 3.8e-16
25 10 000 3 837 073 825 7.1e-16 409 305 929 3.4e-16 46 681 103 3.8e-16
30 10 000 4 771 398 905 1.3e-15 492 181 865 3.5e-16 57 203 659 3.8e-16

5 100 000 – – 419 479 177 2.2e-16 33 428 113 3.0e-16
10 100 000 – – 1 445 678 877 2.1e-16 143 681 689 2.1e-16
15 100 000 – – 2 572 013 451 2.1e-16 250 232 085 2.1e-16
20 100 000 – – 3 623 019 125 2.0e-16 356 857 499 2.1e-16
25 100 000 – – 4 678 498 335 2.1e-16 463 174 925 2.9e-16
30 100 000 – – 5 680 886 471 2.0e-16 569 711 277 2.1e-16

Table 5.1: Results for random sparse trigonometric polynomials using Algorithm 5, 3, 4, when
considering frequencies within the search domain Γ = Ĝd32.

lattices and dramatically lower for Algorithm 4. For both, Algorithm 3 and 4, the number of
samples behaves approximately like ∼ s which is slightly better than the theoretical results
of O(s log s) and O(s log2 s) from Section 3.2, respectively.
We also compare the runtimes of the different approaches and visualize the results in Fig-
ure 5.1b. Here, we denote the runtime of the 5-dimensional FFT computed using the MAT-
LAB function fftn, which is based on FFTW [7], by “FFTW”. The observed runtime
when using Algorithm 5 (single rank-1 lattices) is smaller for sparsity s up to 5 000 and
behaves approximately like ∼ s2 log s, which is distinctly lower than the theoretical results
of O(s3 + s2 log s) suggest. Additionally, when using Algorithm 3 (multiple rank-1 lattices,
“MLFFT”), we observe that the runtimes behave approximately like ∼ s log2 s, which corre-
sponds to the theoretical results of O(s log2 s) for fixed r, d,N . In particular, these runtimes
are distinctly smaller compared to using single rank-1 lattices for higher sparsity s. Further-
more, Algorithm 3 was faster than the 5-dimensional FFT for sparsities s up to 10 000 as
well as faster than Algorithm 5 for sparsity s = 5 000 and above. Moreover, the runtimes
of Algorithm 4 (multiple rank-1 lattices, “MLFFT6”) seem to behave slightly better than
Algorithm 3, whereas the theoretical results suggest O(s log3 s) arithmetic operations.
We remark that for higher-dimensional search spaces, the direct application of a d-dimensional
FFT algorithm is usually not possible in practice due to the exponential growth in the degrees
of freedom.

In the previous examples, we chose the threshold parameter δ very low compared to the
minimal allowed size |p̂k| ≥ 10−6 of the Fourier coefficients p̂k. Next, we consider larger
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Figure 5.1: Number of samples and runtimes with respect to the sparsity for the reconstruc-
tion of random 5-dimensional sparse trigonometric polynomials when considering
frequencies within Γ = Ĝ5

32, r = 1.

threshold parameters δ and observe that setting the number of detection iterations r := 1
does not always suffice. Still, the observed results are very good.

Example 5.3. (Absolute threshold parameter δ and number of detection iterations r). We
set the expansion N := 32 and the dimension d := 5. In contrast to the previous examples,
we use Fourier coefficients p̂k := e2πiϕk ∈ C with angles ϕk ∈ [0, 1) chosen uniformly at
random. For sparsity |supp p̂| := 1 000 and 1 000 repetitions with newly chosen random
frequencies k ∈ Γ := Ĝ5

32 and Fourier coefficients p̂k, we investigate the minimal number of
correctly detected frequencies and the success rate for correctly detecting all frequencies of
Algorithm 3, 4 and 5 for different choices of the absolute threshold parameter δ and number
of detection iterations r. The results are depicted in Table 5.2. We observe that for increasing
number of detection iterations and decreasing threshold parameters δ, the minimal number
of correctly detected frequencies and the success rate for correctly detecting all frequencies
increase. The three considered algorithms perform similarly well. For instance, setting r := 3
and δ := 10−2, all 1 000 frequencies for all 1 000 repetitions were successfully detected by each
of the three algorithms.

5.2 Random sparse trigonometric polynomial with complex Gaussian noise

In this subsection, we test the robustness to noise. To this end, we build sparse mul-
tivariate trigonometric polynomials p with frequencies k randomly chosen from the cube
ĜdN := [−N,N ]d ∩ Zd and corresponding Fourier coefficients p̂k := e2πiϕk ∈ C with angles

29



Algorithm 5 using Algorithm 3 using Algorithm 4 using
single rank-1 lattices multiple rank-1 lattices multiple rank-1 lattices

δ 3e-1 1e-1 1e-2 3e-1 1e-1 1e-2 3e-1 1e-1 1e-2

r = 1 875 / 948 / 987 / 876 / 949 / 993 / 859 / 954 / 987 /
0.000 0.042 0.747 0.000 0.037 0.726 0.000 0.041 0.709

r = 2 975 / 984 / 998 / 979 / 996 / 998 / 982 / 984 / 1000 /
0.395 0.913 0.999 0.409 0.919 0.998 0.386 0.915 1.000

r = 3 996 / 998 / 1000 / 996 / 998 / 1000 / 995 / 998 / 1000 /
0.912 0.996 1.000 0.931 0.997 1.000 0.907 0.997 1.000

r = 4 998 / 1000 / 1000 / 998 / 1000 / 1000 / 997 / 1000 / 1000 /
0.995 1.000 1.000 0.988 1.000 1.000 0.992 1.000 1.000

r = 5 998 / 1000 / 1000 / 1000 / 1000 / 1000 / 1000 / 1000 / 1000 /
0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.2: Minimal number of correctly detected frequencies (first number) and success rate
for correctly detecting all frequencies (second number) for different threshold pa-
rameters δ and numbers of detection iterations r when applying Algorithm 3, 4, 5
on 5-dimensional random trigonometric polynomials p of sparsity |supp p̂| := 1 000.

ϕk ∈ [0, 1) chosen uniformly at random. We perturb the sampling values of the trigonometric
polynomial p by additive complex white Gaussian noise ηj ∈ C with zero mean and standard
deviation σ, i.e., we have measurements p̃(xj) = p(xj) + ηj . Then, we may approximately
compute the signal-to-noise ratio (SNR) in our case by

SNR ≈
∑M−1

j=0 |p(xj)|2/M∑M−1
j=0 |ηj |2/M

≈
∑

k∈supp p̂ |p̂k|2

σ2
=
|supp p̂|
σ2

and we choose σ :=
√
|supp p̂|/

√
SNR for a targeted SNR value. For our numerical tests in

MATLAB, we generate the noise by ηj := σ/
√

2 * (randn + 1i*randn), j = 0, . . . ,M −
1. The SNR is often measured using the logarithmic decibel scale (dB), where SNRdB =
10 log10 SNR and SNR = 10SNRdB/10, i.e., a linear SNR = 108 corresponds to a logarithmic
SNRdB = 80dB and SNR = 1 corresponds to SNRdB = 0dB.

First, we consider the case of Algorithm 5 using single reconstructing rank-1 lattices in
Example 5.4. Afterwards, we compare the results with Algorithm 3 using multiple rank-1
lattices in Example 5.5. In doing so, we observe that one can achieve comparable reconstruc-
tion success and errors using Algorithm 3 while requiring distinctly less samples compared to
using Algorithm 5.

Example 5.4. (see also [26, Example 3.15], reconstruction from noisy sampling values using
Algorithm 5 and reconstructing single rank-1 lattices). We set the dimension d := 10, the
expansion N := 32, the sparsity |supp p̂| := 1 000, and we use the search space Γ := Ĝ10

32.
Moreover, we set the sparsity parameter s := 1 000 and the threshold parameter δ := 10−12.
Algorithm 5 was run setting the parameter r for the number of detection iterations to r :=
1, 2, 5 and using the SNR values SNRdB := 80, 70, . . . , 10, 0 (which corresponds to SNR =
108, 107, . . . , 10, 1). For each of these test settings, we repeated the tests 1 000 times with new
randomly chosen frequencies and Fourier coefficients. The numerical results are presented in
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Table 5.3. The total number of samples for each of the 1 000 repetitions was computed and
the maximum of these numbers for each test setting can be found in the column “#samples”.
In the column “min #freq. correct”, the minimal number of correctly detected frequencies
|I(1,...,10) ∩ supp p̂| for the 1 000 repetitions is shown, where supp p̂ denotes the set of true
(input) frequencies of a trigonometric polynomial p and I(1,...,10) the frequencies returned by
the detection algorithm. The column “success rate (all freq. correct)” represents the relative
number of the 1 000 repetitions where all frequencies were successfully detected, I(1,...,10) =
supp p̂. Moreover, the relative `2-error ‖(˜̂pk)k∈I − (p̂k)k∈I‖2/‖(p̂k)k∈I‖2 of the computed
coefficients (˜̂pk)k∈I(1,...,10) was determined for each repetition, where I := supp p̂ ∪ I(1,...,10)

and ˜̂pk := 0 for k ∈ I \ I(1,...,10), and the column “rel. `2-error” contains the maximal value of
the 1 000 repetitions. We obtain results similar to [26, Example 3.15]. In general, we observe
that for decreasing SNR values, the minimal number of correctly detected frequencies and
the success rate decrease. When using r = 1 detection iteration, there were always some (of
the 1 000 test runs), where a few frequencies were incorrect. When we increased the number
of detection iterations r, the SNR level at which all frequencies in all of the 1 000 test runs
were correctly detected also decreased. For instance for r = 5 detection iterations, the success
rate was at 100 percent including the case SNRdB = SNR = 10. However, we require about
4 times of the samples for r = 5 detection iterations compared to the tests with r = 1.

SNRdB noise σ #detect. max. total min #freq. success rate max. rel.
iter. r #samples correct (all freq. correct) `2-error

80 3.2e-03 1 22 580 805 998 0.995 4.5e-02
70 1.0e-02 1 22 783 605 998 0.991 5.5e-02
60 3.2e-02 1 22 046 375 998 0.973 5.5e-02
50 1.0e-01 1 23 930 465 996 0.944 6.3e-02
40 3.2e-01 1 22 263 475 994 0.760 7.7e-02
30 1.0e+00 1 22 217 585 992 0.443 1.0e-01

80 3.2e-03 2 41 573 935 1 000 1.000 2.5e-06
70 1.0e-02 2 42 387 345 1 000 1.000 7.4e-06
60 3.2e-02 2 42 284 645 1 000 1.000 2.4e-05
50 1.0e-01 2 42 055 975 1 000 1.000 7.2e-05
40 3.2e-01 2 41 578 745 1 000 1.000 2.3e-04
30 1.0e+00 2 41 531 555 998 0.991 5.5e-02

50 1.0e-01 5 94 793 335 1 000 1.000 6.3e-05
40 3.2e-01 5 96 350 345 1 000 1.000 1.9e-04
30 1.0e+00 5 96 262 595 1 000 1.000 6.5e-04
20 3.2e+00 5 95 140 955 1 000 1.000 2.0e-03
10 1.0e+01 5 94 813 745 1 000 1.000 6.4e-03
0 3.2e+01 5 93 780 115 999 0.800 3.8e-02

Table 5.3: Results for random sparse trigonometric polynomials perturbed by additive white
Gaussian noise using Algorithm 5 (reconstructing single rank-1 lattices).

Example 5.5. Next, we apply Algorithm 3 using the identical setting and parameters from
Example 5.4. We observe similar results as before in Table 5.4. In general, Algorithm 3
requires about 2/3 of the number of samples compared to Algorithm 5 and has slightly
better success rates. We suspect that this is due to the computation of the projected Fourier
coefficients by Algorithm 2 using averaging.
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Additionally, we apply Algorithm 4 and present the results in Table 5.5. When using r = 1
detection iteration, there were again always some test runs (of 1 000), where not all frequencies
could be exactly detected. Moreover, we observe that for some of the test runs, Algorithm 4
with the used parameters was unable to correctly detect any frequency and the minimal
number of correctly detected frequencies “min #freq. correct”=0. When we increase the
number of detection iterations r to 2, the reconstruction success was distinctly higher but
worse than the results of Algorithm 5 in Table 5.3 and of Algorithm 3 in Table 5.5. Similarly,
for r = 5 detection iterations, we were able to reconstruct better at higher noise levels but
still worse compared to Table 5.3 and 5.4.
Next, we changed the parameter slocal of Algorithm 4 to the value 1 200, which means that
more frequency candidates are considered and kept in step 2e. Now the minimal number
of correctly detected frequencies is distinctly better in many cases but still worse than using
Algorithm 5 or 3. We suspect that this is also caused by the distinctly smaller number of used
sampling values for Algorithm 4, which is about 1/9 of Algorithm 5 and 1/6 of Algorithm 3.

SNRdB noise σ #detect. max. total min #freq. success rate max. rel.
iter. r #samples correct (all freq. correct) `2-error

80 3.2e-03 1 13 032 485 998 0.998 4.6e-02
70 1.0e-02 1 13 536 429 996 0.990 6.5e-02
60 3.2e-02 1 13 310 277 998 0.988 4.7e-02
50 1.0e-01 1 12 911 065 994 0.949 7.8e-02
40 3.2e-01 1 13 301 373 996 0.857 6.7e-02
30 1.0e+00 1 13 405 817 992 0.621 9.2e-02

80 3.2e-03 2 25 290 563 1 000 1.000 4.4e-06
70 1.0e-02 2 24 883 447 1 000 1.000 1.4e-05
60 3.2e-02 2 24 589 823 1 000 1.000 4.4e-05
50 1.0e-01 2 25 252 543 1 000 1.000 1.4e-04
40 3.2e-01 2 24 937 437 1 000 1.000 4.4e-04
30 1.0e+00 2 25 433 681 998 0.997 4.8e-02

50 1.0e-01 5 63 052 299 1 000 1.000 1.4e-04
40 3.2e-01 5 63 618 665 1 000 1.000 4.3e-04
30 1.0e+00 5 63 294 069 1 000 1.000 1.4e-03
20 3.2e+00 5 65 500 751 1 000 1.000 4.4e-03
10 1.0e+01 5 63 537 849 1 000 1.000 1.5e-02
0 3.2e+01 5 67 046 015 998 0.992 6.2e-02

Table 5.4: Results for random sparse trigonometric polynomials perturbed by additive white
Gaussian noise using Algorithm 3 (reconstructing multiple rank-1 lattices).
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SNRdB noise σ #detect. max. total min #freq. success rate max. rel.
iter. r #samples correct (all freq. correct) `2-error

80 3.2e-03 1 1 617 311 1 0.999 1.0e+00
70 1.0e-02 1 1 616 183 0 0.990 1.0e+00
60 3.2e-02 1 1 616 843 0 0.967 1.0e+00
50 1.0e-01 1 1 614 591 0 0.906 1.0e+00
40 3.2e-01 1 1 617 431 0 0.561 1.0e+00
30 1.0e+00 1 1 614 189 0 0.000 1.0e+00

80 3.2e-03 2 3 063 489 1 000 1.000 9.3e-06
70 1.0e-02 2 3 064 963 1 000 1.000 3.0e-05
60 3.2e-02 2 3 069 693 1 000 1.000 9.4e-05
50 1.0e-01 2 3 130 709 841 0.999 4.2e-01
40 3.2e-01 2 3 257 421 570 0.934 6.8e-01
30 1.0e+00 2 3 379 167 505 0.042 7.3e-01

50 1.0e-01 5 7 582 333 1 000 1.000 2.9e-04
40 3.2e-01 5 7 570 209 1 000 1.000 9.1e-04
30 1.0e+00 5 7 611 301 997 0.100 5.5e-02
20 3.2e+00 5 7 855 307 971 0.000 1.7e-01
10 1.0e+01 5 9 310 751 834 0.000 4.1e-01
0 3.2e+01 5 13 998 685 0 0.000 1.0e+00

Table 5.5: Results for random sparse trigonometric polynomials perturbed by additive white
Gaussian noise using Algorithm 4 with slocal := 1 000.

SNRdB noise σ #detect. max. total min #freq. success rate max. rel.
iter. r #samples correct (all freq. correct) `2-error

80 3.2e-03 1 1 940 759 995 0.999 7.7e-02
70 1.0e-02 1 1 938 367 982 0.994 1.4e-01
60 3.2e-02 1 1 942 751 971 0.980 1.8e-01
50 1.0e-01 1 1 937 867 969 0.955 1.8e-01
40 3.2e-01 1 1 941 323 959 0.835 2.1e-01
30 1.0e+00 1 1 939 205 940 0.065 2.5e-01

80 3.2e-03 2 3 957 003 1 000 1.000 8.1e-06
70 1.0e-02 2 3 952 989 1 000 1.000 2.6e-05
60 3.2e-02 2 3 972 265 1 000 1.000 8.2e-05
50 1.0e-01 2 3 954 775 1 000 1.000 2.6e-04
40 3.2e-01 2 3 957 161 998 0.984 4.5e-02
30 1.0e+00 2 3 954 715 985 0.089 1.3e-01

50 1.0e-01 5 10 785 425 1 000 1.000 2.5e-04
40 3.2e-01 5 10 768 847 998 0.987 4.5e-02
30 1.0e+00 5 10 777 273 994 0.105 8.4e-02
20 3.2e+00 5 10 848 099 971 0.000 1.7e-01
10 1.0e+01 5 10 804 485 843 0.000 4.0e-01
0 3.2e+01 5 17 181 009 0 0.000 1.0e+00

Table 5.6: Results for random sparse trigonometric polynomials perturbed by additive white
Gaussian noise using Algorithm 4 with slocal := 1 200.
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5.3 Approximation of tensor-product function by trigonometric polynomials

Next, we consider the multivariate periodic test function f : T10 → R,

f(x) :=
∏

t∈{1,3,8}

N2(xt) +
∏

t∈{2,5,6,10}

N4(xt) +
∏

t∈{4,7,9}

N6(xt), (5.1)

from [26, Section 3.3] with infinitely many non-zero Fourier coefficients, where Nm : T → R
is the B-Spline of order m ∈ N,

Nm(x) := Cm
∑
k∈Z

sinc
( π
m
k
)m

(−1)k e2πikx,

with a constant Cm > 0 such that ‖Nm|L2(T)‖ = 1. We approximate the function f by
multivariate trigonometric polynomials p. For this, we determine a frequency index set I =
I(1,...,10) ⊂ Γ := Ĝ10

N and we compute approximated Fourier coefficients ˜̂pk, k ∈ I, using
Algorithm 5, 3 and 4. The obtained frequency index sets I should “consist of” the union
of three lower dimensional manifolds, a three-dimensional symmetric hyperbolic cross in the
dimensions 1, 3, 8, a four-dimensional symmetric hyperbolic cross in the dimensions 2, 5, 6, 10
and a three-dimensional symmetric hyperbolic cross in the dimensions 4, 7, 9. All tests are
performed 10 times and the relative L2(T10) approximation error

‖f − S̃If |L2(T10)‖/‖f |L2(T10)‖ =

√
‖f |L2(T10)‖2 −

∑
k∈I
|f̂k|2 +

∑
k∈I
| ˜̂pk − f̂k|2/‖f |L2(T10)‖

is computed, where p = S̃If :=
∑

k∈I
˜̂pk e2πik·◦.

Since the number of non-zero Fourier coefficients is not finite and we use a full grid Ĝ10
N

for the search space, we have to limit the number of detected frequencies k ∈ I and Fourier
coefficients ˜̂pk. For this, we use two different strategies from [26, Section 3.3]. In Section 5.3.1,
we set the sparsity parameter s appropriately. Moreover, in Section 5.3.2, we use the threshold
parameter δ in order to truncate smaller Fourier coefficients.

5.3.1 s-sparse

First, we use the sparsity input parameter s ∈ N to limit the number of detected Fourier
coefficients, see also [26, Section 3.3.1]. In doing so, we set the threshold parameter δ to a
very small value, which is δ := 10−12 for the following examples. In each dimension incre-
ment step t, the detected Fourier coefficients and frequencies are truncated and only those
frequencies are kept which belong to the s � |Γ| < ∞ largest Fourier coefficients. Due to
possible aliasing effects, we use a larger value slocal for the intermediate dimension increment
steps t ∈ {2, . . . , d − 1} than for the final truncation of the index set I(1,...,d) in dimension
increment step t = d in Algorithm 5, 3 and 4.

Example 5.6. (s-sparse approximate function reconstruction). We set the expansion N :=
16, 32, 64 and we use the full grids Γ := Ĝ10

N as search space. Moreover, we set the number
of detection iterations r := 5. The used sparsity input parameters s and slocal as well as
the results of Algorithm 5 using single rank-1 lattices, of Algorithm 3 using multiple rank-1
lattices, and of Algorithm 4 using multiple rank-1 lattices are presented in Table 5.7. The
column “max. rel. L2-error” contains the maximum of the relative L2(T10) approximation
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errors ‖f − S̃If |L2(T10)‖/‖f |L2(T10)‖ of the 10 test runs. The remaining columns have the
same meaning as described in Section 5.1. We observe that for increasing sparsity parameter,
the number of samples increases while the relative L2(T10) approximation error decreases.
When comparing Algorithm 3 and 5, we observe that both methods yield similar errors.
Furthermore, Algorithm 3 requires slightly more samples for small sparsity parameters s and
about half the number of samples for large ones compared with Algorithm 5.
We observe that the number of samples could be drastically reduced when using Algorithm 4,
whereas the relative L2(T10) approximation errors are comparable for all three algorithms in
most cases. For instance in the case N = 64 and s = 5 000, the maximal total number of
samples for Algorithm 5 (computed over 10 test runs) was about 2.3 billion and for Algorithm 4
only about 159 million samples, which is almost 1/15, achieving comparable relative errors.
Only in 1 test run (out of 10) for expansion N = 64 and sparsity s = 1 000, Algorithm 4 failed
to detect some of the frequencies resulting in a relative error of about 4.5 · 10−1 whereas it
succeeded for the remaining 9 test runs yielding a relative error of about 1.2 · 10−2, which
corresponds to the results of Algorithm 5.
As observed in [26, Section 3.3.1], it is not sufficient to only increase the used sparsity s but
the expansion parameter N also needs to be increased. Using a large expansion N and a small
target sparsity s results in the usage of distinctly more samples, e.g., about 50 million samples
for N = 16 and sparsity s = 1 000 compared to about 243 million samples for N = 64 for
Algorithm 5 as well as about 8 million samples for N = 16 and sparsity s = 1 000 compared
to about 34 million samples for N = 64 for Algorithm 4. This corresponds to the almost
linear factor N in the sample complexity, cf. Section 3.2.

single rank-1 lattices multiple rank-1 lattices multiple rank-1 lattices
and Algorithm 5 and Algorithm 3 and Algorithm 4

max. total max. rel. max. total max. rel. max. total max. rel.
N s #samples L2-error #samples L2-error #samples L2-error

16 1 000 50 405 091 1.2e-02 62 671 623 1.2e-02 8 094 293 1.3e-02
16 2 000 128 362 707 4.3e-03 127 612 901 3.9e-03 15 449 367 5.0e-03
16 3 000 222 662 847 3.4e-03 176 257 025 3.0e-03 22 285 615 4.1e-03

32 1 000 84 241 365 1.2e-02 130 597 513 1.2e-02 16 623 363 1.3e-02
32 2 000 265 019 105 3.4e-03 258 312 555 3.4e-03 32 226 797 8.8e-03
32 3 000 565 847 035 1.7e-03 376 108 443 1.6e-03 46 948 295 2.2e-03
32 4 000 767 068 055 1.4e-03 525 215 599 1.2e-03 59 623 261 1.6e-03

64 1 000 242 940 304 1.2e-02 251 626 807 1.2e-02 34 236 011 4.5e-01
64 2 000 563 767 023 3.4e-03 547 034 957 3.4e-03 66 914 731 3.5e-03
64 3 000 946 215 129 1.6e-03 778 060 799 1.6e-03 98 926 095 1.8e-03
64 4 000 1 266 499 683 9.8e-04 1 084 767 689 9.7e-04 130 967 911 1.1e-03
64 5 000 2 285 094 003 7.1e-04 1 318 206 819 6.9e-04 158 693 803 9.6e-04
64 10 000 5 577 419 619 4.3e-04 2 639 274 025 3.8e-04 298 886 055 5.1e-04

Table 5.7: Results for function f : T10 → R from (5.1) when limiting the number of detected
frequencies, slocal := 2s.

5.3.2 threshold-based

Additionally, we consider a variant from [26, Section 3.3.2]. Now, we use the absolute thresh-
old parameter δ ∈ (0, 1) for the truncation. For the search space Γ, we use the full grid Ĝ10

N
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for various expansions N ∈ N. Moreover, we set the sparsity input parameter s := |Γ| and we
use r := 10 detection iterations, which is twice as high than in Section 5.3.1. However, this
was required for successfully determining the relevant frequency index sets I and achieving
low approximation errors.

Example 5.7. (Threshold-based approximate function reconstruction). We apply Algo-
rithm 5 and 4 on the 10-dimensional test function (5.1). The parameters and results are
shown in Table 5.8. For each parameter combination, we perform the tests 10 times. For the
truncation of the one-dimensional index sets I(t) of frequency candidates for component t,
t ∈ {1, . . . , 10}, the threshold parameter δ :=“threshold”/10 is used as well as δ :=“threshold”
for all other truncations. The column “max. |I|” denotes the maximal number |I(1,...,d)| of
Fourier coefficients, which were returned by Algorithm 5 and 4, respectively. The remaining
columns have the same meaning as in Example 5.6. We observe that the total numbers of
samples are dramatically smaller compared to the results from Section 5.3.1 while the rela-
tive L2(T10) approximation errors are comparable in most cases for similar numbers |I| of
Fourier coefficients ˜̂pk used for the approximation S̃If of f . Moreover, the number of samples
when using multiple rank-1 lattices and Algorithm 4 is distinctly smaller compared to using
single rank-1 lattices and Algorithm 5. However, the number |I(1,...,d)| of Fourier coefficients
is slightly larger when using Algorithm 4 for “threshold” values above 10−5 and distinctly
larger for 10−6.
Additionally, we applied Algorithm 3 and we observe a similar behavior as in Example 5.6.
Algorithm 3 and 5 yield similar errors. Moreover, Algorithm 3 requires slightly more samples
for large thresholds parameters δ and about half the number of samples for small δ compared
to Algorithm 5.

single rank-1 lattices multiple rank-1 lattices
and Algorithm 5 and Algorithm 4

max. max. total max. rel. max. max. total max. rel.
N threshold |I| #samples L2-error |I| #samples L2-error

64 1.0e-02 531 388 370 4.2e-01 573 299 551 1.9e-01
64 1.0e-03 1 157 4 089 813 1.1e-02 1 327 2 172 161 1.1e-02
64 1.0e-04 3 075 22 232 568 1.6e-03 3 847 8 924 419 2.1e-03
64 1.0e-05 8 041 163 970 316 4.6e-04 12 499 42 668 463 5.1e-04
64 1.0e-06 22 019 1 087 478 506 4.1e-04 56 375 249 240 643 4.2e-04

128 1.0e-02 531 413 506 1.3e-01 567 328 595 6.1e-02
128 1.0e-03 1 163 3 196 264 1.0e-02 1 357 1 865 193 3.9e-02
128 1.0e-04 3 099 32 334 421 1.6e-03 3 733 13 946 741 1.6e-03
128 1.0e-05 8 491 250 367 814 3.0e-04 11 039 52 172 733 2.6e-03
128 1.0e-06 23 609 1 679 136 524 1.5e-04 50 571 316 908 069 1.6e-04

256 1.0e-02 531 456 113 2.0e-01 571 352 607 6.9e-02
256 1.0e-03 1 155 3 185 671 1.1e-02 1 355 1 890 573 1.1e-02
256 1.0e-04 3 085 51 682 418 1.6e-03 3 653 18 860 827 1.6e-03
256 1.0e-05 8 553 422 552 990 2.9e-04 10 863 77 359 193 2.9e-04
256 1.0e-06 25 563 3 366 629 304 6.3e-05 40 331 373 569 439 1.0e-04

Table 5.8: Results for approximation of function f : T10 → R from (5.1) when truncating the
detected frequencies and Fourier coefficients by threshold.
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6 Conclusion

In this work, we presented fast, efficient, reliable algorithms for high-dimensional sparse FFTs
based on dimension-incremental projections. We applied the new algorithms to the recon-
struction and approximation of high-dimensional functions, assuming that the frequencies of
important Fourier coefficients are unknown.

One main ingredient was the utilization of multiple rank-1 lattices, which are newly devel-
oped sampling schemes allowing for highly efficient construction methods and corresponding
FFT algorithms for known support supp p̂ in frequency domain.

Another important aspect is the modification of algorithm parameters that allow for the-
oretical estimates. In particular, a detailed analysis of specific realizations of the dimension-
incremental approach was performed for the first time with respect to success probability.
Moreover, we estimated the sample and arithmetic complexities for the case of successful
detection as well as for the worst case.

Various numerical tests complement the theoretical considerations and indicate that one
may obtain smaller bounds on the complexities, especially with respect to the sparsity of the
signal under consideration. In Section 4.2 we discussed one improvement idea and point out
the emerging open questions.
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